Масло низкой вязкости из олигомеров, способ его получения и содержащая его композиция

Изобретение относится к способу селективного получения смазки. Смазка имеет вязкость 4,0 сСт при 100°C, летучесть с потерей массы по Noack менее 15%, индекс вязкости более 120, температуру застывания ниже -50°C и вязкость при -40°C менее 3000 сСт. Способ включает: (a) реакцию первого альфа-олефина, исключая 1-децен, используемого для образования винилиденового олефина, выбранного из группы, состоящей из линейных 1-олефинов C4-20 и их комбинаций, в присутствии первого катализатора, включающего алкилалюминиевый катализатор, металлоценовый катализатор, катализатор на основе позднего переходного металла с объемными лигандами и их комбинаций с образованием винилиденового олефина; (b) удаление непрореагировавшего указанного первого олефина, причем указанный винилиденовый олефин имеет содержание винилидена по меньшей мере 70%; (c) взаимодействие указанного винилиденового олефина со вторым альфа-олефином, исключая 1-децен, выбранным из группы, состоящей из линейных 1-олефинов C4-20 и их комбинаций, в присутствии катализатора BF3 и системы промотора, включающей смесь по меньшей мере одного апротонного промотора с по меньшей мере одним протонным промотором; (d) удаление остаточных непрореагировавших мономеров и удаление непрореагировавших летучих жидкостей; (e) гидрирование кубового продукта с образованием смазки; (h) выделение указанной смазки. При этом смазку получают без образования других дополнительных продуктов, которые тяжелее 4,0 сСт при 100°C. Технический результат - селективное получение смазки с низкой вязкостью. 17 з.п. ф-лы, 4 ил., 19 табл., 9 пр.

 

ОБЛАСТЬ ИЗОБРЕТЕНИЯ

Олигомеры альфа-олефинов (известные также как линейные альфа-олефины или винильные олефины) и их использование в препаратах синтетических и полусинтетических смазок давно известны в технике.

Традиционно олигомеры альфа-олефинов, которые применяют в качестве синтетических базовых жидкостей, получают главным образом из линейных терминальных олефинов с 8-14 атомами углерода, таких как 1-октен, 1-децен, 1-додецен, 1-тетрадецен и их смеси. Одним из наиболее широко используемых альфа-олефинов является 1-децен, который можно использовать сам по себе или в смеси с другими альфа-олефинами. При использовании линейных альфа-олефинов олигомеры представляют собой смеси, которые включают различные количества димерных, гримерных, тетрамерных, пентамерных и высших олигомеров. Для удобства применения олигомеры обычно гидрируют с целью повышения их устойчивости к нагреванию и окислению, и затем их нужно фракционировать. Известно, что гидрированные и фракционированные олигомерные продукты обладают отличными свойствами, длительным сроком службы, низкой летучестью, низкой температурой застывания и высоким индексом вязкости.

Поэтому они являются основным базовым сырьем для изготовления различных смазочных материалов.

ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ

Для получения композиций поли(альфа-олефинов) (РАО) существует множество традиционных способов. Однако эти способы не эффективны, и имеется потребность в более эффективных способах получения поли(альфа-олефинов). Кроме того, остается потребность в поли(альфа-олефинах) (РАО) с улучшенными свойствами.

В традиционном способе на основе поли(альфа-олефинов) можно установить кинематическую вязкость продукта либо путем удаления, либо добавления высших или низших олигомеров с образованием композиции нужной вязкости для конкретного применения. Применимыми являются вязкости в интервале 2-100 сСт, 2-10 сСт и 4 сСт при 100°С.

Особенно велико разнообразие базового сырья для синтетических смазок с кинематической вязкостью 4 сСт при 100°С в том случае, когда этот параметр сочетается с низкой летучестью по Noack, низкой температурой застывания, заданной вязкостью при низкой температуре и высоким индексом вязкости. РАО с вязкостью 4 сСт, получаемый олигомеризацией децена, обладает хорошим балансом свойств. К сожалению, вещество с вязкостью 4 сСт (в основном тример децена или С30) приходится отгонять от смеси сложных олигомеров и обычно дополнять более тяжелым компонентом.

Ввиду ограниченности источника децена желательно получать композиции с вязкостью 4 сСт с такими же или лучшими свойствами, как у масел на основе децена, из другого сырья, отличного от децена. Также желательно получать указанные композиции с вязкостью 4 сСт селективно без других сопутствующих продуктов.

Настоящее изобретение относится к композиции поли(альфа-олефина) (РАО) с низкой вязкостью, обладающей низкой летучестью по Noack, низкой температурой застывания, низкотемпературной вязкостью по данному изобретению, высоким индексом вязкости и слабой тенденцией к образованию шламов, и более конкретно относится к композиции РАО с кинетической вязкостью при 100°С в интервале примерно 4 сСт. Данное изобретение также предлагает усовершенствованный способ селективного получения указанной композиции без образования других, более тяжелых сопутствующих продуктов. Кроме того, данное изобретение также относится к усовершенствованному способу селективного получения указанной композиции без образования других, более тяжелых сопутствующих продуктов с очень высоким содержанием димера при минимальных количествах тримера и более тяжелых олигомеров, при использовании катализатора ВF3 вместе с системой промоторов, включающей по меньшей мере сложный эфир и, как вариант, состоящей из системы спирта и сложного эфира, по реакции по меньшей мере одного альфа-олефина по меньшей мере с одним винилиденовым олефином (разветвленный альфа-олефин с алкильным заместителем при втором атоме углерода).

КРАТКОЕ ОПИСАНИЕ ФИГУР

Фиг.1 схематически показывает способ получения смазки по настоящему изобретению.

Фиг.2 схематически показывает зависимость температуры застывания от состава по настоящему изобретению.

Фиг.3 схематически показывает вязкость по Брукфилду по настоящему изобретению.

Фиг.4 схематически показывает третичные атомы углерода по настоящему изобретению, определенные методом спин-эхо 13С ЯМР.

УРОВЕНЬ ТЕХНИКИ

Олигомеры альфа-олефинов (РАС) и их использование в качестве синтетических смазок хорошо известны. Следующие патенты иллюстрируют только некоторые способы получения олигомеров РАО. См., например, патенты США: 3682823; 3763244; 3769363; 3780123; 3798284; 3884988; 3097924; 3997621; 4045507 и 4045508.

Во многих случаях применения предпочтительно, чтобы олигомер обладал низкой вязкостью, например ниже примерно 5 сСт и ниже примерно 4 сСт при 100°С. Эти жидкости с низкой вязкостью особенно применимы в энергосберегающих технологиях, таких как смазывающие масла для двигателей, для минимизации трения и увеличения экономии топлива. При использовании их в чистом виде или в смесях с минеральным маслом они образуют смазочные масла, например, с такой вязкостью, которую квалифицируют как масла для картеров SAE OW30 или SAE 5W30.

В прошлом олигомеры с нужными свойствами получали олигомеризацией 1-децена в присутствии катализатора Фриделя-Крафтса типа ВF3 с промотором, таким как спирт. Однако количество 1-децена ограничено, т.к. его получают вместе с широким набором других альфа-олефинов. Поэтому для получения олигомеров с практически такими же вязкостными свойствами выгоднее проявить гибкость в поиске синтетического базового сырья, используя более широкий набор альфа-олефинов.

Кроме того, проблема, связанная с получением масел на основе олигомеров типа 1-децена или других альфа-олефинов, заключается в том, что смесь олигомерных продуктов обычно надо фракционировать на отдельные фракции для получения масел с заданной вязкостью (например, 2, 4, 6 или 8 сСт при 100°С). Промышленность предлагает смесь олигомеров, которая при фракционировании образует соответствующие количества продуктов с заданной вязкостью согласно требованиям рынка. Поэтому для получения нужного количества одного продукта приходится мириться с избытком другого продукта.

Shubkin и др. в патенте США №4172855 раскрыли способ получения олигомера с низкой вязкостью, включающий димеризацию альфа-олефинов С6-С12, при которой полученный димер вводят в реакцию с альфа-олефином С6-18 в присутствии катализатора Фриделя-Крафтса, с последующей отгонкой летучих компонентов и гидрированием конечного продукта. Однако получаемая жидкость имеет температуру застывания -45°С и содержит заметное количество более тяжелых олигомеров С42-48, оцененное в 7.26%.

Schaerfl и др. в патенте США №5284988 раскрывают способ, включающий

(a) изомеризацию по меньшей мере части исходного винилиденового олефина в присутствии катализатора изомеризации с образованием промежуточного соединения, содержащего трижды замещенный олефин, и

(b) взаимодействие указанного промежуточного соединения по меньшей мере с одним винильным олефином в присутствии катализатора. При этом требуется дополнительная стадия изомеризации; кроме того, доля более тяжелых нежелательных олигомеров С42+ остается все еще слишком высокой, оцененной в 6.5%.

Schaerfl и др. в патенте США №5498815 раскрывают многостадийный способ получения синтетического масла, включающий начальную стадию (а) взаимодействия винилиденового олефина в присутствии катализатора с образованием промежуточной смеси, содержащей по меньшей мере примерно 50 масс.% димера винилиденового олефина. Это усложняет способ из-за начальной димеризации винилидена с образованием по меньшей мере примерно 50 масс.% димера.

Theriot и др. в патенте США 5650548 раскрывают способ получения путем контактирования альфа-олефина с каталитической системой, включающей ВF3, протонный промотор, органический сульфон, сульфоксид, карбонат, тиокарбонат или сульфонат, с образованием олигомера, состоящего на 50 масс.% или более из димера альфа-олефина. В ЕР 0467345 А2 раскрыт способ получения димеров альфа-олефинов в присутствии катализатора, содержащего ВF3 и алкоксилат спирта. В патенте США 3997621 раскрыт способ олигомеризации альфа-олефинов, в котором достигают максимального выхода тримера как основного продукта при катализе ВF3 в сочетании со спиртом и сложным эфиром, далее в патенте США 6824671 раскрыт способ олигомеризации альфа-олефинов, содержащих смесь примерно 50-80 масс.% 1-децена и примерно 20-50 масс.% 1-додецена, в непрерывном режиме с использованием ВF3 и системы промотора спирт/сложный эфир, что максимизирует выход тримера. Это всего лишь часть примеров модифицирования катализатора с целью регулирования степени олигомеризации на предшествующем уровне техники, главным образом, альфа-олефинов, в то время как авторы описывают высокоселективный способ, включающий сочетание винилиденовых и альфа-олефинов.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к композиции поли(альфа-олефинов) (РАО) с вязкостью 4 сСт, которая характеризуется низкой летучестью по Noack, низкой температурой застывания, привлекательной низкотемпературной вязкостью, высоким индексом вязкости и слабой тенденцией к образованию шламов; композицию получают с высокой селективностью по реакции винилидена С16 (2-н-гексил-1-децен) с 1-тетрадеценом в присутствии катализатора ВF3 вместе с промотирующей системой, содержащей по меньшей мере сложный эфир или два промотора - спирт и сложный эфир. Указанная композиция характеризуется мольным соотношением винилиден С16/1-тетрадецен в интервале примерно 1-2 и наиболее предпочтительно 1.5. Изобретение также относится к усовершенствованному способу селективного получения указанной композиции без образования других, более тяжелых продуктов, включающей весьма высокое содержание димера при минимальных количествах тримера и более тяжелых олигомеров, в присутствии катализатора ВF3 вместе с промотирующей системой, содержащей по меньшей мере сложный эфир и наиболее предпочтительно спирт и сложный эфир. Гидрированная композиция по настоящему изобретению имеет вязкость примерно 4 сСт при 100°С, летучесть с потерей массы по Noack менее 15%, индекс вязкости более 120, температуру застывания ниже -50°С и вязкость при -40°С менее 3000 сСт.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Настоящее изобретение описывает способ получения смазки, включающий:

(a) реакцию первого альфа-олефина в присутствии первого катализатора с образованием винилиденового олефина;

(b) реакцию указанного винилиденового олефина со вторым альфа-олефином в присутствии катализатора ВF3 и системы промотора, содержащей по меньшей мере один апротонный промотор;

(c) удаление остаточных непрореагировавших мономеров;

(d) гидрирование указанного кубового продукта и получение композиции смазочного масла.

В качестве варианта настоящего способа первый альфа-олефин, используемый для образования винилиденового олефина, выбирают из группы, состоящей из линейных 1-олефинов C4-20 и их комбинаций. Винилиденовый олефин дает содержание винилидена более 70%.

Способ по настоящему изобретению предлагает в качестве указанного первого катализатора алкилалюминиевый катализатор, металлоценовый катализатор, катализатор на основе позднего переходного металла с объемными лигандами и их комбинацию. Один вариант настоящего способа предлагает в качестве первого катализатора триалкилалюминий. Первый катализатор включает металлоценовый катализатор, который можно выбрать из металлов группы IVB Периодической системы.

В одном варианте настоящего изобретения второй альфа-олефин можно выбрать из группы, состоящей из линейных 1-олефинов C4-20 и их комбинаций.

Промотирующая система по данному изобретению включает по меньшей мере один апротонный промотор в сочетании по меньшей мере с одним протонным промотором. В одном варианте протонный промотор выбирают из спиртов C1-C20. Спирт выбирают из 1-пропанола или 1-бутанола. Другой вариант настоящего изобретения предлагает систему указанного промотора по меньшей мере из одного апротонного промотора без протонного промотора. В одном варианте настоящего изобретения апротонный промотор выбирают из группы, состоящей из альдегидов, ангидридов, кетонов, органических сложных эфиров, простых эфиров и их комбинаций. В другом варианте настоящего изобретения апротонный промотор представляет собой органический сложный эфир, который выбирают из группы, состоящей из алкилацетатов C110 и их комбинаций. Апротонный промотор может представлять один алкилацетат. В качестве варианта алкилацетат может быть н-бутилацетатом.

Настоящее изобретение предполагает удаление остаточных непрореагировавших мономеров в том числе перегонкой.

Винилиденовый олефин по настоящему изобретению получают димеризацией 1-октена в винилиден С16. Винилиденовый олефин может иметь чистоту по меньшей мере 80%. Кроме того, указанный винилиденовый олефин участвует в реакции винилидена С16 с 1-тетрадеценом (С14). 1-Тетрадецен (С14) содержит по меньшей мере 70% линейных терминальных групп. Винилиденовый олефин имеет чистоту по меньшей мере 80%.

Композиция смазочного масла по настоящему изобретению имеет вязкость примерно 4 сСт при 100°С, летучесть с потерей массы по Noack менее 15%, индекс вязкости более 120, температуру застывания ниже -50°С и вязкость при -40°С менее 3000 сСт. В одном варианте получают смазочное масло, не содержащее более тяжелых дополнительных продуктов. В другом варианте композиция смазочного масла характеризуется мольным соотношением винилиден С16/1-тетрадецен в интервале примерно 1-2. Композиция смазочного масла может иметь мольное соотношение винилиден С16/1-тетрадецен, равное примерно 1.5.

В одном варианте способа по п.1 смазку смешивают с жидкостью, которую выбирают из группы, состоящей из синтетической жидкости, минерального масла, дисперганта, антиоксиданта, противоизносного реагента, противопенного реагента, ингибитора коррозии, моющего средства, набухающего герметика, присадки, понижающей температурную зависимость вязкости, и их комбинации.

Другой вариант способа по настоящему изобретению предлагает способ получения смазки, включающий:

(a) реакцию первого альфа-олефина в присутствии первого катализатора с образованием винилиденового олефина;

(b) реакцию указанного винилиденового олефина со вторым альфа-олефином в присутствии катализатора ВF3 и промотирующей системы, содержащей по меньшей мере один апротонный промотор;

(c) удаление остаточных непрореагировавших мономеров;

(а) гидрирование по меньшей мере части указанного кубового продукта и

(е) выделение гидрированной жидкости.

Негидрированную жидкость по изобретению можно использовать во многих вариантах применения, в которых олефиновую группу функционализируют с образованием функциональной группы с гетероатомом, который выбирают из группы, состоящей из азота, кислорода, серы, галогена и их комбинаций.

Вязкость используемых РАО находится в интервале 2-100 сСт и особенно 2-10 сСт и наиболее конкретно 4 сСт при 100°С. Объектом настоящего изобретения является получение композиций с вязкостью 4 сСт с такими же или лучшими свойствами по сравнению со свойствами масла на основе децена, полученного из другого сырья, поскольку количество децена ограничено. Кроме того, целью данного изобретения является получение с высокой селективностью указанной композиции с вязкостью 4 сСт, не содержащей других дополнительных продуктов. Особенно велико на рынке разнообразие базового сырья для синтетических смазок с кинематической вязкостью 4 сСт при 100°С, особенно если оно характеризуется низкой летучестью по Noack, низкой температурой застывания, нужной вязкостью при низкой температуре и высоким индексом вязкости. Настоящее изобретение относится к композиции поли(альфа-олефинов) (РАО) с вязкостью 4 сСТ, характеризующейся низкой летучестью по Noack, низкой температурой застывания, нужной вязкостью при низкой температуре и высоким индексом вязкости, полученной селективно по реакции винилидена С16 (2-н-гексил-1-децен) с 1-тетрадеценом в присутствии катализатора ВF3 вместе с промотирующей системой, содержащей по меньшей мере сложный эфир или два промотора - спирт и сложный эфир. Винилиден С16 (C16vd) получают димеризацией 1-октена, содержащего более 70% винилидена, независимо от способа получения или источника. C16vd можно получить способами, описанными в патенте США 5625105 и ссылках в нем, или способами, описанными в патентах США 5087788, 4658078 или 6548723. В одном варианте изобретение предлагает композицию поли(альфа-олефинов) (РАО) с вязкостью 4 сСт, характеризующуюся низкой летучестью по Noack, низкой температурой застывания, привлекательной низкотемпературной вязкостью и высоким индексом вязкости, полученную селективно по реакции винилидена С16 (2-н-гексил-1-децен) с 1-тетрадеценом. Указанная композиция образуется при мольных соотношениях винилиден С16/1-тетрадецен в интервале примерно 1-2, примерно 1.5. Кроме того, композиция по данному изобретению имеет вязкость при 100°С примерно 4 сСт, летучесть с потерей массы по Noack менее 15%, индекс вязкости более 120, температуру застывания ниже -50°С и вязкость при -40°С менее 3000 сСт.

Другим предметом настоящего изобретения также является усовершенствованный способ селективного получения указанной композиции без образования более тяжелых дополнительных продуктов с весьма высоким содержанием димера при минимальных количествах тримера и более тяжелых олигомеров в присутствии катализатора ВF3 вместе с промотирующей системой, содержащей по меньшей мере сложный эфир и в качестве варианта систему из спирта и сложного эфира. Нужную композицию с вязкостью 4 сСт по настоящему изобретению получают как единственный продукт, не содержащий других, более тяжелых дополнительных продуктов, причем фракцию остаточного и непрореагировавшего мономера удаляют без дополнительного фракционирования. Кроме того, содержание фракции тримера и высших олигомеров по настоящему изобретению поддерживают на уровне ниже 5%.

В другом варианте данного изобретения получают синтетическую базовую жидкость с вязкостью 4 сСт при образовании малого количества шламов и с высокой устойчивостью к окислению по сравнению с предшествующим уровнем техники.

Желательно получить композицию с вязкостью 4 сСт, обладающую такими же или лучшими свойствами по сравнению с маслом на основе децена, полученным из другого сырья, поскольку ресурс децена ограничен. Также желательно селективно получать указанную композицию с вязкостью 4 сСт без образования других дополнительных продуктов. Было проведено подробное сравнительное тестирование продуктов по настоящему изобретению по сравнению с выпускаемыми промышленностью продуктами.

Использованный здесь термин «примерно» при любом количестве относится к вариациям этого количества, определенным в реальных условиях, принятых в мировой практике получения смазки, композиции смазочного масла или их предшественников, например, в лаборатории, на пилотной установке или производственном оборудовании. Например, количество ингредиента, используемое в смеси, с пометкой «примерно» включает вариации и степень точности, обычно применяемые в композициях смазки, смазочного масла или их предшественников в заводских или лабораторных условиях. Например, количество компонента продукта с пометкой «примерно» включает вариации между порциями смазки, композиций смазочного масла или их предшественников в заводских или лабораторных условиях и вариации, присущие аналитическому методу. Независимо от того, присутствует или нет пометка «примерно», количества включают эквиваленты этих количеств. В настоящем изобретении можно также использовать любые заявленные здесь количества с пометкой «примерно», так же как количества без пометки «примерно».

ПРИМЕРЫ

Использовали промышленный 1-тетрадецен (С14) от INEOS Oligomers; можно использовать и другие образцы 1-тетрадецена. Винилиден С16 (C16vd) получают димеризацией 1-октена с чистотой по винилидену выше 70% независимо от способа получения или источника.

Пример 1

В 1-галонный реактор Парра с обогреваемой рубашкой и внутренним охлаждением загрузили 515.0 г 1-тетрадецена и 885.0 г винилидена С16 (89% винилиденового олефина, 8% внутреннего олефина и 3% трехзамещенного олефина по данным -1Н ЯМР), 1.4 г 1-бутанола и 1.4 г бутилацетата и нагрели до 30°C при перемешивании. Добавили трифторид бора и установили стационарное давление 20 фунт/кв. дюйм; наблюдали немедленный разогрев до 43°С, который регулировали в течение 3 мин. Реакционную смесь перемешивали 30 мин. Реакцию олигомеризации проводили таким образом, что для лучшего регулирования экзотермической реакции часть или все реагенты медленно добавляли в реактор Парра; реакцию можно также проводить в 2-5 периодических реакторах с непрерывным перемешиванием (CST), соединенных последовательно или параллельно. Реакцию остановили добавлением 400 мл 8% NaOH и реакционную смесь промыли дистиллированной водой. После удаления непрореагировавших летучих жидкостей при пониженном давлении (200°С, 0.1 мм Hg) получили 1244.6 г прозрачной жидкости, которую прогидрировали в стандартных условиях (при 170°С, давлении водорода 400 фунт/кв. дюйм в присутствии катализатора Ni на кизельгуре) и получили синтетическое базовое сырье со следующими свойствами:

Таблица 1
Анализ Тест Единица измерения Свойства
KV 100°С ASTM D-445 мм2 3.93
KV 40°С ASTM D-445 мм2 17.3
VI ASTM D-2270 124
KV -40°С ASTM D-445 мм2 2435
Температура застывания ASTM D-97 °C -63
Температура воспламенения ASTM D-92 °C 208
Noack DIN 51581 масс.% 13.6
Вид Визуально Прозрачн.
Вязкость по Брукфильду
при -40°С
IP 267 мПа·с 2160
Показатель преломления
при 20°С
ASTM D-1218 - 1.4554
ССS-30°С ASTM D5293 мПа·с <700
CCS -35°С ASTM D5293 мПа·с 1220
TAN ASTM D-974 мг КОН/г 0.003
Плотность ASTM D-4052 г/мл 0.8198
Бромное число IT-129 г/100 г 0.2

Приведенная таблица показывает, что после удаления остаточных непрореагировавших мономеров полученный РАО обладает предлагаемым балансом вязкости (т.е. свойств, соответствующих многим свойствам традиционных PAOs на основе децена с вязкостью 4 сСт), и этот пример можно использовать в качестве методики для непосредственного получения единственной жидкости с вязкостью 4 сСт без дальнейшей перегонки. Это будет жидкость с вязкостью 4 сСт, нужным индексом вязкости, низкой летучестью по Noack и заданной температурой застывания.

Композиция олигомеров указанного выше РАО по данным ГХ имела следующий состав:

С24: 1.9% площади

С28-С32: 95.0% площади

С42-С48 (тример и выше): 3.1% площади

Снижение содержания более тяжелых фракций тримеров и высших олигомеров (С42-С48) до примерно менее 5% является ключевой особенностью данного изобретения, которая обеспечивает указанные выше нужные свойства, исключающие необходимость последующей перегонки, и объединяет полезные вязкие свойства, включая очень низкую температуру застывания, у РАО с вязкостью 4 сСт, полученной по единственной методике, при которой не образуются более тяжелые дополнительные продукты.

Условия ТХ анализа

Колонка: 15 м × 0.53 мм внутр. диам. × 0.1 мкм пленка DB-1

Температурная программа термостата: 8°/мин от 90°С до 330°С

Затем выдержка при 330°С в течение 10 мин

Температура инжектора: выключена

Ввод пробы: в колонку

Давление на входе в колонку: 3 фунт/кв. дюйм до 15 фунт/кв. дюйм при 0.5 фунт/кв. дюйм/мин. Выдержка 15 фунт/кв. дюйм в течение 16 мин

Детектор: пламенно-ионизационный (FID)

Темп. детектора: 300°С

Поток в колонке: 7 мл/мин (90°С/3 фунт/кв. дюйм)

Поток в колонке: 21 мл/мин (300°С/15 фунт/кв. дюйм)

Дополнительный поток: 15 мл/мин

Ослабление сигнала: 7×1

Ввод пробы: 1.0 мкл (игла из плавленого кварца)

Хроматограф: HP 5890 серия II.

Подготовка образца

Образец для анализа - навеску 40 мг РДО поместили в 4-драхмовую пробирку. К образцу в пробирку добавили 1 мл раствора внутреннего стандарта (1.2 мл/мл нС15 в н-гептане) и смесь разбавили 10 мл н-гептана. Во всех расчетах образцов использовали фактор отклика равный 1.0. При необходимости можно нормализовать результаты приведением к 100%.

Времена удерживания

Получили следующие времена удерживания:

Димер: 10-15 мин

Тример: 15-21 мин

Тетрамер: 21-26 мин

Пентамер: 26-29 мин

Гексамер +: 29-33 мин

Структурный анализ этой жидкости методом спин-эхо ЯМР показал значительно меньшее содержание третичных атомов углерода, чем в выпускаемой промышленностью жидкости на основе децена с такой же вязкостью (типа Durasyn 164 от INEOS): 7.9% против 9.1%. Известно в данной области, что по меньшей мере устойчивой к окислению частью молекулы являются третичные атомы углерода, т.е. те позиции, где углеродные цепи разветвляются. Благодаря этому жидкий РАО по данному изобретению особенно пригоден для применения в тех случаях, когда требуется повышенная устойчивость к окислению.

Анализ методом спин-эхо ЯМР (GASPE)

GASPE (gated spin echo) представляет собой метод спин-эхо ЯМР, в котором используют нарушенную развязку для определения относительного содержания первичных, вторичных, третичных и четвертичных атомов углерода в молекуле. В типичном эксперименте после возбуждения ядер 13С в течение заданного времени быстро выключают развязку по протонам. На четвертичные атомы С это не влияет, а сигналы от групп СН, СН2 и СН3 колеблются вверх и вниз с разными скоростями. Записывают несколько спектров с точно выбранными периодами прерванной развязки и еще один спектр с полной развязкой. В некоторых спектрах все сигналы могут быть положительными, в других спектрах сигналы от СН, CH2 и/или СН3 групп могут быть отрицательными. Спектры суммируют в заранее определенных соотношениях, с тем чтобы получить чистые спектры от групп С, СН, СН2 и СН3. Эти спектры интегрируют для непосредственного получения распределения типов углерода.

Методика

Использованная в этом эксперименте методика основана на опубликованной работе McKenna и др. (McKenna, S.Т., Casserino, М., and Ratliff, К., "Comparing the Tertiary Carbon Content of PAOs and Mineral Oils", presented at STLE Annual Meeting, May 23, 2002). См. также Coofcson, D.J., and Smith, В.Е., "Improved Methods for Assignment of Multiplicity in "C NMR Spectroscopy with Application to the Analysis of Mixtures", Org. Magn. Reson., 16, 111-6 (1981); Cookson, D.J., and Smith, B.E., "Determination of Carbon С, СН, CH2, and СН3 Group Abundances in Liquids Derived from Petroleum and Coal Using Selected Multiple 13C NMR Spectroscopy", Fuel, 62, 34-8 (1983); Cookson, D,J., and Smith, B.Е., "Quantitative Estimation of CHn Group Abundances in Fossil Fuel Materials Using "C NMR Methods", Fuel, 62, 986-8 (1983); Snape, С.Е., "Comments on the Application of Spin-Echo 13C NMR Methods to Fossil Fuel-Derived Materials", Fuel, 62, 988-9 (1983); Gallacher, J., Snape, С.Е., Dennison, P.R., Bales, J.R., and Holder, K.A,, "Elucidation of the Nature of Naphtheno-Aromatic Groups in Heavy Petroleum Fractions by Carbon-13 NMR and Catalytic Dehydrogenation", Fuel, 70, 1266-70 (1991); Sarpal, A.S., Kapur, G.S., Chopra, A., Jain, S.K., Srivastava, S.P., and Bhatnagar, A.K., "Hydrocarbon Characterization of Hydrocracked Base Stocks by One- and Two-Dimensional NMR Spectroscopy", Fuel, 75, 483-90 (1996); Montanari, L., Montani, Е., Corno, C., and Fatten, S., "NMR Molecular Characterization of Lubricating Base Oils: Correlation with Their Performance", Appl. Magn, Reson., 14, 345-56 (1998); and Sahoo, S.K., Pandey, D.C., and Singh, I.D., "Studies on the Optimal Hydrocarbon Structure in Next Generation Mineral Base Oils", Int. Symp. Fuels Lubr. Symp, Pap., 2,273-8 (2000).

Примеры 2-4

Мольные соотношения С16/С14 в приведенных ниже примерах были оптимизированы для получения РАО с улучшенной вязкостью; высокое содержание С14 в продукте отрицательно влияет на температуру застывания (высокая температура застывания). В таблице приведены примеры влияния мольного соотношения C16vd/C14 на температуру застывания полученных жидкостей в близких условиях:

Таблица 2
Образцы Мольн. соотношение C16vd/C14 Температура застывания °C
1 1.5 -63
2 1.2 -45
3 1.0 -42
4 0.8 -39

Пример 5

В 1-галонный реактор Парра для олигомеризации загрузили в атмосфере N2 515.0 г 1-тетрадецена (INEOS C14), 885.0 г винилидена С16 (89% винилиденового олефина, 8% внутреннего олефина и 3% тризамещенного олефина по данным 1H NMR), 2.8 г бутилацетата и нагрели до 30°С при перемешивании. Добавили трифторид бора и установили стационарное давление 20 фунт/кв. дюйм; наблюдали немедленный разогрев до 38°С, который регулировали в течение 3 мин с помощью морозильника, и охладили до 30°С. Реакционную смесь перемешивали 30 мин, избыток ВF3 удалили в щелочном скруббере и затем реакционную среду продували N2 в течение 15 мин. Реакцию остановили с помощью 400 мл 8% NaOH и отделенную органическую фазу промыли дистиллированной водой. После удаления непрореагировавших и летучих жидкостей при пониженном давлении (200°С, 0.1 мм Нg) выделили 1092.2 г прозрачной жидкости, которую прогидрировали в стандартных условиях (при 170°С, давлении водорода 400 фунт/кв. дюйм в присутствии катализатора Ni/кизельгур) и получили синтетическое базовое сырье со следующими свойствами:

Таблица 3
Анализ Тест Единица измерения Жидкость по изобретению
KV 100°С ASTM D-445 мм2 3.91
KV 40°С ASTM D-445 мм2 17.3
VI ASTM D-2270 - 121
KV -40°C ASTM D-445 мм2 2434
Температура застывания ASTM D-97 °C -57

Приведенная таблица показывает, что полученный РАО обладает предлагаемым балансом вязкости и его можно использовать в качестве жидкости с вязкостью 4 сСт, полученной по единственной методике прямого опыта без дальнейшей перегонки.

Композиция олигомеров в приведенном РАО по данным ГХ имеет следующий состав:

С28-С32: 97.8% площади

С42-С48 (тример и выше): 2.0% площади.

Сравнительный пример (не входит в формулу)

Приведенный эксперимент по олигомеризации был проведен с использованием традиционной методики с применением 1-бутанола в качестве единственного промотора для ВF3 (за исключением бутилацетата как единственного отличия от близких условий реакции). После стандартной гидрогенизации полученная жидкость имела следующие свойства:

Таблица 4
Анализ Тест Единица измерения Свойства
KV 100°С ASTM D-445 мм2 4.20
KV 40°С ASTM D-445 мм2 18.9
VI ASTM D-2270 - 128
KV -40°С ASTM D-445 мм2 2936
Температура застывания ASTM D-97 °C -45
Noack DIN 51587 масс.% 13.9

Продукт в приведенном сравнительном примере обладает заметно более высокой температурой застывания (-45°С против -63°С), что отличается от технических данных для промышленного РАО на основе децена с вязкостью 4 сСт, такого как INEOS Durasyn 164. Другие отличия включают как вязкость при 100°С (максимум спецификации Durasyn 164 составляет 4.1 сСт), так и вязкость при -40°С (максимум спецификации Durasyn 164 составляет 2800 сСт). Кроме того, по данным ГХ в композиции этого сравнительного примера содержится значительно больше тяжелых олигомеров (тример и выше):

С24: 1.4% площади

С28-С32: 89.6% площади

С42-С48 (тример и высшие): 9.0% площади.

Более высокая температура застывания и повышенная вязкость (при 100°С и при -40°С соответственно) этой жидкости в сравнительном примере обусловлены частично более высоким содержанием тримера и более тяжелых олигомеров, т.е. селективность предлагаемого способа при использовании бутилацетата в качестве вторичного модифицирующего реагента наряду с 1-бутанолом не повышается.

Пример 6

Низкое образование шламов при получении продукта по настоящему изобретению по сравнению с жидкостью с повышенным содержанием тримера.

Термическая стабильность жидкости по изобретению с кинематической вязкостью при 100°С равной 3.93 сСт, вязкостью при 40°С равной 17.26 сСт и содержанием С42-С48 (тример и выше) равным 2.9% была оценена в тесте ASTM D2070 (Cincinnati Milacron Thermal Stability Test, Procedure A), так же как жидкости, полученной по методике сравнительного примера, подробно рассмотренного выше, с кинематической вязкостью при 100°С равной 4.20 сСт, вязкостью при 40°С равной 18.79 сСт и содержанием С42-С48 (тример и выше) равным 7.0%.

В тесте Cincinnati Milacron оценивают внешний вид и потерю массы медных и стальных стержней при контакте с тестируемыми жидкостями в течение 168 ч при 135°С. Количество шлама определяют фильтрованием тестируемого масла и взвешиванием осадка в соответствии с установленной процедурой. В приведенном ниже сравнении жидкость по изобретению образует более чем в шесть раз меньше шлама, чем сравнительная жидкость С14/С16.

Таблица 5
Способ Жидкость по изобретению Жидкость сравнения
Вязкость при 100°С ASTM D-445 3.93 4.20
Вязкость при 40°С ASTM D-445 17.26 18.79
Процент С42-С48 (тример и выше) ГХ 2.9% 7.0%
Термостабильность по Cincinnati Milacron, процедура A (ASTM D-2070)
Относ, суммарный шлам (мг) 1 6.3
Оценка Сu стержня 2 6
Оценка Fe стержня 3 2

Пример 7

Устойчивость к окислению жидкости по настоящему изобретению по сравнению с промышленным образцом гидрированного поли(альфа-олефина) на основе 1-децена с вязкостью 4 сСт (Durasyn 164).

Гидрированные олигомеры альфа-олефинов чувствительны к окислительному разрушению, особенно под воздействием высоких температур в присутствии железа или других каталитически активных металлов. Окисление, если его не регулировать, приводит к образованию продуктов кислотной коррозии, шламов и нагара, которые могут влиять на функционирование правильно изготовленных смазок, содержащих олигомеры. Хотя обычно для противодействия окислению в состав правильно изготовленных смазок включают антиоксиданты, особенно важно подтвердить, что исходные гидрированные олигомеры альфа-олефинов изначально устойчивы. Для этого продукт по настоящему изобретению испытали для сравнения с помощью нескольких стандартных тестов на устойчивость к окислению вместе с гидрированным поли(альфа-олефином) на основе 1-децена с вязкостью 4 сСт (Durasyn 164).

Устойчивость к окислению жидкости по изобретению и жидкости сравнения определили с помощью теста на окисление во вращающемся сосуде под давлением (RPVOT; ASTM D 2272). В тесте используют сосуд под давлением кислорода в присутствии воды и медного катализатора в виде спирали при 150°С. Индукционный период окисления жидкости по изобретению на 9% продолжительнее, чем РАО на основе децена с вязкостью 4 сСт. Масло, обладающее более длительным индукционным периодом окисления, считается более устойчивым к окислению.

Тест на поглощение кислорода в тонкой пленке (TFOUT) провели согласно методу тестирования ASTM D 4742. В этом тесте используют вращающийся сосуд под давлением, находящийся в горячей масляной бане. В сосуде повышают давление кислорода до 90 фунт/кв. дюйм и определяют время, в течение которого давление начнет снижаться. Чем длительнее этот период времени (в минутах), тем выше устойчивость жидкости к окислению. Чем дольше длится опыт по тестированию (в минутах), тем выше устойчивость жидкости к окислению. Жидкость по изобретению имеет индукционный период окисления на 13% длиннее, чем РАО из децена с вязкостью 4 сСт.

Тест Institute of Petroleum 48 (IP-48) был следующим для оценки устойчивости к окислению жидкости по изобретению по сравнению с РАО из децена с вязкостью 4 сСт.

В этом тесте барботируют воздух через жидкость при высокой температуре. Вязкость образца в конце теста сравнивают с вязкостью эталонного образца точно такого же состава, через который барботировали азот. Суммарное увеличение вязкости (выраженное в процентах роста) указывает на устойчивость смазки к окислению. Чем меньше рост вязкости, тем лучше. Жидкость по изобретению обладает соотношением значений вязкости (вязкость использованного масла/вязкость свежего масла) равным 2.98 против 3.48 для РАО из децена с вязкостью 4 сСт.

Таблица 6
ТЕСТ СПОСОБ ИЗМЕРЕНО ИЗОБРЕТЕНИЕ 4 сСт С10 РАО
Устойчив, к окислению (RPVOT) ASTM D2272 относит. индукц. период окисления, мин 109% 100%
Устойчив. к окислению (TFOUT) ASTM D4742 относит. индукц. период, мин 113% 100%
Устойчив, к окислению IP 48
Соотношение вязкости (Использ./ свежий) 2. 98 3.48
Остаток по методу Расмботтома(И спольз./ свежий) 0.08 0.09
Потеря при испарении масс.% 16.26 17

Во всех приведенных тестах жидкость по изобретению эквивалентна или явно превосходит образец РАО из децена с вязкостью 4 сСт.

Пример 8

Моторные масла

Во многих случаях применения смазок можно использовать жидкость по данному изобретению с вязкостью 4 сСт, обладающую низкой вязкостью при 100°С и -40°С соответственно в сочетании с необходимым индексом вязкости и низкой температурой застывания (все определены выше).

Ожидают, что синтетические жидкости по данному изобретению будут использоваться в тех же случаях, что и гидрированные олигомеры 1-децена с близкой вязкостью. Области применения включают, но не ограничиваются ими, гидравлические жидкости для наземного и водного транспортного оборудования, картерные масла для автомобилей, тяжелые дизельные масла, жидкости для автоматических трансмиссий, трансмиссионные жидкости для вариаторов и промышленные и автомобильные трансмиссионные масла, масла для компрессора/турбины, и, в частности, те области применения, преимущества которых связаны с энергосберегающими технологическими особенностями маловязких жидкостей. Для иллюстрации применимости жидкости по изобретению в препаратах разных типов было предложено несколько демонстрационных препаратов.

Моторные масла для легковых автомобилей

Синтетические жидкости по данному изобретению идеально подходят в качестве компонентов полностью синтетических и/или полусинтетических смазочных масел для двигателей внутреннего сгорания. Жидкость по данному изобретению можно использовать как базовую смазку или смешивать с другими смазочными маслами, включая минеральные масла I, II или III групп, масла GTL (жидкие углеводороды, получаемые из газообразных углеводородов), синтетические сложноэфирные масла (например, ди-2-этилгексиладипат, триметилолпропан, трипеларгонат и т.п.), алкилнафталиновые масла (например, ди-додецилнафталин, ди-тетрадецилнафталин и т.п.) и т.д. Смазочные масла для двигателей внутреннего сгорания обычно составляют так, чтобы они содержали традиционные добавки к смазочным маслам, такие как арилсульфонаты кальция, сульфонаты кальция с избыточным основанием, феноляты кальция или бария, алкилбензолсульфонаты магния с избыточным основанием, диалкилдитиофосфаты цинка, присадки для индекса вязкости (VI) (например, этилен-пропиленовые сополимеры, полиалкилметакрилаты и т.п.), беззольные дисперганты (например, полиизобутиленсукцинимиды тетраэтиленпентамина, продукты конденсации полиизобутиленфенол-формальдегид-тетраэтиленпентамина по Манниху и т.п.), реагенты, понижающие температуру замерзания, модификаторы трения, ингибиторы ржавления, деэмульгаторы, растворимые в масле антиоксиданты (например, стерически затрудненные фенолы или алкилированные дифениламины), различные сульфированные компоненты и ингибиторы пены (противопенные реагенты).

Для специфических базовых масел и областей их применения разработаны патентованные комбинации таких добавок, называемых композициями добавок, и они выпускаются в промышленности несколькими фирмами, в том числе корпорациями Лубризол, Инфениум и Афтон. Эти же фирмы выпускают присадки для индекса вязкости (VI).

Жидкость по данному изобретению можно использовать в составах моторных масел для легковых автомобилей со степенью вязкости 0W и 5W, которые привлекательны благодаря их энергосберегающим качествам (см. SAE paper 871273, 41h International Pacific Conference, Melbourne, Austalia, 1987).

Пример 8А

Демонстрационное масло для легковых автомобилей

Следующие полностью и частично синтетические моторные масла 0W-30 и 0W-40 для легковых автомобилей были изготовлены с использованием жидкости по ДАННОМУ ИЗОБРЕТЕНИЮ.

Таблица 7
0W-30 и 0W-40 РСМО
Добавка Полностью синтетическое 0W-30 Частично синтетическое 0W-40.
Масло А Масло В Масло С Масло D
Композиция добавок1, масс.% 14.2 14.2 12.5 12.5
Базовое масло III группы, 6 сСт2, масс.% - - 20.0 20.0
С10 РАО 6 сСт3, масс.% 51.8 51.8 -
С10 РАО 4 сСт4, масс.% 20.0 - 48.5 -
ИЗОБРЕТЕНИЕ 3.9 сСт, масс.% - 20.0 - 48.5
Модификатор вязкости5, масс.% 4.0 4.0 9.0 9.0
Сложный эфир6, масс.% 10.0 10.0 1 0.0 10.0
Вязкость при 100°С(сСт) 10.9 10.8 13.4 13.2
Вязкость при 40°С (сСт) 64.9 65.0 76.9 78.7
Индекс вязкости 159 158 179 168
Имитатор вязкости масла для проворачивания коленчатого вала холодного двигателя -35°С (СП) 5290 5250 4930 5010
Летучесть по Noack (% потери массы) 7.6 7.4 8.6 8.8

1. Промышленная композиция диспергант/ингибитор от Lubrizol

2. Гидрированный поли(альфа-олефин) из 1-децена от INEOS; 5.97 сСт при 100°С

3. Гидрированный поли(альфа-олефин) из 1-децена от INEOS; 3.93 сСт при 100°С

4. Минеральное масло III группы от SK Korea; 6.52 сСт при 100°С, VI 129, температура застывания -15°С

5. 15% масс. раствор гидрированного полиизопренового полимера в РАO6 от Shell

6. Стерически затрудненный сложный эфир триметилолпропана от Uniqema.

Пример 8В

Дизельные масла тяжелого режима - Демонстрационное дизельное масло тяжелого режима

Синтетические жидкости по данному изобретению используют для изготовления дизельных масел для двигателей, работающих в тяжелом режиме. Подобно моторным маслам для легковых автомобилей, дизельные масла тяжелого режима содержат несколько добавок разных типов, например, дисперганты, антиоксиданты, противоизносные реагенты, противопенные реагенты, ингибиторы коррозии, моющие средства, набухающие герметики и присадки для индекса вязкости. Эти типы добавок хорошо известны. Некоторые конкретные примеры добавок, используемых в дизельных маслах для тяжелого режима, включают диалкилдитиофосфаты цинка, арилсульфонаты кальция, арилсульфонаты кальция с избытком основания, феноляты бария, стерически затрудненные алкилфенолы, метилен-бис-диалкилфенолы, высокомолекулярные алкилсукцинимиды этиленполиаминов, таких как тетраэтиленполиамин, фенолы с серными мостиками, сложные эфиры сульфированных жирных кислот и амидов, силиконы и диалкиловые сложные эфиры. Патентованные комбинации таких добавок, которые разработаны для специфических базовых масел и областей применения, выпускаются в промышленности несколькими фирмами, в том числе корпорациями Лубризол, Инфениум и Афтон. Эти же и другие фирмы отдельно выпускают присадки для индекса вязкости (VI).

Следующие частично синтетические дизельные масла 5W-40 для тяжелого режима были изготовлены с использованием жидкости по изобретению.

Таблица 8
5W-40 HDDO
Добавка Частично синтетич. 5W-40
Масло Е Масло F
Композиция добавок1, масс.% 20.0 20.0
С10РАО 4 сСт2, масс.% 46.0
Базовое масло III группы, 6 сСт3, масс.% 20.0 20 0
ИЗОБРЕТЕНИЕ 3.9 сСт4, масс.% 46.0
Модификатор вязкости5, масс.% 10.0 10.0
Сложный эфир6, масс.% 5.0 5.0
KV @ 100°С (сСт) 13.7 13.3
KV @ 40°С (сСт) 82.5 83.7
Индекс вязкости 171 160
Имитатор вязкости масла для проворачивания коленчатого вала холодного двигателя 4390 4450
Летучесть по Noack (% потери массы) 7,6 7,9

1. Промышленный диспергант/ингибитор от Aflon

2. Гидрированный поли(альфа-олефин) из 1-децена от INEOS; 3.93 сСт при 100°С

3. Минеральное масло III группы от SK Korea; 6.52 сСт при 100°С, 129 VI, температура застывания -15°С

4. Гидрированный полимер - полизопрен от Shell

5. Ди-тридециладипат от Еххоn.

Пример 8С

Демонстрационное масло для компрессора/турбины

Синтетические жидкости по данному изобретению можно использовать в составе компрессорных масел (вместе с выбранными добавками к смазкам). Предпочтительное компрессорное масло обычно получают из синтетической жидкости по настоящему изобретению вместе с традиционной композицией добавок к компрессорному маслу. Приведенные ниже добавки обычно используют в таких количествах, чтобы они проявили свои вспомогательные функции. Композиция добавок может включать, но не ограничивается этим, ингибиторы окисления, дополнительные солюбилизаторы, ингибиторы ржавления/пассиваторы металла, деэмульгирующие и противоизносные реагенты. Можно готовить и другие базовые масла.

Таблица 9
Масло для компрессора/турбины ISO 22
ДОБАВКА Масло G Масло Н
Антиоксидант1, масс.% 0.50 0.50
Композиция добавок2, масс.% 0.87 0.87
Набухающий герметик3, масс.% 10.00 10.00
Противопенныи реагент4, 0.01 0.01
С10РАО 6 сСт5, масс.% 35.45 35.45
С10РАО 4 сСт6, масс.% 53.17
ИЗОБРЕТЕНИЕ 3.9 сСт, масс.% 50.17
KV @ 40°С (сСт) 19.97 20.02
KV @ 100°С (сСт) 4.40 4.43
Индекс вязкости 134 135
Температура застывания, °C <-62 <-60
Температура воспламенения, °C 210 214
Удельная плотность 0.8314 0.8317
Коррозия медной полоски, ASTM D130 1a
Деэмульсификация, ASTM D 1401 40/40/0 40/40/0
Относит, индукц. период RPVOT, мин (ASTM D2272) 100 104

1. Промышленный алкилфенольный и ариламинный анитиоксидант от Afton

2. Промышленная композиция, содержащая алкилфосфонат, ариламин, арилтриазол и другие компоненты, от Afton

3. Промышленный набухающий герметик, 3.6 сСт при 100°С, 14.6 сСт при 40°С от Afton

4. Промышленный акрилатный противопенный реагент от Afton

5. Гидрированный 1-децен поли(альфа-олефин) от INEOS; 5.97 сСт при 100°С

6. Гидрированный 1-децен поли (альфа-олефин) от INEOS; 3.93 сСт при 100°С.

Пример 8D

Трансмиссионные масла

Синтетические жидкости по данному изобретению можно использовать в препаратах трансмиссионных масел для транспорта и промышленности. Препараты типичных трансмиссионных масел содержат (1) один или несколько полимерных загустителей, таких как высоковязкие поли(альфа-олефины), жидкие гидрированные полиизопрены, полибутилены, высокомолекулярные акрилатные сложные эфиры и этилен-пропиленовые или этилен-альфа-олефиновые сополимеры; (2) минеральные масла с низкой вязкостью, такие как минеральные масла I, II или III групп, или синтетические масла с низкой вязкостью (например, диалкилированный нафталин или поли(альфа-олефины) с низкой вязкостью); и/или необязательно (3) сложные эфиры с низкой вязкостью, такие как сложные моноэфиры, диэфиры, полиэфиры, и (4) композицию добавок, содержащую антиоксиданты, дисперганты, реагенты для экстремального давления, ингибиторы износа, ингибиторы коррозии, противопенные реагенты и т.п.

Выпускаемые промышленностью композиции добавок содержат несколько, а иногда все типы добавок, приведенных выше.

Трансмиссионные масла могут быть сезонные (летние) или всесезонные (т.е. удовлетворять требования к вязкости SAE как при высокой, так и при низкой температурах). Например, всесезонное трансмиссионное масло 75W-90 должно иметь минимальную вязкость при 100°С равную 13.5 сСт и вязкость 150000 сП или менее при -40°С.

Пример 8Е

Демонстрационное трансмиссионное масло

Таблица 10
Промышленное трансмиссионное масло ISO 32
ДОБАВКА Масло I Масло J
Композиция добавок к ЕР трансмиссион. маслу1, масс.% 1.50 1.50
Набухающий герметик 2, масс.% 10.00 10.00
Противопенный реагент3, 0.01 0.01
С10РАО, 40 сСт4, масс.% 22.12 22.12
С10РАО 4 сСт5, масс.% 66.37 -
ИЗОБРЕТЕНИЕ 3.9 сСт, масс.%
Вязкость при 100°С, сСт 6.33 638
Вязкость при 40°С, сСт 31.78 32.01
Температура воспламенения, ASTM D-92 216 214
Относит, потеря массы по Timken, фунт (ASTM D-2782) 100 113
Степень нагрузки до задира 11 11
Относит. нагрузка до износа, г (SAE AIR 4978) 100 104
Относит нагрузка по Ryder, фунт/дюйм 100 103
Коррозия медной полоски (ASTM D-130) 1b 1b
Предотвращение ржавления (ASTM D-665B) Pass Pass
Деэмульсификация (ASTM D-1401) 40/40/0 40/40/0

1. Промышленная композиция добавок для ЕР трансмиссионного масла от Afton

2. Промышленный набухающий герметик, 3.6 сСт при 100°С, 14.6 сСт при 40°С от Afton

3. Промышленный противопенный реагент от Afton.

4. Гидрированный поли (альфа-олефин) на основе 1-децена от INEOS; 5.97 сСт при 100°С

5. Гидрированный поли(альфа-олефин) на основе 1-децена от INEOS; 3.93 сСт при 100°С.

Таблица 11
Транспортное трансмиссионное масло 75W-90
ДОБАВКА Масло К
Композиция добавок к ЕР трансмиссионному маслу1, масс.% 7.50
Набухающий герметик2, масс.% 10.00
Модификатор вязкости/загуститель3, масс.% 31.00
Реагент для снижения температуры застывания4, масс.% 1.00
ИЗОБРЕТЕНИЕ 3.9 сСт, масс.%
Кинематическая вязкость @ 100°С, сСт 15.3
Вязкость по Брукфильду при -40°С, сП 106900

1. Промышленная композиция добавок к ЕР трансмиссионному маслу от Afton

2. Промышленный набухающий герметик от Afton

3. Промышленный модификатор вязкости от Afton

4. Промышленный реагент для снижения температуры застывания от Afton.

Пример 8F

Трансмиссионные жидкости

Трансмиссионные жидкости используют в автомобильных трансмиссиях, трансмиссиях тяжелого режима в автобусах и военном транспорте и в трансмиссиях других внедорожных и дорожных транспортных средств. Для изготовления трансмиссионных жидкостей, удовлетворяющих самым последним спецификациям, требуются базовые масла с нужными свойствами при низких температурах. Хотя нет абсолютной необходимости использовать синтетические жидкости для многих случаев применения трансмиссионных жидкостей, синтетические жидкости действительно позволяют изготовить жидкости с улучшенными низкотемпературными свойствами, летучестью и устойчивостью к окислению.

Синтетические жидкости по данному ИЗОБРЕТЕНИЮ можно использовать в препаратах трансмиссионных жидкостей. Было установлено, что демонстрационное масло полностью удовлетворяет требованиям теста MERCON по окислению в алюминиевой пробирке.

Таблица 12
Демонстрационное масло в качестве жидкости для автоматической трансмиссии
ДОБАВКА Масло L Масло М
Композиция добавок1, масс.% 20.08 20.08
С10РАО 6 сСт2, масс.% 38 38
С10РАО 4 сСт3, масс.% 41.89
ИЗОБРЕТЕНИЕ 3.9 сСт, масс.% 41.89
Красный краситель4, масс.% 0.03 0,03
KV @ 40°C, D445 26.79 26.64
KV@ 100°0, D445 5.75 5.74
Индекс вязкости 165 165
Вязкость по Брукфильду при -35°С, D5293 2510 2390
Температура застывания, °C, <-60 -57
Температура воспламенения, 224 226
Плотность при 15°С, D4052 0.8402 0.8402
Тест на окисление в алюминиевой пробирке
Δ Вязкость при 40°С (EOT, 300 ч) - 1.4%
Δ Потеря массы. (EOT, 300 ч) - 3.3%
Δ TAN (мг КОН/г, 300 ч) - 1.0
Δ FTIR (EOT, 300 ч) - 12
Не растворяется в пентане, масс.% - 0.16
Шлам - Нет
Аl полоска - Нагара нет

1. Патентованная композиция добавок, удовлетворяющая требованиям Dexron VT

2. Гидрированный поли(альфа-олефин) на основе 1-децена от INEOS; 5.97 сСт при 100°С

3. Гидрированный поли(альфа-олефин) на основе 1-децена от INEOS; 3.93 сСт при 100°С

4. C.I.Solvent Red 164.

Пример 9

Настоящее изобретение предлагает способ снизить ограничения по доступности РАО на основе децена. Кроме того, настоящее изобретение указывает на возросший дефицит традиционного РАО с вязкостью 4 сСт, используемого в препаратах высококачественных масел. Как вариант настоящего изобретения, сырье для РАО включает источник РАО. Настоящее изобретение включает использование альфа-олефинового сырья для получения РАО с вязкостью 4 сСт, обладающего критическими свойствами, которые близки или лучше, чем у существующих промышленных продуктов.

Настоящее изобретение предлагает взаимозаменяемость с промышленными продуктами по методике ATIEL Read Across. Кроме того, в качестве варианта настоящее изобретение предлагает близкие или лучшие эксплуатационные свойства по сравнению с существующими промышленными продуктами:

VI и работоспособность по Noack, вязкость при проворачивании коленвала на холоду, третичные атомы водорода (устойчивость к окислению), термическая стабильность, температура воспламенения, дополнительная растворимость, коэффициент сцепления, эффект добавок.

Настоящее изобретение разработано в лабораторном и промышленном масштабах.

Настоящее изобретение предлагает оптимизированные свойства для продукта с вязкостью 4 сСт, которые удовлетворяли бы или превосходили свойства стандартного промышленного РАО DS 164. В качестве варианта продукт с вязкостью 4 сСт может содержать базовые масла и изготовленные масла (включить: трансмиссию, компрессор, ATF, РСМО).

Кроме того, настоящее изобретение предлагает заявленные свойства или работоспособность в сравнении с маслом DS 164, включая: температуру застывания, эффективность топлива, интервалы между последовательными заменами масла, замену масла DS164 во всем объеме, предложение источников РАО с вязкостью 4 сСт для потребителей.

См. приведенные ниже табл.13-19.

Таблица 13
Настоящее изобретение
Общие свойства
Свойство Тест Durasyn 164 Новый РАO4
Обычные Спецификация Значение Интервал
Кинематическая вязкость
при 100°С ASTM D445 4.0 3.8-4.0 3.8 4.1
при 40°С 17.8 16.0-18.0 16.5 18.5
при 40°С 2700 3000 макс. 2550 2870
Индекс вязкости ASTM D2270 122 120 мин. 121 124
Летучесть по Noack % массы СЕС L40A83 13.6 14 макс. 13.5 14.5
Цветн. АРНА ASTM D1209 <5 - 0 <5
Плотность при 15°С ASTM D4052 0.8278 0.81-0.84 0.821 0.827
Температура застывания °C ASTM D97 -45 -60 макс. -63 -57
Показатель преломления при 20°С - 1.4592 - 1.4586 1.4598
Температура воспламенения РМС°C ASTM D 93 210 190 мин. 206 215
CCS при -35°С ASTM D3J93 1450 - 1220 1S50
Содержание воды, м.д. ASTM D3401 <25 25 макс. 7 15
TAN мгКОН/г ASTM D974 <0.01 0.01 макс. 0.001 0.005
Бромное число г/100 г IP 129 <0.4 0.4 макс. 0.02 0.4
Вязкость по Брукфильду при
-40°С
ASTM D2983 2200 2100 2500
Таблица 14
Результаты настоящего изобретения
Устойчивость к окислению
Изобретение Durasyn 164
RPVOT (индукц. период окисления, мин) 26 23
TFOUT (индукц. период, мин) 18 16
IP 48 (тест на окисление)
Соотношение вязкости использ. масло/свежее масло 2.98 3.48
Остаток по методу Рансботтома использ. масло /свежее масло 0.08 0.09
Потери на испарение 16.3 17.0
Работа в ATFs
Кинематическая вязкость при 100°С (мм2/с) 5.7 5.7
Кинематическая вязкость при 40°С (мм2/с) 26.6 26 8
VI 165 165
Температура застывания (°С) -57 -60
Вязкость по Брукфильду -35°С (мПа·с) 2390 2510
Таблица 15
Результаты настоящего изобретения
Изучение смесей - препарат РСМО
SAE 0W30 SAE 0W40
Durasyn 166 51.8
Durasyn 164 20.0 48.5
Durasyn 12B 51.8
Новый РАО4 (настоящее изобретение) 20.0 48.5
Базовое Масло III группы 20.0 20.0
Композиция добавок 14.2 14.2 12.5 12.5
VM 4.0 4.0 9.0 9.0
Сложный эфир 10.0 10.0 10.0 10.0
Кинематич. вязкость при 100°С (сСт) 10.9 10.8 13.4 13.6 е
Кинематич. вязкость при 40°С (сСт) 84.9 65.0 77.2 78.9
VI 159 158 177 176
CCS -35°С (сП) 5290 5250 4930 5010
Noack (% потери массы) 7.6 7.4 8.6 8.8
Температура застывания -54 -51 -51 -46
Таблица 16
Результаты настоящего изобретения
Изучение смесей - препарат HDDO
SAE 5W40
Durasyn 164 45.0
Новый РАО4 (настоящее изобретение) 45.0
Базовое масло III группы (6 сСт) 20.0 20.0
Композиция добавок 20.0 20.0
VM 10.0 10.0
Сложный эфир 5.0 5.0
Кинематич. вязкость при 100°С (сСт) 13.5 13.8
Кинематич. вязкость при 40°С (cСт) 62.4 84.7
VI 168 168
CCS - 30°С (сП) 4390 4450
Noack (% потери массы) 7.6 7.9
Температура застывания -51 -48
Таблица 17
Результаты настоящего изобретения
Препарат промышленного масла
ISO VG32 с настоящим изобретением ISO VG32 с DS164
Кинематическая вязкость при 100°С (мм2/с) 6.4 6.3
Кинематическая вязкость при 40°С (мм2/с) 32.0 31.8
VI 156 158
Температура застывания (°С) -57 -60
Температура воспламенения (°С) 214 216
Нагрузка по Timken (D2783) т-ра (°С) 38 38
ОК нагрузка (фунт) 80 70
Величина падения (фунт) 85 75
Тест с четырьмя шарами (D2783)
Исправленная нагрузка (кг) 72.3 73.3
Точка соединения (кг) 200 200
Тест с трансмиссией FZO (SAE 4978)
Нагрузка до задира (г) 11125 10750
Степень нагрузки до задира 11 11
Нагрузка по Ryder Gear Load (фунт/дюйм) 4221 4110
Коррозия медной полоски (D130)
Темп (°С) 100 100
Время (ч) 3 3
Классификация 1b 1b
Таблица 18
Результаты настоящего изобретения
Работа с маслами для турбины/компрессора
С маслом по изобретению с D3164
Кинематическая вязкость при 100°С (мм2/с) 4.4 4.4
Кинематическая вязкость при 40°С (мм2/с) 200 200
VI 135 134
Температура застывания (°С) -60 <-62
Температура воспламенения (°С) 214 210
Коррозия медной полоски (D130)
Темп (°С) 100 100
Время (ч) 3 3
Классификация 1a 1a
Предотвращение ржавления в морской воде (D665B) Pass Pass
Деэмульсификация (D1401)
Температура (°С) 54 54
Слой масла 40 40
Слой воды 40 40
Слой эмульсии 0 0
Время 20 30
Таблица 19
Результаты настоящего изобретения
Общие свойства
Изобретение "Multi Supplier' 4 сСт
Вязкость при 100°С (сСт) 4.0 3.5-4.1
Вязкость при 40°С (сСт) 18.0 18.4 обычно
Индекс вязкости 122 120 обычно
Вязкость при -40°С (сСт) 2.660 3000 макс.
Температура застывания, °C -60 -54 макс.
NOACK (% потери массы) 14.7 13 макс.
Температура воспламенения 222 204 мин.
Плотность 0.820 0.820 обычно

1. Способ селективного получения смазки, имеющей вязкость 4,0 сСт при 100°C, летучесть с потерей массы по Noack менее 15%, индекс вязкости более 120, температуру застывания ниже -50°C и вязкость при -40°C менее 3000 сСт, путем:
(a) реакции первого альфа-олефина, исключая 1-децен, используемого для образования винилиденового олефина, выбранного из группы, состоящей из линейных 1-олефинов C4-20 и их комбинаций, в присутствии первого катализатора, включающего алкилалюминиевый катализатор, металлоценовый катализатор, катализатор на основе позднего переходного металла с объемными лигандами и их комбинаций с образованием винилиденового олефина;
(b) удаление непрореагировавшего указанного первого олефина, причем указанный винилиденовый олефин имеет содержание винилидена по меньшей мере 70%;
(c) взаимодействие указанного винилиденового олефина со вторым альфа-олефином, исключая 1-децен, выбранным из группы, состоящей из линейных 1-олефинов C4-20 и их комбинаций, в присутствии катализатора BF3 и системы промотора, включающей смесь по меньшей мере одного апротонного промотора с по меньшей мере одним протонным промотором;
(d) удаление остаточных непрореагировавших мономеров и удаление непрореагировавших летучих жидкостей;
(e) гидрирование кубового продукта с образованием смазки;
(f) где указанная смазка имеет 4,0 сСт при 100°C;
(g) где указанную смазку получают без образования других дополнительных продуктов, которые тяжелее 4,0 сСт при 100°C;
(h) выделение указанной смазки.

2. Способ по п.1, в котором указанный первый катализатор представляет собой триалкилалюминиевый катализатор.

3. Способ по п.1, в котором указанный первый катализатор представляет собой металлоценовый катализатор, выбранный из металлов IVB группы Периодической системы.

4. Способ по п.1, в котором указанный протонный промотор выбирают из 1-пропанола или 1-бутанола.

5. Способ по п.1, в котором апротонный промотор выбирают из группы, состоящей из альдегидов, ангидридов, кетонов, органических сложных эфиров, простых эфиров и их комбинаций.

6. Способ по п.1, в котором апротонный промотор представляет собой органический сложный эфир, выбранный из группы, состоящей из алкилацетатов C1-C10 и их комбинаций.

7. Способ по п.1, в котором апротонный промотор представляет собой алкилацетат.

8. Способ по п.7, в котором алкилацетат представляет собой н-бутилацетат.

9. Способ по п.1, в котором остаточные непрореагировавшие мономеры удаляют перегонкой.

10. Способ по п.1, в котором указанный винилиденовый олефин имеет чистоту по меньшей мере 80% и является продуктом димеризации 1-октена с образованием винилидена C16.

11. Способ по п.10, в котором указанный винилиденовый олефин C16 вступает в реакцию с 1-тетрадеценом (C14).

12. Способ по п.11, в котором указанный 1-тетрадецен (C14) содержит по меньшей мере 70% линейных терминальных групп.

13. Способ по п.1, в котором указанная смазка имеет вязкость примерно 4 сСт при 100°C, летучесть по Noack в виде потери массы менее 15%, индекс вязкости более 120, температуру застывания ниже -50°C и вязкость при -40°C менее 3000 сСт.

14. Способ по п.13, в котором указанную смазку получают без более тяжелых дополнительных продуктов.

15. Способ по п.13, в котором указанная смазка характеризуется мольным соотношением винилидена C16 и 1-тетрадецена, равным примерно 1-2.

16. Способ по п.13, в котором указанная смазка характеризуется мольным соотношением винилидена C16 и 1-тетрадецена, равным примерно 1.5.

17. Способ по п.1, в котором указанную смазку смешивают с жидкостью, которую выбирают из группы, состоящей из синтетической жидкости, минерального масла, дисперганта, антиоксиданта, противоизносного реагента, противопенного реагента, ингибитора коррозии, моющего средства, набухающего герметика, присадки для вязкости и их комбинаций.

18. Способ по п.1, в котором указанная смазка содержит не более 5% по весу компонентов C42-C48.



 

Похожие патенты:

Изобретение относится к устройству термогравитационной очистки турбинных и трансформаторных масел от механических примесей и воды, содержащему первую емкость, систему отвода масла из первой емкости, систему подачи масла в первую емкость, включающую ламинирующее поток масла устройство, расположенное в первой емкости выше уровня ее донной части.

Настоящее изобретение относится к высокотемпературной смазочной композиции, содержащей присадку в виде ультрадисперсного порошка углекислого кальция с размером частиц не более 0,1 мкм, олеиновую кислоту и базовую основу, при этом размер частиц углекислого кальция не превышает 0,1 мкм, соотношение компонентов в высокотемпературной смазочной композиции, мас.%: Ультрадисперсный порошок углекислого кальция   с размером частиц не более 0,1 мкм 7,0÷10,0 Олеиновая кислота 1,0÷2,0 Базовая основа Остальное Техническим результатом настоящего изобретения является повышение антифрикционных свойств смазочной композиции и возможность использования в интервалах высоких температур (130-400°C).

Настоящее изобретение относится к применению ионных жидкостей для улучшения защиты против окислительной и термической деструкции смазочной композиции, состоящей из смеси из a) от 82,5 до 95 мас.% базового масла или смеси базового масла на основе синтетических, минеральных или природных масел, которые применяют отдельно или в комбинации, b) от 0,1 до 7,5 мас.% ионной жидкости и c) от 4,9 до 10 мас.% присадки или смеси присадок.
Настоящее изобретение относится к способу подготовки металлических обрабатываемых изделий для холодной штамповки путем нанесения слоя смазочного материала (=покрытия) или на металлическую поверхность, или на металлическую поверхность, с предварительно нанесенным покрытием, отличающемуся тем, что слой смазочных материалов образуется при контактировании поверхности с водной композицией смазочных материалов, которая имеет содержание по меньшей мере двух восков с явно различающимися свойствами, содержание органического полимерного материала, содержащего иономеры и неиономерные соединения, причем иономеры в основном состоят из иономерных сополимеров совместно с соответствующими ионами, а неиономерные соединения выбраны из олигомеров, полимеров или/и сополимеров на основе акриловой кислоты/метакриловой кислоты, амида, амина, арамида, эпоксида, этилена, имида, сложного полиэфира, пропилена, стирола, уретана, их сложного(-ных) эфира(-ов) или/и их соли(-ей), причем массовое соотношение общего содержания по меньшей мере двух восков и общего содержания одного или нескольких иономеров или/и одного или нескольких неиономерных соединений в композиции смазочных материалов находится в области от 0,01:1 до 8:1, а также содержание по меньшей мере одного водорастворимого, водосодержащего и/или связывающего воду оксида или/и силиката, причем покрытие, образованное из композиции смазочных материалов, на протяжении температурного интервала от 40 до 260°C имеет в общей сложности по меньшей мере две области плавления или/и точки плавления, из которых по меньшей мере две отстоят друг от друга по меньшей мере на 30°C.
Настоящее изобретение относится к пластичной смазке на основе минеральных масел или их смесей, содержащих высокодисперсные наполнители, при этом она подвергнута модификации наночастицами железа, образующегося после перемешивания в реакторе со скоростной мешалкой от 1000 до 2500 об/мин с жидким пентакарбонилом железа и дальнейшим его термическим разложением при температуре 250-300°C при работающей мешалке в течение 30-120 минут, а затем в том же реакторе к полученной массе добавляется тройная смесь порошковых наполнителей - графита (А), дисульфида молибдена (Б) и тетрафторэтилена (В) в соотношении А:Б:В от 40:40:20 до 80:10:10, при этом она содержит в массовых частях: Минеральное масло или смесь минеральных масел 100 Наночастицы железа 0,3-4,0 Тройная смесь наполнителей 15-60 Техническим результатом настоящего изобретения является получение пластичной смазки с улучшенными температурными, антифрикционными и прочностными характеристиками.

Настоящее изобретение относится к органической смазке, представляющей собой мелкие частички человеческого или животного волоса, при этом размещение данной смазки осуществляют на поверхности трения вращающейся шайбы со спиралевидной канавкой, идущей от края шайбы к центру с выходом в центре шайбы «на нет» и с хвостовиком шайбы, для осуществления вращения.

Изобретение относится к области нефтехимии, а именно к технологическим смазкам для холодной объемной штамповки металлов, обладающим повышенными противоизносными и противозадирными свойствами.
Настоящее изобретение относится к способу повышения износостойкости пар трения путем обработки смазочного материала, работающего в узлах трущихся деталей, при этом обработку смазочного материала осуществляют непосредственно в трибоузле, при этом на одну трущуюся поверхность детали трибоузла подают постоянный ток положительной полярности, регулируемый по величине от 100 до 300 мкА, который через слой смазочного материала и поверхность контрдетали трибоузла образует замкнутую цепь, при этом подачу тока через трибоузел осуществляют от источника питания, соединенного с потенциометрами и регулятором величины и полярности тока.

Настоящее изобретение относится к противоизносным и противозадирным присадкам к смазочным маслам для холодной объемной штамповки металла, работающим при высоких давлениях, на основе серасодержащих производных фуллерена, при этом в качестве серасодержащих производных фуллерена они содержат 1'-[2”-(метилтио)этил]-1'-[S-алкилкарботиоил]-(С60-Ih)[5,6]фуллеро[2',3':1,9]циклопропаны общей формулы (2), которые вводят в индустриальные масла в количестве 0,003-0,007 мас.%. R=Am, i-Pr, Cy, Bn. Техническим результатом настоящего изобретения является получение смазочных масел на основе серасодержащих производных фуллерена, растворимых в индустриальных маслах, без использования известных серасодержащих присадок, с сохранением их эксплутационных характеристик.

Настоящее изобретение относится к смазочной масляной композиции, включающей 100 масс. частей смазки и от 0,01 до 3,0 масс.
Изобретение относится к электроизоляционным маслам, применяемым для изоляции электрических двигателей погружных насосов, используемых при нефтедобыче. .
Изобретение относится к нефтехимии, в частности к составам масел, используемых для смазывания цилиндров паровых машин, смазывания форм в литейном производстве, в качестве закалочного масла в кузнечном производстве, смазывания цепей и редукторов, работающих в печах и доменном производстве.

Изобретение относится к смазочной композиции, предназначенной преимущественно для трансмиссий и высоконагруженных подшипниковых узлов с игольчатыми подшипниками, работающими при качательном движении с малыми амплитудами, то есть в условиях, когда в механизме износа и разрушения дорожек и тел качения значительную роль играют процессы контактной фреттинг-коррозии.

Согласно настоящему изобретению предложены способ олигомеризации и способ получения полиальфаолефина. Способ олигомеризации включает: a) осуществление контакта C4-C20 альфа-олефинового мономера с каталитической системой, содержащей: 1) металлоцен, 2) первый активатор, содержащий твердый оксид, химически обработанный электроноакцепторным анионом; и 3) второй активатор, содержащий алюминийорганическое соединение формулы Al(X10)n(X11)3-n, где X10 независимо представляет собой C1-C20 гидрокарбил, X11 независимо представляет собой галогенид, гидрид или C1-C20 гидрокарбоксид, а n представляет собой число от 1 до 3; и b) образование олигомерного продукта в условиях олигомеризации.
Наверх