Способ измерения скорости сближения ракеты с астероидом при встречных курсах их перемещения и устройство для его реализации

Группа изобретений относится к высокоскоростной радиолокационной технике и может использоваться при создании измерителей скорости объектов. Достигаемый технический результат - повышение надежности измерения скорости сближения объектов за счет более надежного обнаружения локатором сверхскоростных целей. Измерение скорости приближения ракеты к астероиду при встречных курсах их сближения заключается в измерении интервала времени t между моментами обнаружения, на установленном на ракете локаторе с частотно-модулированным сигналом, двух сигналов с разностными частотами, формируемыми между моментами пролета ракетой известного интервала расстояния S=Д12, и вычислении скорости V=S/t сближения объектов, при этом разностными сигналами являются сигналы с частотой Fp1=(N+4)Fp и Fp2=N(Fp=Fдо+А=2Vofo/С+Вtз), где N - число, значительно большее 1, когда между антенной РЛС и астероидом будут соответственно расстояния, соизмеримые с: Д1=(Fp1-A+Fi)C/2B и Д2=(Fp2-А+Fi)×С/2В, где Fi=2Vifo/C - частота Доплера при точном сближении объектов, Vi, Vo и С - соответственно скорости: сближения объектов, ракеты и света, fo - частота излучаемого непрерывного сигнала с частотной модуляцией по одностороннему пилообразному линейно возрастающему закону (НЛЧМ сигнал), В=Fmdfm - скорость изменения частоты НЛЧМ сигнала, A=Btз - часть частоты разностного сигнала, возникающая за счет искусственной задержки на время tз излучаемого НЛЧМ сигнала, Fm и dfm соответственно частота модуляции и девиация частоты НЛЧМ сигнала, выбираемые из условия До/Vo=fo/B, где До - известное базовое расстояние. Устройство для измерения скорости приближения ракеты к астероиду при встречных курсах их сближения содержит: приемно-передающую антенну, элемент задержки, смеситель, передатчик непрерывного сигнала с частотной модуляцией по одностороннему пилообразному линейно возрастающему закону и последовательно соединенные: фильтр разностных частот, обнаружитель сигналов узкополосного спектра частот, измеритель интервала времени и вычислитель. 2 н.п. ф-лы.

 

Группа изобретений относится к высокоскоростной радиолокационной технике и может быть использована при создании высокоточных измерителей начальной и средней скоростей перемещения сверхскоростных объектов, в частности скорости сближения спутника с астероидом.

Наиболее просто измерить скорость сближения двух объектов посредством набора узкополосных доплеровских фильтров (РЛС обнаружения AN/FPS-50 (США)). Так при излучении с ракеты в сторону астероида непрерывного сигнала частотой fo=10 ГГц и точном приближении объектов друг к другу, например со скоростью V20=20 км/с, необходимо будет на БР обнаружить сигнал с доплеровской частотой Fд=2V20fo/С=(4/3) МГц, где С - скорость света. При этом при точности измерения скорости сближения объектов в 2 м/с (например, требование для разработки: измерителей начальной скорости снарядов (патент РФ №2250476 от 30.09.2002), комплексов активной защиты объектов (КАЗ «Дрозд»), радиовзрывателей для ракет, и т.п.) необходимо будет использовать набор узкополосных полосовых кварцевых фильтров (УПФ) с полосой пропускания Δf=(400/3) Гц, центральной частотой порядка fц=(4/3) МГц и стабильностью Гц не менее 10-5, реализовать который (набор из 100÷1000 УПФ) весьма проблематично.

Известна РЛС измерения начальной скорости снаряда с использованием способа определения моментов пролета снарядом начала и конца известного интервала расстояния [патент 2367975, RU, G01S 13/58], содержащая антенну, вход которой, работающий на передачу, подключен к высокомощному выходу передатчика непрерывного сигнала с частотной модуляцией по одностороннему пилообразному линейно спадающему закону, а выход, работающий на прием, подключен к первому входу смесителя, второй вход которого подключен к маломощному выходу передатчика, а выход через последовательно соединенные фильтр разностных частот, обнаружитель сигналов узкополосного спектра частот, измеритель интервала времени - к вычислителю начальной скорости снаряда

Известный измеритель, при использовании в нем непрерывного сигнала с частотной модуляцией по одностороннему пилообразному линейно возрастающему закону, позволяет сформировать импульс-команды на выходе обнаружителя сигналов узкополосного спектра частот в момент возникновения и обнаружения на нем разностных сигналов частотой Fдо=2Vofo/С и 3Fдо, когда между его антенной и приближающейся к ней со скоростью Vi целью будут расстояния D1=Do+(Vi/Vo)Do и D2=3Do+(Vi/Vo)Do,

где Do и Vo - выбираемые из условия Do/Vo=fo/Fmdfm постоянные базовое расстояние и скорость;

fo, Fm и dfm - соответственно средняя частота, частота модуляции и девиация частоты излучаемого сигнала.

Причем интервал расстояния D2-D1=2Do, независимо от скорости сближения объектов, всегда будет постоянным. А значит, интервал времени ti между формированиями импульс-команд будет пропорционален скорости сближения объектов. То есть можно утверждать, что Vi=2Do/ti.

Пусть для реализации известного измерителя взят, например, локатор с параметрами НЛЧМ сигнала (Fm=142,8…кГц, dfm=350×MГц, fo=100 ГГц), взятыми при Do/Vo=0,3 м/(150 м/c) и Vi=20 км/c, а также опорный сигнал для смесителя в обнаружителе Fоп=100 кГц. Тогда на выходе данного локатора импульс-команда будет сформирована при пролете целью точек пространства в D1=40,3 и D2=40,9 метрах от антенны РЛС. При этом величина частоты преобразованного разностного сигнала при выдаче импульс-команд определится величиной Fдо=100 кГц, т.е. в 1,428 … раза меньше, чем частота модуляции Fm. Очевидно, что обнаружить в данном случае преобразованный разностный сигнал невозможно. То есть недостатком известного измерителя является его низкая надежность, определяемая ненадежностью обнаружения сверхскоростных целей.

Целью изобретения является повышение надежности измерения скорости сближения сверхскоростных объектов.

Поставленная цель достигается за счет осуществления искусственной задержки излучаемого НЛЧМ сигнала, что позволяет существенно повысить частоту разностного сигнала и соответственно повысить надежность его обнаружения.

Измерение скорости сближения ракеты с астероидом при встречных курсах их перемещения заключается в измерении интервала времени t между моментами обнаружения, на установленном на ракете локаторе с частотно-модулированным сигналом, двух сигналов с разностными частотами, формируемыми между моментами пролета ракетой известного интервала расстояния S=Д12, и вычислении скорости V=S/t сближения объектов, при этом разностными сигналами являются сигналы с частотой

Fp1=(N+4)Fp и Fp2=N(Fp=Fдo+A=2Vofo/C+Btз), где N - число, значительно большее 1, когда между антенной РЛС и астероидом будут соответственно расстояния, соизмеримые с:

Д1=(Fp1-A+Fi)C/2B и Д2=(Fp2-А+Р1)С/2В,

где

Fi=2Vifo/C - частота Доплера при точном сближении объектов со скоростью Vi, Vo и С - скорость ракеты при точном сближении объектов и скорость света, fo - частота излучаемого непрерывного сигнала с частотной модуляцией по одностороннему пилообразному линейно возрастающему закону (НЛЧМ сигнал), В=Fmdfm - скорость изменения частоты НЛЧМ сигнала, A=Btз - часть частоты разностного сигнала, возникающая за счет искусственной задержки на время tз излучаемого НЛЧМ сигнала, Fm и dfm соответственно частота модуляции и девиация частоты НЛЧМ сигнала, выбираемые из условия До/Vo=fo/В, где До - известное базовое расстояние.

Устройство для измерения скорости сближения ракеты с астероидом при встречных курсах их перемещения содержит: приемно-передающую антенну, выход которой, работающий на прием, подключен к первому входу смесителя, второй вход которого подключен к маломощному выходу передатчика частотно-модулированного сигнала, а выход через последовательно соединенные фильтр разностных частот, обнаружитель сигналов узкополосного спектра частот и измеритель интервала времени - к вычислителю скорости, при этом передатчик формирует непрерывный сигнал с частотной модуляцией по одностороннему пилообразному линейно возрастающему закону (НЛЧМ сигнал), а вход приемно-передающей антенны, работающий на передачу, подключен к высокомощному выходу передатчика НЛЧМ сигнала через элемент задержки.

Рассмотрим, в том числе на примере, работу устройства для измерения скорости сближения ракеты с астероидом при встречных курсах их перемещения.

Пусть через приемно-передающую антенну излучают формируемый передатчиком и задержанный на время tз×10-8 c элементом задержки НЛЧМ сигнал, с параметрами сигнала, например, Fm=106 Гц, dfm=5×107 Гц, fo=100 ГГц, выбранными при Do=0,3 м, Vo=150 м/с и До/Vo=fo/Fm×dfm=0,002 с, а также при скорости сближения объектов Vi=20 км/с, опорным сигналом, например, foп=31,2 МГц, поступающими на смеситель в обнаружителе сигнала узкополосного спектра частот, и при: 2B=2Fmdfm=1014 Гц, A=Btз=2,5×l06 Гц, N=10, Fp1=36,4×106 Гц, Fp2=26×106 Гц, Fi=(40/3)×106 Гц.

Тогда если ракета и астероид будут со скоростью 20 км/с точно приближаться друг к другу и находиться друг от друга (антенна от астероида) на удалении:

Д1=[Fp1-A+Fi]C/2B=[36,4×l06-2,5×l06+(40/3)×l06](3×l08м/c)/1014=141,7 м или Д2=[Fp2-A+Fi]C/2B=[26×106-2,5×106+(40/3)×106](3×108 м/с)/1014=110,5 м, то в смесителе будут формироваться разностные сигналы с частотами: Fp1=(N+4)Fp=36,4 МГц и Fp2=NFp=26 МГц, которые выделятся фильтром разностных частот, выполняющим в основном роль подавления суммарных частот преобразования, входных сигналов и сигнала гетеродина, а на выходе смесителя в обнаружителе узкополосного спектра частот будет выделяться преобразованный разностный сигнал частотой 5,2МГц. При этом при выполнении условий:

А+(2Д1×Fmdfm/С)-(2Vi×fo/С)=Fp1 и A+(2Д2×Fmdfm/C)-(2Vi×fo/C)=Fp2 на выходе обнаружителя узкополосного спектра частот будут сформированы две импульс-команды, через интервал времени t=(Д12)/Vi=0,00156 с, информация о длительности которого, после измерения в измерителе интервала времени, поступит в вычислитель скорости, осуществляющий вычисление выражения

Vi=(Д12)/t,

то есть вычисление скорости сближения ракеты с астероидом.

Таким образом, можно утверждать, что за счет проведения искусственной задержки НЛЧМ сигнала величина частоты преобразованного разностного сигнала будет повышена в 5,2 МГц/200 кГц=26 раз, что позволяет, очевидно, более надежно обнаружить разностный сигнал при сближения сверхскоростных объектов.

1. Способ измерения скорости сближения ракеты с астероидом при встречных курсах их перемещения, заключающийся в измерении интервала времени t между моментами обнаружения, на установленном на ракете локаторе с частотно-модулированным сигналом, двух сигналов с разностными частотами, формируемыми между моментами пролета ракетой известного интервала расстояния S=Д12, и вычислении скорости V=S/t сближения объектов, отличающийся тем, что разностными сигналами являются сигналы с частотой Fp1=(N+4)Fp и Fp2=N(Fp=Fдо+А=2Vofo/С+Вtз), где N - число, значительно большее 1, когда между антенной РЛС и астероидом будут соответственно расстояния, соизмеримые с:
Д1=(Fp1-A+Fi)C/2B и Д2=(Fp2-А+Fi)С/2В,
где
Fi=2Vifo/C - частота Доплера при точном сближении объектов со скоростью Vi,
Vo и С - скорость ракеты при точном сближении объектов и скорость света,
fo - частота излучаемого непрерывного сигнала с частотной модуляцией по одностороннему пилообразному линейно возрастающему закону (НЛЧМ сигнал),
В=Fmdfm - скорость изменения частоты НЛЧМ сигнала,
A=Btз - часть частоты разностного сигнала, возникающая за счет искусственной задержки на время tз излучаемого НЛЧМ сигнала,
Fm и dfm соответственно частота модуляции и девиация частоты НЛЧМ сигнала, выбираемые из условия До/Vo=fo/В, где До - известное базовое расстояние.

2. Устройство для измерения скорости сближения ракеты с астероидом при встречных курсах их перемещения, содержащее приемно-передающую антенну, выход которой, работающий на прием, подключен к первому входу смесителя, второй вход которого подключен к маломощному выходу передатчика частотно-модулированного сигнала, а выход через последовательно соединенные фильтр разностных частот, обнаружитель сигналов узкополосного спектра частот и измеритель интервала времени - к вычислителю скорости, отличающееся тем, что передатчик формирует непрерывный сигнал с частотной модуляцией по одностороннему пилообразному линейно возрастающему закону (НЛЧМ сигнал), а вход приемно-передающей антенны, работающий на передачу, подключен к высокомощному выходу передатчика НЛЧМ сигнала через элемент задержки.



 

Похожие патенты:

Изобретения относятся к радиолокационной технике. Достигаемый технический результат - расширение ассортимента устройств измерения длинны объектов. Измеренная длина перемещающегося объекта определяется выражением L=4Доt1/t2, где t2 - интервал времени между моментами возникновения и обнаружения на радиолокационной станции (РЛС) сигналов частотой NFдо=N2Vofн/C и (N+4)Fдо, за который объект пролетает интервал расстояния S2 от (1-δ)(Дo/Vo)(Vi+NVo) до (1+δ)(Дo/Vo)[Vi+(N+4)Vo], где fн - средняя частота излучаемого РЛС непрерывного сигнала с частотной модуляцией по одностороннему пилообразному линейно спадающему закону (НЛЧМ сигнал), выбираемая из условия До/Vo=fн/Fмfд; fд и Fм - соответственно девиация частоты и частота модуляции НЛЧМ сигнала; Vo - минимально возможная величина радиальной скорости цели; До - выбираемое базовое расстояние; С и Vi - соответственно скорость света и скорость цели; δ - коэффициент, определяющий длину известного интервала S1 расстояния, на котором происходит обнаружение объекта; N - положительное число, определяющее расстояние между РЛС и началом обнаружения цели на интервале расстояния S2; t1 - интервал времени, в течение которого объект пролетает интервал расстояния S1 от (1-δ)(До/Vo)(Vi+NVo) до (1+δ)(Дo/Vo)(Vi+NVo), во время обнаружения на РЛС сигнала частотой NFдо±ΔFдо, где ±ΔFДo - диапазон узкополосного спектра частот сигналов, обнаруживаемых на РЛС.

Изобретение относится к дистанционному зондированию пространства для определения дальности и скорости рассеивателей. Достигаемый технический результат - повышение разрешения по дальности и скорости рассеивателей.

Группа изобретений относится к средствам радиолокационного наблюдения траекторий баллистических объектов. Достигаемый технический результат - повышение информативности измерений.

Изобретение относится к дистанционному зондированию пространства для определения дальности и скорости рассеивателей. Достигаемый технический результат - снятие неоднозначности при измерении дальности и скорости.

Изобретение относится к устройствам траекторной обработки радиолокационной информации. Достигаемый технический результат изобретения - повышение чувствительности устройств определения времени окончания активного участка (АУТ) баллистической траектории за счет исключения измерений угла места из обрабатываемых выборок.

Изобретение относится к устройствам траекторной обработки радиолокационной информации. Достигаемый технический результат изобретения - повышение вероятности определения времени окончания активного участка (АУТ) баллистической траектории за счет исключения измерений угла места и азимута из обрабатываемых выборок.
Группа изобретений относится к способу и радиолокационной станции (РЛС) определения момента выдачи команды на пуск защитного боеприпаса. Способ заключается в том, что момент выдачи команды на пуск защитного боеприпаса устанавливают по началу возникновения и обнаружения на РЛС сигнала конкретной разностной частоты.

Изобретение относится к радиолокации и предназначено для обнаружения когерентно-импульсных периодических радиосигналов и измерения радиальной скорости объекта; может быть использовано в радиолокационных системах управления воздушным движением для обнаружения и измерения скорости летательных аппаратов.

Изобретение относится к радиолокационным способам определения скорости движущегося объекта и может быть использовано в измерителях скорости движущихся объектов, автомобилей и др.
Изобретения относятся к радиолокационной технике и могут быть использованы при создании локаторов для государственной инспекции безопасности дорожного движения (ГИБДД).

Изобретения относятся к радиолокационной технике. Техническим результатом является сокращение времени измерения изменения скорости движения цели по дальности. Величина изменения скорости движения цели по дальности определяется вычисленным выражением V1-V3=(4До/t2)×[(1-t1/t3)], где: - t1 - интервал времени, в течение которого цель пролетает интервал расстояния S1 от (До/Vo)(Vi+NVo)-δ×(Д/Vo)(Vi+NVo) до (До/Vo)(Vi+NVo)+δ×(Дo/Vo)(Vi+NVo), - δ - коэффициент, определяющий длину известных интервалов S1=S3 расстояния, - Vo и До - соответственно минимально возможная величина скорости цели и базовое расстояние, выбираемое из условия До/Vo=fн/Fмfд, fн - средняя частота излучаемого РЛС непрерывного сигнала с частотной модуляцией по одностороннему пилообразному линейно спадающему или возрастающему законам (НЛЧМ сигнал), - fд и Fм - девиация частоты и частота модуляции НЛЧМ сигнала, - N - положительное число, Vi - скорость цели, С - скорость света, - t2 - интервал времени, в течение которого цель пролетает интервал расстояния S2 от (До/Vo)(Vi+NVo)-δ×(n/Vo)(Vi+NVo) до (Дo/Vo)[Vi+(N+4)Vo]+δ×(До/Vo)[Vi+(N+4)Vo], t3 - интервал времени, в течение которого цель пролетает интервал расстояния S3 от (До/Vo)[Vi+(N+4)Vo]-δ×(Д/Vo)[Vi+(N+4)Vo] до (До/Vo)[Vi+(N+4)Vo]+δ×(Дo/Vo)[Vi+(N+4)Vo]. Устройство измерения изменения скорости движения цели по дальности содержит: приемно-передающую антенну, передатчик непрерывного сигнала с частотной модуляцией по одностороннему пилообразному линейно спадающему или возрастающему законам, смеситель, фильтр разностных частот, обнаружитель сигнала узкополосного спектра частот, регистр сдвига, три элемента И, элемент задержки, три счетчика импульсов, генератор счетных импульсов, две схемы умножения, две схемы деления, схему вычитания и шины постоянного цифрового числа. 3 н.п. ф-лы, 1 ил.

Изобретение относится к способам траекторией обработки радиолокационной информации. Достигаемым техническим результатом изобретения является повышение вероятности обнаружения маневра баллистической цели за счет исключения измерений угла места и азимута из обрабатываемых выборок. Указанный результат достигается за счет того, что вычисляют оценки скорости изменения произведения дальности на радиальную скорость в середине интервала наблюдения типа скользящего окна по двум фиксированным выборкам произведений дальности на радиальную скорость, при этом выборка меньшего объема входит в состав выборки большего объема, затем вычисляют отношение абсолютного приращения оценок скорости к среднеквадратической ошибке оценки. Решение об обнаружении маневра принимают в момент времени, когда отношение абсолютного приращения оценок скорости к среднеквадратической ошибке оценки скорости становится больше заданного порога. 2 ил., 3 табл.

Группа изобретений относится к методам и средствам траекторных измерений космических аппаратов (КА) с использованием линий радиосвязи. В способе используют три территориально разнесенные измерительные станции (ИС). Первая ИС работает в запросном когерентном режиме и измеряет относительные дальность и скорость КА, а также регистрирует время прихода ответной посылки запроса дальности с КА. Две другие ИС работают в беззапросном некогерентном режиме. Они принимают ответный (сдвинутый по частоте) сигнал с КА, сформированный из запросного сигнала первой ИС. По принятому сигналу две данные ИС определяют дальность и скорость КА относительно этих ИС, а также время прихода с КА ответной посылки запроса. Информация, принятая с трех указанных ИС, передается для обработки в баллистический центр. Технический результат группы изобретений заключается в обеспечении более высокой точности определения траектории полета КА. 2 н.п. ф-лы, 3 ил.

Группа изобретений относится к методам и средствам траекторных измерений космических аппаратов (КА) с использованием линий радиосвязи. В способе используются три территориально разнесенные наземные измерительные станции (ИС) и приемоответчик КА. ИС измеряют значения радиальной скорости КА относительно ИС. При этом одна главная ИС (ГИС) работает в запросном режиме измерения данной скорости, а также дальности до КА. Две другие - ведомые ИС (ВИС) - работают в беззапросном режиме. Последние используют для измерения указанной скорости сигнал, сформированный приемоответчиком КА из запросной частоты ГИС. Измеренные доплеровские сдвиги частоты с ГИС и ВИС передаются в баллистический центр. Там вычисляются разности этих доплеровских сдвигов, эквивалентные измерениям радиоинтерферометров с базами, соответствующими расстояниям между ИС. В баллистическом центре по результатам измерений указанных скоростей и дальности рассчитывается траектория движения КА. Технический результат группы изобретений заключается в создании высокоточной и быстродействующей системы траекторных измерений с упрощенными конструкцией и эксплуатацией ее средств. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области радиолокации, в частности, к области сопровождения траектории цели в обзорных радиолокационных станциях. Достигаемый технический результат - уменьшение времени обнаружения траектории цели и увеличение достоверности выдаваемой радиолокационной информации. Указанный результат достигается за счет того, что обнаруженную цель по вычисленной радиальной скорости относят к одному из двух типов: малоскоростная или скоростная, при этом для малоскоростной цели подтверждение обнаружения траектории осуществляют в совмещенных с регулярным обзором стробах, которые осматривают с периодом, кратным периоду регулярного обзора, для высокоскоростной цели подтверждение обнаружения траектории осуществляют в физических стробах, осматриваемых с минимальным технически возможным периодом, при котором цель, движущаяся с вычисленной радиальной скоростью, перемещается на расстояние, превышающее величину ошибки экстраполяции положения цели по дальности. 3 ил.

Группа изобретений относится к способу и устройству формирования команды на пуск защитного боеприпаса, а также к применению этого устройства в качестве радиолокационной станции (РЛС) измерения скорости цели, в качестве радиовзрывателя и в качестве измерителя интервала времени пролета целью известного расстояния. Способ заключается в определении момента выдачи команды на пуск защитного боеприпаса устанавливаемому по началу возникновения и обнаружения на РЛС сигнала конкретной разностной частоты. Команду на пуск защитного боеприпаса формируют только при равенстве по длительности второго и половины первого интервалов времени. Устройство содержит антенну, первый и второй смесители, передатчик непрерывного сигнала с частотной модуляцией по одностороннему пилообразному линейно возрастающему закону (НЛЧМ сигнал), фильтр разностных частот, генератор непрерывной частоты, широкополосный фильтр, усилитель-ограничитель, узкополосный полосовой фильтр, амплитудный детектор, компаратор, формирователь импульса, второй генератор непрерывной частоты, аналоговый сумматор, регистр сдвига, генератор счетных импульсов, реверсивный счетчик, цифровой компаратор, ждущий мультивибратор, три элемента И, два элемента ИЛИ, делитель на два, коммутатор, блок памяти, преобразователь кода. Вход антенны, работающий на передачу, подключен к высокомощному выходу передатчика НЛЧМ сигнала через элемент задержки. Технический результат заключается в повышении надежности обнаружения сверхскоростных целей. 5 н. и 1 з.п. ф-лы, 2 ил.

Изобретение относится к навигационной технике и предназначено для решения проблемы повышения точности встречи при кратковременном взаимодействии двух летательных объектов на малых расстояниях. Достигаемый технический результат - упрощение определения текущего промаха между траекториями полета двух объектов и минимизация промаха между летательным аппаратом и объектом сближения. Указанный результат достигается тем, заявленный способ и устройство для его реализации обеспечивают самокоррекцию промаха при встрече малоразмерного летательного аппарата с объектом на заключительном участке траектории полета без применения гироскопического прибора и за счет использования упрощенной слабонаправленной антенны. 2 н.п. ф-лы, 3 ил.

Способ измерения радиальной скорости объекта относится к радиолокации. Достигаемый технический результат - уменьшение погрешности измерения радиальной скорости объекта, при которой частота Доплера меньше единиц кГц, и упрощение способа измерения скорости объекта. Указанные результаты достигаются за счет того, что способ состоит в облучении движущегося объекта модулированным по амплитуде сигналом высокой частоты одним прямоугольным импульсом и одновременном приеме сигнала, отраженного от объекта в обратном направлении. В принимаемом от объекта сигнале, за время длительности t модулирующего по амплитуде прямоугольного импульса, измеряют набег фазы φ относительно фазы сигнала генератора высокой частоты, а радиальную скорость объекта V определяют по формуле V=φ·λ/4π·t, где φ - набег фазы в отраженном сигнале за время t; λ - длина волны сигнала, облучающего объект; t - время длительности модулирующего прямоугольного импульса. Направление движение объекта определяют по знаку набега фазы ±φ, когда плюс, объект движется от наблюдателя, минус - к наблюдателю. 2 ил.

Способ определения модуля скорости баллистической цели в наземной радиолокационной станции относится к радиолокации. Достигаемый технический результат изобретения - повышение точности определения модуля скорости баллистической цели (БЦ) в наземных радиолокационных станциях (РЛС) с грубыми измерениями угла места и азимута. Указанный результат достигается тем, что через интервалы времени, равные периоду обзора Т0 РЛС, измеряют дальность и высоту БЦ. Определяют оценку высоты БЦ в середине интервала наблюдения путем взвешенного суммирования N оцифрованных измерений высоты. Определяют оценку второго приращения квадрата дальности за обзор путем взвешенного суммирования N оцифрованных сигналов квадратов дальности. Определяют геоцентрический угол между РЛС и БЦ в середине интервала наблюдения по формуле , где rcp - дальность до БЦ в середине интервала наблюдения, Rз - радиус Земли. Определяют ускорение силы тяжести в середине интервала наблюдения по формуле , где g0 - ускорение силы тяжести на поверхности Земли. Определяют значение модуля скорости БЦ в середине интервала наблюдения на невозмущенном пассивном участке траектории по формуле . 4 ил., 2 табл.

Изобретение относится к области ближней радиолокации и может быть использовано в системах фазовой автоподстройки частоты (ФАПЧ) в радиолокационном датчике доплеровского смещения частоты. Достигаемый технический результат изобретения - повышение точности определения моментов срывов ФАПЧ и возможность их корректировки. Указанный результат достигается за счет того, что радиолокационный датчик выполняют в виде системы из двух контуров, один из которых используется в контуре слежения за фазой, а другой - в контуре обнаружителя срыва слежения. За счет совместной обработки информации, получаемой с дискриминаторов, удается отследить срывы слежения за фазой и ввода коррекции. 5 ил.
Наверх