Электродуговой нагреватель водяного пара

Изобретение относится к области электротехники, а именно к электродуговым нагревателям газа (плазмотронам), используемым для получения стационарных потоков низкотемпературной плазмы различных газов, и может быть применено в химической и металлургической промышленности, машиностроении, энергетике, экологии. В электродуговом нагревателе водяного пара, содержащем последовательно установленные вдоль продольной оси электрод-анод, кольцо подачи рабочего газа и электрод-катод, наружная поверхность внутреннего электрода-анода и зауженной части выходного электрода-катода охвачены плотно прилегающей металлической трубой с низкой теплопроводностью с толщиной стенки δ=(4÷8)·10-3 м, через которую косвенно осуществляется охлаждение внутреннего электрода-анода и зауженной части выходного электрода-катода. Соотношения геометрических размеров электродов составляют: d1/d2=1,1÷1,3, l1/d1=1,5÷4, l2/d2=3÷7, D1/d1≥1,5, D2/d2≥1,6, где d1, d2 - диаметры зауженных частей (м), D1, D2 - диаметры расширенных частей (м), l1, l2 - длины зауженных частей (м) внутреннего электрода-анода и выходного электрода-катода соответственно. Технический результат - повышение ресурса работы нагревателя. 1 ил.

 

Изобретение относится к области электротехники, а именно к электродуговым нагревателям газа (плазмотронам), используемым для получения стационарных потоков низкотемпературной плазмы различных газов, и может быть применено в химической и металлургической промышленности, машиностроении, энергетике, экологии.

Известен электродуговой подогреватель водяного пара с торцевым вольфрамовым катодом, пусковой вставкой и ступенчатым выходным электродом [Авторское свидетельство СССР №792614, кл. H05B 7/18, 1980]. Его отличает высокий КПД и стабильность горения дуги, однако ресурс непрерывной работы лимитируется в основном вольфрамовым катодом. Для его защиты от окислительных сред необходимо применять достаточно дорогие газы (аргон, чистый азот), которые, по существу, являются и загрязнителями пароводяной плазмы.

Целью изобретения является создание длительно работающего устройства для нагрева водяного пара без использования защитных газов.

Поставленная цель достигается тем, что в предложенном электродуговом нагревателе водяного пара, содержащем последовательно установленные вдоль продольной оси внутренний полый ступенчато сужающийся цилиндрический электрод-анод, кольцо закрутки для подачи плазмообразующего газа и выходной полый ступенчато расширяющийся цилиндрический электрод-катод, согласно изобретению наружная поверхность внутреннего электрода-анода и зауженной части выходного электрода-катода охвачены плотно прилегающей металлической трубой с низкой теплопроводностью, например, из нержавеющей стали, толщина стенки которой δ=(4÷8)·10-3 м, через которую косвенно осуществляется охлаждение внутреннего электрода-анода и зауженной части выходного электрода-катода длиной не более 4d2. Также в предложенном электродуговом нагревателе водяного пара согласно изобретению соотношение диаметров зауженных частей внутреннего электрода-анода d1 и выходного электрода-катода d2 составляет d1/d2=1,1÷1,3, отношение длины l1 к диаметру d1 зауженной части внутреннего электрода-анода - l1/d1=1,5÷4, отношение длины l2 к диаметру d2 зауженной части выходного электрода-катода - l2/d2=3÷7, отношение диаметра D1 расширенной части внутреннего электрода-анода к диаметру d1 его зауженной части - D1/d1≥1,5, отношение диаметра D2 расширенной части выходного электрода-катода к диаметру d2 его зауженной части - D2/d2≥1.6.

На фиг.1 приведена схема электродугового нагревателя водяного пара. Электродуговой нагреватель водяного пара состоит из медных внутреннего электрода-анода 1 и выходного электрода-катода 2 ступенчатой геометрии, изолятора 3 между электродами и кольца 4 закрутки плазмообразующего газа. Кольцо закрутки 4 плазмообразующего газа (водяного пара) находится между электродами. Внутренний электрод-анод выполнен в виде ступенчато сужающегося цилиндра в направлении потока газа. Наружная поверхность электрода 1 и наружная поверхность зауженной части электрода 2 длиной l2 охвачены металлической трубой 5 с низкой теплопроводностью, например, из нержавеющей стали. Через металлическую трубу 5 из нержавеющей стали охлаждаются косвенно внутренний электрод-анод 1 и зауженная часть выходного электрода-катода 2 длиной не более 4d2, где d2 - диаметр зауженной части выходного электрода-катода. Толщина стенки трубы 5 определяется токовой нагрузкой и величиной тепловых потерь в электродах, при которых температура рабочих поверхностей внутреннего электрода-анода 1 и выходного электрода-катода 2 на длине его зауженной части l2 выше температуры насыщения водяного пара для устранения конденсации пара в этих местах. Рекомендуемая величина толщины стенки трубы δ=(4÷8)·10-3 м. При вводе газа большая его часть из-за разницы диаметров зауженных частей электродов d1/d2=1,1-1,3 поступает во внутренний электрод-анод, а меньшая - в выходной электрод-катод. Отношение длины зауженной части внутреннего электрода-анода 1 l1 к диаметру его зауженной части d1 составляет l1/d1=1,5÷4, а отношение длины зауженной части выходного электрода-катода 2 l2 к диаметру его зауженной части d2 составляет l2/d2=3÷7. Отношения диаметров расширенных частей электродов к зауженным частям составляют D1/d1≥1,5 и D2/d2≥1,6 соответственно для электродов 1 и 2.

Запуск плазмотрона производится на подогретом до 150°C воздухе путем пробоя межэлектродного промежутка осциллятором. После разогрева всех элементов разрядной камеры плазмотрона при горении дуги в воздушной среде в течение 3-4 минут осуществляется плавный переход на сухой перегретый водяной пар с уменьшением расхода воздуха. Для предотвращения конденсации пара на рабочей поверхности электродов внутренний электрод-анод и зауженная часть выходного электрода-катода охлаждаются косвенно через металлическую трубу из нержавеющей стали, а расширенная часть электрода-катода охлаждается водой непосредственно.

Пример

Электродуговой плазмотрон с внутренним электродом-анодом ступенчатой геометрии с размерами d1=19,8·10-3 м, D1=3,5·10-2 м, l1=30,3·10-3 м и выходным ступенчатым электродом-катодом с размерами d2=16·10-3 м, D2=2,6·10-2 м, l2=7,6·10-2 м и толщиной стенки трубы из нержавеющей стали δ=6·10-3 м испытан на экспериментальном стенде. Плазмообразующий газ - сухой водяной пар с температурой 250°C, расход - (2,5÷4,1)·10-3 кг/с. При силе тока дугового разряда 250-300 А падение напряжения на дуге составило 320-340 В. При мощности плазмотрона 80-100 кВт тепловой коэффициент полезного действия составил 60-65%. Горение дуги устойчивое, пульсации параметров разряда не превышали 7-8%.

Конструктивная схема предложенного дугового плазмотрона достаточно простая, а вариацией геометрических размеров электродов и расхода водяного пара возможно создание серии технологических плазмотронов различной мощности от 50 до 1000 кВт.

Электродуговой нагреватель водяного пара, содержащий последовательно установленные вдоль продольной оси внутренний полый ступенчато сужающийся цилиндрический электрод-анод, кольцо подачи рабочего газа и выходной полый ступенчато расширяющийся электрод-катод, отличающийся тем, что наружная поверхность внутреннего электрода-анода и зауженной части выходного электрода-катода охвачены плотно прилегающей металлической трубой с низкой теплопроводностью, например, из нержавеющей стали, толщина стенки которой δ=(4÷8)·10-3 м, через которую косвенно осуществляется охлаждение внутреннего электрода-анода и зауженной части выходного электрода-катода длиной не более 4d2, соотношения геометрических размеров электродов составляют: d1/d2=1,1÷1,3, l1/d1=1,5÷4, l2/d2=3÷7, D1/d1≥1,5, D2/d2≥1,6, где d1, d2 - диаметры зауженных частей (м), D1, D2 - диаметры расширенных частей (м), l1, l2 - длины зауженных частей (м) внутреннего электрода-анода и выходного электрода-катода соответственно.



 

Похожие патенты:

Изобретение относится к электродуговым плазмотронам с водяной стабилизацией дуги и может быть эффективно использовано при резке всевозможных металлов. Технический результат - упрощение конструкции, увеличение мощности плазмотрона, энтальпии получаемой плазмы, скорости резки.

Изобретение относится к области вакуумных установок для плазменной дуговой плавки металлов и сплавов в космосе и предназначено для проведения экспериментов преимущественно по плавке наиболее перспективных металлов (вольфрам, ниобий) и композитов на металлической основе в условиях микрогравитации.

Изобретение относится к области вакуумных установок для плазменной дуговой плавки металлов и сплавов в космосе и предназначена для проведения экспериментов преимущественно по плавке наиболее перспективных металлов (вольфрам, ниобий) и композитов на металлической основе в условиях микрогравитации.

Изобретение относится к области металлургии и литейного производства, а именно к устройству электродуговых печей. .

Изобретение относится к технологиям восстановления металлов из неорганических оксидов. .

Изобретение относится к электротермии и может быть использовано для плавления минеральных компонентов. .

Изобретение относится к области плазменной техники, а именно к конструкции плазмотронов, применяемых в металлургической промышленности в качестве источника нагрева.

Изобретение относится к плазменной технике, а именно к трансформаторным плазмотронам низкотемпературной плазмы, и может быть использовано в плазмохимии и металлургии для проведения различных плазмохимических процессов, а также в лазерной технике.

Изобретение относится к области плазменных технологий и может быть использовано при разработке и создании источников высокоинтенсивных потоков частиц для научных и технологических применений. Способ получения высокоэнергетических потоков частиц в газах состоит в ускорении гетерогенного потока в сопле Лаваля. В дозвуковую часть сопла Лаваля вводят поток плазмы, обеспечивают ее ускорение до скорости звука и полную рекомбинацию плазмы до критического сечения сопла, а после критического сечения вводят в поток частицы и ускоряют гетерогенный поток газа в сверхзвуковой части сопла Лаваля. Устройство для получения высокоэнергетических потоков частиц содержит непрерывный источник плазмы, сопло Лаваля и систему ввода частиц. Устройство дополнительно содержит камеру высокого давления, матрицу из N непрерывных микроплазмотронов и систему подачи газа высокого давления. Длина дозвуковой части сопла Лаваля определяется из условия полной рекомбинации плазмы до критического сечения, а система ввода частиц обеспечивает ввод частиц после критического сечения по всему периметру сопла в сечении сопла с заданными параметрами - температурой и скоростью газа. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области преобразования электрической энергии в тепловую посредством дугового разряда в генераторе низкотемпературной плазмы (плазмотроне) и может быть использовано в энергетике для розжига и подсветки пылеугольного факела в топочных устройствах, в металлургической и химической промышленности, для получения ультрадисперсной сажи, которая является сырьем для получения наноструктурированного технического углерода. Плазмотрон содержит наружный электрод, соосно расположенный внутренний электрод-катододержатель, вихревую камеру подачи плазмообразующего газа. Электроды изолированы и размещены в индукционных катушках. Внутренний электрод-катододержатель выполнен полым. Углеводороды метанового ряда подают в дуговой канал наружного электрода через выходные каналы и кольцевую полость. В прикатодную область углеводороды метанового ряда подают через трубу, расположенную по оси внутреннего электрода-катододержателя и полость, образованную расположением катода в полом электроде-катододержателе. Плазмотрон имеет не менее четырех каналов подачи углеводородного газа в прикатодную область дугового разряда. Расположены каналы равномерно по окружности. Суммарная площадь проходных сечений каналов обеспечивает скорость истечения газа порядка 0,3-0,5 от скорости звука при заданном полном давлении и температуре подаваемого газа. Подвод углеводородного газа в прикатодную область дугового разряда выполнен в трех вариантах. Технический результат изобретения - повышение ресурса работы электрода за счет устойчивого возобновления защитного углеродного наноструктурированного слоя. 3 з.п. ф-лы, 5 ил.

Изобретение относится к плазменной технике, а именно к плазмотронам, использующимся в плазмохимии и металлургии для проведения различных плазмохимических процессов. Комбинированный индукционно-дуговой плазмотрон дополнительно снабжен четырьмя подвижными электродами, попарно установленными в противоположно расположенных секциях газоразрядной камеры. Поджиг индукционного разряда осуществляют при атмосферном давлении путем одновременной подачи плазмообразующего газа и напряжения на первичную обмотку и электроды. После поджига индукционного разряда один из дуговых разрядов отключают, а второй используют для проведения плазмохимических реакций. Дополнительный дуговой разряд позволяет поднять локально напряженность электрического поля и энерговклад до нужного уровня, обеспечивая возможность проведения широкого спектра плазмохимических процессов, требующих повышенной мощности и повышенного значения напряженности электрического поля в зоне проведения плазмохимических реакций. Технический результат - повышение энергоэффективности. 3 н. и 3 з.п. ф-лы, 1 ил.

Настоящее изобретение относится к вариантам способа преобразования исходного топлива во вторичное топливо посредством установки реформинга. Один из вариантов способа включает следующие этапы: подачу исходного топлива в печь установки реформинга, причем исходное топливо содержит отходы в виде сточных вод и/или твердых отходов, содержащих углерод; подачу в печь метана в качестве дополнительного исходного топлива; подачу воды в печь; обеспечение одного или более плазменно-дуговых источников тепла в установке реформинга для расщепления указанных исходных топлив и указанной воды на один или более составляющих компонентов и/или их комбинации; преобразование по меньшей мере части указанного одного или более составляющих компонентов воды и исходных топлив и/или их комбинации в указанное вторичное топливо с использованием одного или более катализаторов; вывод указанного вторичного топлива из установки реформинга. В другом варианте способа исходным топливом является метан, а вторичным топливом – метанол. Предлагаемые способы позволяют отказаться от использования больших конвертеров для печей (печных камер) при использовании метана для питания плазменно-дуговых горелок. 4 н. и 9 з.п. ф-лы, 4 ил.
Наверх