Электромагнитный способ измерения расхода

Электромагнитный способ измерения расхода электропроводной жидкости, протекающей в магнитном поле через немагнитную трубу, в которой установлены два электрода, магнитное поле создается с помощью электромагнита, имеющего индукционную катушку, через которую пропускается электрический ток, причем расход жидкости определяется в результате измерения тока, протекающего через индукционную катушку, и разности потенциалов между электродами, отличающийся тем, что дополнительно измеряют напряжение на клеммах индукционной катушки, а величину расхода вычисляют по формуле

Q = k U I [ 1 λ ρ k ( U k I R k ) ]

где Q - расход измеряемой среды, k - градуировочный коэффициент, U - разность потенциалов между электродами, I - ток, протекающий через индукционную катушку, Uk - напряжение на клеммах индукционной катушки, Rk - электрическое сопротивление индукционной катушки при градуировочной температуре измеряемой среды, λ - температурная погрешность расходомера [1/°С], ρk - изменение электрического сопротивления индукционной катушки при изменении температуры измеряемой среды на градус Цельсия. Технический результат - повышение точности измерения расхода в широком изменении температуры измеряемой среды. 1 з.п. ф-лы.

 

Предлагаемое изобретение относится к приборостроению, а именно к технике измерения расхода электропроводных жидкостей с помощью электромагнитного способа, т.е. способа, основанного на взаимодействии движущейся жидкости с магнитным полем. Это взаимодействие подчиняется закону электромагнитной индукции (закону Фарадея), согласно которому в жидкости, пересекающей магнитное поле, индуктируется ЭДС, пропорциональная расходу жидкости.

Известен электромагнитный расходомер [1], содержащий трубу, выполненную из немагнитного материала, внутренняя поверхность которой имеет электроизоляционное покрытие, два электрода, введенные в канал трубы, две индукционные катушки, расположенные на трубе, магнитопровод и измерительно-вычислительное устройство, в котором имеется источник тока питания индукционных катушек. Управление источником питания индукционных катушек выполняется измерительно-вычислительным устройством. Кроме того, с помощью измерительно-вычислительного устройства измеряются разность потенциалов между электродами U и ток питания индукционных катушек I. Значение расхода Q определяется по формуле

Q = k U I ; ( 1 )

где k - градуировочный коэффициент.

Известен электромагнитный расходомер жидкого металла [2], который состоит из трубы, выполненной из нержавеющей стали без электроизоляционного покрытия, индуктора, состоящего из магнитопровода и одной индукционной катушки, и измерительно-вычислительного устройства, в котором имеется источник тока питания индукционной катушки. Управление источником питания индукционной катушки, измерение разности потенциалов на электродах и тока питания индукционной катушки выполняется измерительно-вычислительным устройством. Значение расхода Q определяется по формуле (1).

Недостатком известного способа является низкая точность измерения расхода при изменении температуры измеряемой жидкости. Источниками температурной погрешности расходомера могут быть изменения от температуры линейных размеров конструкции прибора, изменение магнитных свойств магнитопровода, зависимость шунтирующего действия стенки канала, если отсутствует электроизоляционное покрытие внутренней поверхности канала, и т.п.

Особенно значительной величина температурной погрешности измерения расхода возникает при измерении жидких металлов, у которых рабочая температура измеряемой среды изменяется в широких пределах (например, для расходомеров жидкого натрия его рабочая температура изменяется от 200 до 525°С).

Предлагаемое изобретение устраняет этот недостаток.

Предлагается электромагнитный способ измерения расхода электропроводной жидкости, основанный на взаимодействии движущейся жидкости с магнитным полем, при котором дополнительно измеряется напряжение на клеммах индукционных катушек Uk, а величина расхода вычисляется по формуле

Q = k U I [ 1 λ ρ k ( U k I R k ) ] ( 2 )

где Rk - электрическое сопротивление индукционных катушек при градуировочной температуре измеряемой среды; λ - температурная погрешность расходомера [1/°С]; ρk - изменение электрического сопротивления индукционных катушек, вызванное изменением температуры измеряемой среды на градус Цельсия, т.е. [Ом/°С].

Конструктивно индукционные катушки магнитного поля возбуждения находятся непосредственно на трубе расходомера или вблизи ее. Поэтому изменение температуры измеряемой среды в той или иной мере сказывается на температуре самой индукционной катушки. В предлагаемом способе измерения расхода индукционная катушка используется как термометр сопротивления. У расходомеров жидкого металла труба с протекающей по ней измеряемой средой является особенно мощным источником температурной радиации на индукционную катушку. Для обеспечения надежности расходомеров жидкого металла индукционные катушки изготовляются из медного провода с жаропрочной изоляцией, например, типа ПОЖ, а сама катушка может нагреваться от трубы до 200-250°С и более. Например, у расходомера типа ИРМУ-1 жидкого натрия нормированная температурная погрешность λ=1,5·10-4 [1/°С]. Т.е. при изменении температуры жидкого натрия на 100°С температурная погрешность составит 1,5%. При этом температура индукционной катушки возрастает приблизительно на 50°С, а ее сопротивление изменяется приблизительно на 15-20%.

Реализация предлагаемого способа измерения расхода выполняется следующим образом. Для рассматриваемой конкретной конструкции расходомера предварительно расчетом или экспериментально определяются следующие параметры: λ, ρk и Rk, поскольку для данной конструкции расходомера эти параметры рассматриваются как постоянные величины. Если λ, ρk зависят от температуры измеряемой среды, то вычисляются соответствующие зависимости.

Расходомер по предлагаемому изобретению работают следующим образом. Вследствие протекания тока по виткам индукционных катушек в рабочем объеме канала возбуждается магнитное поле, направленное перпендикулярно плоскости, проходящей через ось электродов и ось канала. При движении электропроводной жидкости по каналу трубы в его рабочем объеме согласно закону Фарадея индуцируется электрическое поле, напряженность которого пропорциональна скорости потока жидкости.

С помощью измерительно-вычислительного устройства измеряются разность потенциалов между электродами, напряжение на клеммах индукционных катушек и ток питания индукционных катушек. Значение расхода Q определяется по формуле (2).

Кроме того, расходомер позволяет измерять температуру t измеряемой среды, которая вычисляется измерительно-вычислительным устройством согласно формуле

t = t 0 + 1 ρ k ( U k I R k ) ( 3 )

где t0 - градуировочная температура измеряемой среды.

Технический результат, который может быть получен при осуществлении изобретения, состоит в повышении точности измерения расхода в широком изменении температуры измеряемой среды.

Источники изобретения

1. Кремлевский П.П. Расходомеры и счетчики количества. Справочник, Л.: Машиностроение, 1989, 701 с.

2. Электромагнитный расходомер жидких металлов, патент RU №2431118, Бюл. №28, 2011 г.

1. Электромагнитный способ измерения расхода электропроводной жидкости, протекающей в магнитном поле через немагнитную трубу, в которой установлены два электрода, магнитное поле создается с помощью электромагнита, имеющего индукционную катушку, через которую пропускается электрический ток, причем расход жидкости определяется в результате измерения тока, протекающего через индукционную катушку, и разности потенциалов между электродами, отличающийся тем, дополнительно измеряют напряжение на клеммах индукционной катушки, а величину расхода вычисляют по формуле

где Q - расход измеряемой среды, k - градуировочный коэффициент, U - разность потенциалов между электродами, I - ток, протекающий через индукционную катушку, Uk - напряжение на клеммах индукционной катушки, Rk - электрическое сопротивление индукционной катушки при градуировочной температуре измеряемой среды, λ - температурная погрешность расходомера [1/°С], ρk - изменение электрического сопротивления индукционной катушки при изменении температуры измеряемой среды на градус Цельсия.

2. Способ по п.1, отличающийся тем, что вычисляют температуру t измеряемой среды согласно выражению

где t0 - градуировочная температура измеряемой среды.



 

Похожие патенты:

Изобретение относится к нефтедобывающей промышленности и может быть использовано для измерения дебита скважин. Технический результат направлен на повышение точности и качества измерения дебита скважин.

Изобретение относится к контрольно-измерительным средствам для учета расхода топлива двигателями внутреннего сгорания и может быть использовано в системе контроля и управления работой мобильных и стационарных энергосредств, в том числе и сельскохозяйственной техники.

Изобретение относится к области арматуростроения, в частости к регулирующей насадке для управления радиаторным клапаном, и предназначено для регулирования потока жидкости.

Изобретение относится к области измерения расхода газа и может быть использовано для коммерческого учета расхода газа потребителями в промышленности и в коммунальном хозяйстве.

Изобретение относится к области гидравлики, в частности к сливу жидкостей из емкостей. .

Изобретение относится к измерительной технике и может быть использовано при измерении продукции нефтяной скважины непосредственно на месте добычи нефти. .

Изобретение относится к отображению графической информации на дисплее. .

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам и устройствам для измерения дебита жидкости нефтяной или газоконденсатной скважины, и может применяться для определения суточной производительности скважины как в процессе опробования разведочной скважины, так и для оперативного учета дебита эксплуатирующейся скважины в стационарной системе нефтегазосбора.

Изобретение относится к технологии получения радиационно-защитного композиционного материала, который может быть использован при изготовлении элементов защиты в различной аппаратуре, применяемой для дефектоскопии, для медицинских целей, для радиоактивного каротажа нефтяных и газовых скважин, в портативных нейтронных генераторах и др.

Изобретение относится к устройствам для измерения расхода газов и может быть использовано для измерения малых расходов газа и микрорасходов газа. .

Способ измерения расхода многофазного потока основан на том, что в поток транспортируемой среды движителем вносят дозированное количество механической энергии, компенсирующее потери энергии потока на участке измерения, при этом поступательная, вращательная или любая другая скорость движителя, синхронизированная с объемным расходом транспортируемой среды, является первичным сигналом при измерении расхода.

Предлагаемое изобретение относится к приборостроению, а именно к технике измерения расхода жидких металлов с помощью способа, основанного на взаимодействии движущейся жидкости с магнитным полем.

Изобретение относится к области приборостроения, в частности к тепло- и расходометрии, и позволяет измерять расходы электропроводной жидкости и теплоносителя в напорных трубопроводах.

Электромагнитный расходомер имеет трубу, выполненную из немагнитного материала, два электрода, магнитопровод с полюсными наконечниками и кожух, внутри которого располагаются индукционная катушка и клеммная колодка.

Электромагнитный расходомер жидких металлов имеет трубу, выполненную из немагнитного материала, два электрода, приваренные к внешней поверхности трубы, магнитопровод С-образной формы с двумя полюсными наконечниками и индукционную катушку.

Магнитно-индуктивный расходомер с устойчивым против давления корпусом из полимерного материала, содержащий измерительный блок, который имеет протекаемый измеряемой текучей средой измерительный канал (31) с прямоугольным поперечным сечением, стенку (32) канала, два противолежащих магнитных полюса (10) на стенке (32) канала, электромагнит с катушкой (26) возбуждения и магнитным сердечником (27) для создания магнитного переменного поля и два противолежащих измерительных электрода (34) в стенке (32) канала.

Магнитно-индуктивный расходомер с устойчивым против давления корпусом из полимерного материала, содержащий входной патрубок (10), выходной патрубок (20) и расположенный между ними измерительный блок (30).

Изобретение предназначено для измерения расхода электропроводящей жидкости. Расходомер состоит из измерительной трубы с жестким сечением канала, изготовленной из диэлектрического материала.

Изобретение относится к приборостроению, в частности к электромагнитным устройствам для измерения расхода (расходомерам), и может быть использовано в счетчиках воды, кислот, щелочей, молока, пива.

Изобретение относится к области расходометрии и может быть использовано для измерения расхода жидких металлов. .

Изобретение относится к области приборостроения, а именно к технике измерения расхода жидкого металла с помощью безэлектродных электромагнитных расходомеров. Безэлектродный электромагнитный расходомер, состоит из трубы, трех индукционных катушек и магнитопровода. Индукционные катушки выполнены в виде плоских многослойных печатных плат, магнитопровод представляет собой плоскую пластину, причем катушки и магнитопровод расположены на внешней поверхности трубы, образуя три параллельных слоя, из которых первый слой, расположенный непосредственно на трубе, занимают две катушки, торцами плат соприкасающиеся друг с другом по линии центрального периметра трубы, а второй и третий слои образуют, соответственно, третья катушка и магнитопровод, расположенные симметрично относительно центрального периметра трубы. Технический результат - повышение точности измерения расхода и упрощение изготовления расходомера. 1 з.п. ф-лы, 3 ил.

Электромагнитный способ измерения расхода электропроводной жидкости, протекающей в магнитном поле через немагнитную трубу, в которой установлены два электрода, магнитное поле создается с помощью электромагнита, имеющего индукционную катушку, через которую пропускается электрический ток, причем расход жидкости определяется в результате измерения тока, протекающего через индукционную катушку, и разности потенциалов между электродами, отличающийся тем, что дополнительно измеряют напряжение на клеммах индукционной катушки, а величину расхода вычисляют по формулеQkUI[1−λρk]где Q - расход измеряемой среды, k - градуировочный коэффициент, U - разность потенциалов между электродами, I - ток, протекающий через индукционную катушку, Uk - напряжение на клеммах индукционной катушки, Rk - электрическое сопротивление индукционной катушки при градуировочной температуре измеряемой среды, λ - температурная погрешность расходомера [1°С], ρk - изменение электрического сопротивления индукционной катушки при изменении температуры измеряемой среды на градус Цельсия. Технический результат - повышение точности измерения расхода в широком изменении температуры измеряемой среды. 1 з.п. ф-лы.

Наверх