Самоходная огневая установка обнаружения, сопровождения и подсвета целей, наведения и пуска ракет зенитного ракетного комплекса средней дальности

Изобретение относится к военной технике, а именно к зенитным ракетным комплексам (ЗРК). Самоходная огневая установка обнаружения, сопровождения и подсвета целей, наведения и пуска ракет зенитного ракетного комплекса средней дальности содержит первую антенную систему, радиолокационную станцию, цифровую вычислительную систему, поворотную пусковую установку с ракетами, на которой установлена гироскопическая система измерения углов курса, крена и тангажа, систему навигации, топопривязки и ориентирования, размещенную на самоходном шасси, интеллектуальную систему (ИС), лазерный дальномер, оптико-электронную систему, соединённую через устройство сопряжения с ИС. Изобретение позволяет повысить боевую эффективность ЗРК в условиях силового энергетического подавления. 2 ил.

 

Предлагаемое техническое решение относится к области оборонной техники, в частности к мобильным зенитно-ракетным комплексам (ЗРК), и может быть использовано для организации противовоздушной обороны войск и военных объектов от поражения средств воздушного нападения противника.

В структуре современной противовоздушной обороны (ПВО) радиолокационная станция (РЛС) является основным и практически единственным источником информации о воздушной обстановке средств воздушного нападения (СВН), причем тактический порядок современной авиации совместно с баллистическими ракетами и крылатыми ракетами, предназначенными для прорыва ПВО, обязательно предусматривает огневое подавление ПВО, так как РЛС обеспечивает контроль зоны ответственности ПВО и выдачи целеуказания радиолокационным средствам активного наведения - ЗРК и истребительной авиации.

Известен ЗРК «Кроталь - НГ» (см. Современные зенитные и противоракетные комплексы и их применение в составе систем ПВО/ПРО (Аналитический обзор по материалам зарубежных информационных источников). Изд. Научно-информационный центр ГосНИИАС. М.: 2011 г.), содержащий СОЦ, СНР, ОЭС и ПУ на 8 ЗУР VT-1 в ТПК, размещенных на одной самоходной боевой машине. Комплекс обладает повышенной автоматизацией боевой работы, живучестью в условиях применения ПРР и радиоэлектронного подавления и более высокой производительностью за счет увеличения боезапаса. Наличие двух параллельно действующих РЛС обнаружения и сопровождения позволяет комплексу одновременно обстреливать несколько целей, однако размещение всех систем на одном шасси требует большого времени развертывания комплекса, что увеличивает время реакции и снижает эффект его применения.

Известен ЗРК SAMT/T (см. Современные зенитные и противоракетные комплексы и их применение в составе систем ПВО/ПРО (Аналитический обзор по материалам зарубежных информационных источников). Изд. Научно-информационный центр ГосНИИАС, М.: 2011 г.), состоящий из МФ РЛС кругового обзора «Арабель» с АФАР, шести пусковых установок с восемью ЗУР «Астер-30», командного пункта. Комплекс многоцелевой и расположен на нескольких колесных машинах.

Известен ЗРК MEADS (см. Современные зенитные и противоракетные комплексы и их применение в составе систем ПВО/ПРО (Аналитический обзор по материалам зарубежных информационных источников). Изд. Научно-информационный центр ГосНИИАС, М.: 2011 г.), состоящий из МФ РЛС секторного обнаружения, командного пункта и пусковой установки с ЗУР РАС-3.

Известен ЗРК SLAMRAAM (см. Современные зенитные и противоракетные комплексы и их применение в составе систем ПВО/ПРО (Аналитический обзор по материалам зарубежных информационных источников). Изд. Научно-информационный центр ГосНИИАС, М.: 2011 г.), состоящий из мобильных пусковых установок, предназначенных для размещения, транспортировки, предварительного наведения и наклонного пуска до шести ЗУР АIМ-120 В\С, трехкоординатной МФ РЛС кругового обзора «Сентиел» AN\MPQ-64, пункта управления огнем, смонтированного на шасси автомобиля «Хаммер».

Известен ЗРК NASAMS II (см. Современные зенитные и противоракетные комплексы и их применение в составе систем ПВО/ПРО (Аналитический обзор по материалам зарубежных информационных источников). Изд. Научно-информационный центр ГосНИИАС, М.: 2011 г.), состоящий из мобильных пусковых установок с шестью ракетами в транспортно-пусковых контейнерах, МФ РЛС AN\MPQ-64, обеспечивающей обнаружение, опознавание и сопровождение до 60 воздушных целей, а также наведение на выбранные цели до трех ЗУР.

Приведенные аналоги обладают тем или иным из следующих основных недостатков:

- раздельное размещение РЛС обнаружения, сопровождения, подсвета целей для наведения ракет и пусковой установки с ракетами на нескольких боевых средствах ЗРК;

- существенное ухудшение тактико-технических характеристик ЗРК в сложной помеховой обстановке.

Наиболее близкой по технической сущности и достигаемому результату является самоходная огневая установка обнаружения, сопровождения, наведения и пуска ракет зенитного ракетного комплекса средней дальности, обеспечивающей эффективную боевую работу в условиях сложной помеховой обстановки (см. патент RU №2333450 МПК F41H 11/02, 2008 г.), содержащая первую антенную систему, выход которой соединен с первым входом радиолокационной станции, первый выход которой подключен к первому входу цифровой вычислительной системы. Первый выход цифровой вычислительной системы подключен к поворотной пусковой установке с ракетами, на которой установлена гироскопическая система измерения углов курса, крена и тангажа, вход которой подключен к выходу системы навигации, топопривязки и ориентирования, размещенной на самоходном шасси. Выход гироскопической системы измерения углов курса, крена и тангажа соединен со вторым входом цифровой вычислительной системы, второй выход цифровой вычислительной системы подключен ко второму входу радиолокационной станции, второй выход которой соединен с входом первой антенной системы, выход второй антенной системы соединен с входом приемного устройства, выход которого подключен к первому входу интеллектуальной системы, выход интеллектуальной системы соединен с третьим входом цифровой вычислительной системы, третий выход которой подключен ко второму входу интеллектуальной системы.

Недостатком этого технического решения является существенное ухудшение тактико-технических характеристик ЗРК в помеховой обстановке.

Техническим результатом предлагаемого изобретения является улучшение тактико-технических характеристик самоходной огневой установки в помеховой обстановке

Сущность предлагаемого изобретения состоит в том, что самоходная огневая установка обнаружения, сопровождения и подсвета целей, наведения и пуска ракет зенитного ракетного комплекса средней дальности содержит первую антенную систему, радиолокационную станцию, цифровую вычислительную систему, поворотную пусковую установку с ракетами, гироскопическую систему измерения углов курса, крена и тангажа, систему навигации, топопривязки и ориентирования, вторую антенную систему, приемное устройство, интеллектуальную систему. Выход первой антенной системы соединен с первым входом радиолокационной станции, первый выход которой подключен к первому входу цифровой вычислительной системы, первый выход которой подключен к поворотной пусковой установке с ракетами, на которой установлена гироскопическая система измерения углов курса, крена и тангажа, вход которой подключен к выходу системы навигации, топопривязки и ориентирования, размещенной на самоходном шасси, а выход гироскопической системы измерения углов курса, крена и тангажа соединен со вторым входом цифровой вычислительной системы, второй выход цифровой вычислительной системы подключен ко второму входу радиолокационной станции, второй выход которой соединен с входом первой антенной системы, выход второй антенной системы соединен с входом приемного устройства, выход приемного устройства подключен к первому входу интеллектуальной системы, выход интеллектуальной системы соединен с третьим входом цифровой вычислительной системы, третий выход которой подключен ко второму входу интеллектуальной системы.

Новым в предлагаемом техническом решении является введение оптико-электронной системы (ОЭС), лазерного дальномера (ЛД) и устройства сопряжения (УС). Выход ОЭС соединен со входом УС, выход УС подключен к третьему входу интеллектуальной системы, выход ЛД соединен с четвертым входом интеллектуальной системы.

На фиг.1 изображены структурная схема самоходной огневой установки обнаружения, сопровождения и подсвета целей, наведения и пуска ракет зенитного ракетного комплекса средней дальности.

На фиг.2 представлена функциональная схема самоходной огневой установки обнаружения, сопровождения и подсвета целей, наведения и пуска ракет зенитного ракетного комплекса средней дальности.

Самоходная огневая установка обнаружения, сопровождения и подсвета целей, наведения и пуска ракет зенитного ракетного комплекса средней дальности (СОУ) содержит первую антенную систему 1, радиолокационную станцию 2, цифровую вычислительную систему (ЦВС) 3, поворотную пусковую установку с ракетами (ПУ) 4, причем на поворотной пусковой установке с ракетами 4 размещена гироскопическая система измерения углов курса, крена и тангажа (ГС) 6, необходимая для стабилизации луча первой антенной системы 1, вторую антенную систему 7. На самоходном шасси размещены система навигации, топопривязки и ориентирования (СНТО) 5, приемное устройство 8, интеллектуальная система 9, лазерный дальномер 10, оптико-электронная система 11 и устройство сопряжения 12.

Выход первой антенной системы 1 соединен с первым входом радиолокационной станции 2, первый выход которой подключен к первому входу цифровой вычислительной системы 3. Первый выход цифровой вычислительной системы 3 подключен к поворотной пусковой установке с ракетами 4, на которой установлена гироскопическая система измерения углов курса, крена и тангажа 6, вход которой подключен к выходу системы навигации, топопривязки и ориентирования 5, размещенной на самоходном шасси. Выход гироскопической системы измерения углов курса, крена и тангажа 6 соединен со вторым входом цифровой вычислительной системы 3, второй выход цифровой вычислительной системы 3 подключен ко второму входу радиолокационной станции 2, второй выход которой соединен с входом первой антенной системы 1. Выход второй антенной системы 7 соединен с входом приемного устройства 8, выход приемного устройств 8 подключен к первому входу интеллектуальной системы 9, выход интеллектуальной системы 9 соединен с третьим входом цифровой вычислительной системы 3, третий выход которой подключен ко второму входу интеллектуальной системы 9, выход лазерного дальномера 10 соединен с третьим входом интеллектуальной системы 9, а выход оптико-электронной системы 11 через устройство сопряжения 12 соединен с четвертым входом интеллектуальной системы 9.

Самоходная огневая установка обнаружения, сопровождения и подсвета целей, наведения и пуска ракет зенитного ракетного комплекса средней дальности (СОУ) работает следующим образом.

После установки СОУ на боевую позицию из системы навигации, топопривязки и ориентирования 5 в гироскопическую систему измерения углов курса, крена и тангажа 6, ЦВС 3 вводится значение курсового угла СОУ (угол между продольной осью СОУ и направлением на север). Курсовой угол СОУ используется в гироскопической системе измерения углов курса, крена и тангажа 6 в качестве начальных условий и в процессе дальнейшей работы гироскопическая система измерения углов курса, крена и тангажа 6 выдает значение курса с учетом этого угла. В ЦВС курсовой угол СОУ используется в сеансах коррекции для расчета угла ψрасч, где ψрасч - рассчитанный курсовой угол.

Сигналы с выхода первой антенной системы 1 выдаются на вход РЛС 2, которая осуществляет обнаружение, захват, сопровождение и подсвет целей.

После усиления и преобразования сигналы целей выдаются с первого выхода РЛС 2 на первый вход ЦВС 3, в которой производится формирование сигналов управления ПУ 4 для выработки углов упреждения и формирование сигналов наведения ракеты. Сформированные сигналы выдаются с первого выхода ЦВС 3 на вход ПУ 4.

На ПУ 4 установлена гироскопическая система измерения углов курса, крена и тангажа 6, необходимая для стабилизации луча первой антенной системы 1 в пространстве при поворотах ПУ 4 в горизонтальной плоскости и при наличии кренов. Измеренные значения углов курса с выхода гироскопической системы измерения углов курса, крена и тангажа угловых координат 6 ψизм, подаются на второй вход ЦВС 3, где ψизм - измеренный в горизонтальной плоскости курсовой угол СОУ.

После усреднения вычисляется разность Δ=ψизмрасч, которая используется в ЦВС для стабилизации луча первой антенной системы 1.

Вторая антенная система 7, приемное устройство 8 и интеллектуальная система 9 обеспечивает эффективную боевую работу самоходной огневой установки в условиях сложной помеховой обстановки.

Когда уровень помехи достигает критического значения для СВЧ элементов радиолокационных приемных устройств (анализ уровня помехи осуществляется с использованием интеллектуальной системы), интеллектуальная система формирует команду на включение режима обнаружения и сопровождения цели с использованием оптико-электронной системы и измерения дальности до цели с помощью лазерного дальномера.

Обучение ИС осуществляется с использованием известных методов и способов противодействия помехам в радиолокации (см. Юдин Л.М., Фомичев К.И. Системы радиоэлектронного противодействия. Запоминание высокочастотных сигналов. - Электроника, НТБ, 1999, Вакин С.А., Шустов Л.Н. Основы радиоэлектронной борьбы. ВВИА им. Проф. Н.Е.Жуковского, 1998, Палий А.И. Радиоэлектронная борьба. - М.: Воениздат, 1981, Вакин С.А., Шустов Л.Н. Основы радиопротиводействия и радиотехнической разведки. - М.: Сов. радио, 1968., Тузов Г.И. Помехозащищенность радиосистем со сложными сигналами. - М.: Радио и связь, 1985, Защита от радиопомех. Под ред. М.В.Максимова. М.: Советское радио. 1976, Гуткин Л.С. Теория оптимальных методов радиоприема при флуактационных помехах. М.: Сов. радио, 1972 и др.), алгоритмы различных методов и способов защиты от различных классов помех хранятся в ЦВС и включаются по команде от ИС.

Известно (см. Перунов Ю.М., Фомичев К.И., Юдин Л.М. Радиоэлектронное подавление информационных каналов систем управления оружием М.: «Радиотехника», 2003. - стр.26-29), что основу методов радиоэлектронного подавления (РЭП) РЛС СОУ составляют активные и пассивные помехи, нацеленные на создание маскирующего или дезинформирующего эффекта. Помимо них, к основным методам РЭП относятся методы силового энергетического подавления, рассчитанные на выведение из строя определенных элементов приемных устройств, а также методы воздействия на окружающую среду, в которой распространяются радиосигналы подавляемых РЛС, искажение формы зондирующего и отраженного от объекта сигналов, ослабляющих мощность зондирующих и отраженных сигналов; методы уменьшения эффективной площади рассеяния (ЭПР) целей.

Таким образом, предлагаемая самоходная огневая установка обнаружения, сопровождения и подсвета целей, наведения и пуска ракет зенитного ракетного комплекса средней дальности может обеспечить эффективную боевую работу в условиях силового энергетического подавления, рассчитанного на выведение из строя СВЧ элементов радиолокационных приемных устройств без снижения основных тактико-технических характеристик СОУ.

Самоходная огневая установка обнаружения, сопровождения и подсвета целей, наведения и пуска ракет зенитного ракетного комплекса средней дальности, содержащая первую антенную систему, радиолокационную станцию, цифровую вычислительную систему, поворотную пусковую установку с ракетами, гироскопическую систему измерения углов курса, крена и тангажа, систему навигации, топопривязки и ориентирования, вторую антенную систему, приемное устройство, интеллектуальную систему, причем выход первой антенной системы соединен с первым входом радиолокационной станции, первый выход которой подключен к первому входу цифровой вычислительной системы, первый выход которой подключен к поворотной пусковой установке с ракетами, на которой установлена гироскопическая система измерения углов курса, крена и тангажа, вход которой подключен к выходу системы навигации, топопривязки и ориентирования, размещенной на самоходном шасси, а выход гироскопической системы измерения углов курса, крена и тангажа соединен со вторым входом цифровой вычислительной системы, второй выход цифровой вычислительной системы подключен ко второму входу радиолокационной станции, второй выход которой соединен с входом первой антенной системы, выход второй антенной системы соединен с входом приемного устройства, выход приемного устройства подключен к первому входу интеллектуальной системы, выход интеллектуальной системы соединен с третьим входом цифровой вычислительной системы, третий выход которой подключен ко второму входу интеллектуальной системы, отличающаяся тем, что введены лазерный дальномер, выход которого подключен к третьему входу интеллектуальной системы, оптико-электронная система, которая через устройство сопряжения соединена с четвертым входом интеллектуальной системы.



 

Похожие патенты:

Изобретение относится к ракетной технике и может быть использовано для запуска ракет из проточных пусковых труб. Устройство для запуска ракет содержит проточную пусковую трубу с насадком, соединённым через отверстие с выходом (в виде регулирующего клапана вдува или сверхзвукового сопла) вторичного рабочего тела.

Изобретение относится к оружейной технике, а именно к переносным зенитно-ракетным комплексам. Переносной зенитно-ракетный комплекс (ПЗРК) содержит транспортно-пусковой контейнер (ТПК) (поперечное сечение в части двигателя имеет вид ромба, или овала, или прямоугольника, или шестигранной неосесимметричной фигуры), монитор, зенитную ракету или два ПЗРК с ракетами радиолокационного и инфракрасного типа, блок управления ракетой, оптический прицел оператора.

Изобретение относится к ракетной технике, а именно к стендам испытаний авиационных ракет (АР). Стенд для контроля параметров схода АР содержит коробчатую станину, подвесное устройство для АР, имитатор усилия схода АР в виде гидравлического цилиндра (ГЦ), измерительный модуль с датчиком силы в виде тензометра, каретку с двумя хомутами и подъемным механизмом, гибкую тягу, обводные ролики.

Группа изобретений относится к ракетной технике. Корпус снабжен профильным силовым слоем (5), который расположен между его наружным (3) и внутренним (4) силовыми слоями и скреплен с ними.

Для осуществления пуска ракеты на подвижной пусковой установке производят определение уточненных координат текущей точки цели и зонных признаков цели и выдачу на пульт оператора в реальном времени опережающей динамической информации для принятия решений по пуску ракеты.

Изобретение относится к пусковым установкам, а именно к испытательным стендам. Стабилизирующее устройство монорельсовой ракетной тележки (РТ) содержит основной башмак с собственной парой крыльев в виде пластин и возможностью охвата рельсовой направляющей и перемещения вдоль нее, два крыла, дополнительный башмак с обтекаемой передней поверхностью и собственной парой крыльев, выполненных с треугольным поперечным сечением.

Изобретение относится к средствам радиоэлектронной борьбы, в частности к способу задания значений параметров выброса (отстрела) расходуемых средств радиоэлектронной борьбы.

Изобретение относится к оружейной технике, а именно к реактивным гранатометам и ракетам для реактивных гранатометов. Ракета для гранатомета содержит ракетный двигатель с кольцевым или цилиндрическим каналом или кольцевыми бронированными с одной стороны шашками, боевую часть, два или более реактивных сопла, два тандемных кумулятивных заряда, бесконтактный лазерный взрыватель.

Изобретение относится к устройству для запуска ракеты с корабля и к кораблю, оборудованному таким устройством. Устройство для запуска ракет с корабля содержит по меньшей мере одну ракетную пусковую установку (9, 9').

Комплекс содержит боевую машину с лазером и вспомогательные машины в виде заправщиков окислителя и горючего на многоколесном шасси. Боевая машина выполнена на гусеничной ходовой части.

Изобретение относится к ракетной технике, а именно к стендам испытаний авиационных ракет (АР). Стенд для многократной имитации пуска АР содержит коробчатую станину, подвесное устройство для габаритно-массового макета АР, имитатор усилия схода АР в виде гидравлического цилиндра (ГЦ), измерительный модуль с датчиком силы в виде тензометра, каретку со стопорным механизмом и опорно-поворотным механизмом, выполненным в виде шарнирно установленных на основании каретки двух вертикальных стоек. Одна из вертикальных стоек содержит передний рычаг с роликом, контактирующим со средней зоной основания станины. Изобретение позволяет повысить автоматизацию испытаний стенда. 2 з.п. ф-лы, 5 ил.

Изобретение относится к ракетной технике и может быть использовано для запуска ракет из проточных пусковых труб. Устройство для запуска ракет содержит проточную пусковую трубу с передним и задним торцами и связанную с носителем, газоотражатель в виде струйного органа управления снижения газодинамического воздействия, установленный на носителе тангенциально его поверхности. Изобретение позволяет снизить силовое воздействие ударной волны на носитель при старте ракеты. 2 ил.

Изобретение относится к военной технике, а именно к зенитным ракетным комплексам (ЗРК). Самоходная огневая установка обнаружения, сопровождения и подсвета целей, наведения и пуска ракет зенитного ракетного комплекса средней дальности содержит первую антенную систему, радиолокационную станцию, цифровую вычислительную систему, поворотную пусковую установку с ракетами, на которой установлена гироскопическая система измерения углов курса, крена и тангажа, систему навигации, топопривязки и ориентирования, размещенную на самоходном шасси, интеллектуальную систему (ИС), мортиры, датчик определения направления и силы ветра, соединённый через устройство сопряжения с ИС. Изобретение позволяет повысить боевую эффективность ЗРК в условиях активных помех различного вида. 2 ил.

Изобретение относится к военной технике и может быть использовано в ракетном вооружении. Ракетная пусковая установка содержит основание, стойку, опорно-поворотное устройство, качающуюся платформу с направляющими для размещения ракет, приводы наведения со стопорными устройствами, блоки индикации углов азимута и возвышения со стрелочным указателем, кабельную сеть (или радиоканал), систему видеоконтроля из двух автономных видеоустройств в герметичных, пылевлагозащищенных отсеках (корпусах), с подсветкой, видеорегистратором, видеокамерой. Изобретение позволяет повысить точность и эффективность стрельбы. 2 з.п. ф-лы, 4 ил.

Изобретение относится к военной технике, а именно к корабельным пусковым установкам (КПУ). Корабельная пусковая система содержит пусковую установку в виде контейнера с крышкой и опорным фланцем, каркас с гнёздами, нижние, верхние и промежуточные основания с ячейками, транспортно-пусковые стаканы (ТПС) (контейнеры), средства крепления ТПС, устройство герметизации, резинокордную оболочку, средства продольной и поперечной амортизации каркаса, нуль-установители, упоры, фундаменты контейнера, исполнительный гидроцилиндр, шток, рычажный механизм, тяги, направляющий стакан, амортизаторы из эластичного материала, опорные элементы, амортизирующее устройство, механизмы автоматической стыковки донных разъёмов электрических соединителей ТПС, герметизирующее уплотнение, центрирующий направляющий элемент в виде штыря, элемент в виде ромбического пальца, защитный козырёк, втулка с индивидуальным герметизирующим уплотенением. Изобретение позволяет повысить надёжность КПУ. 10 з.п. ф-лы, 17 ил.

Изобретение относится к области ракетной техники и может быть использовано в пусковых ракетных установках. Стопорное устройство направляющей ракетной пусковой установки (ПУ) содержит корпус с элементами крепления к ПУ, стопор с клиновидным выступом, рукоятку в виде ступенчатого изгиба, фиксатор в виде ступенчатого изгиба, стопорную пружину из ленточной стали. Стопорная пружина содержит клиновидный стопорный выступ, Г-образный изгиб, кронштейн с прорезью и вертикальным пазом. Изобретение позволяет повысить надежность и эффективность стопора. 2 з.п. ф-лы, 3 ил.

Изобретение относится к военной технике и может быть применено для запуска ПТУР. Универсальный боевой модуль содержит поворотную (в виде цилиндрической обечайки), подъемную платформы с основанием (в виде вертикальной стойки коробчатой формы) и вращающейся частью (в виде цилиндрической обечайки), устройство управления вооружением с прицелом-прибором наведения, электронные блоки управления электрическими приводами наведения, автомат сопровождения цели, пульт оператора с дисплеем, соединенный электрическими линиями связи (проходящие через отверстие в заглушке поворотной платформы) с устройством управления вооружением, опорное устройство (носитель или треножное основание, содержащее фланцы с отверстиями). Основание подъемной платформы закреплено на вращающейся части поворотной платформы. Платформы содержат электрические приводы наведения с зубчатыми редукторами, люльки, закрепленные на вращающейся части подъемной платформы, с ПТУРами. Наружная часть обечайки основания содержит элементы крепления, внутренняя часть - зубчатый венец с внутренним зацеплением. Цилиндрическая обечайка вращающейся части установлена внутри обечайки основания на двух подшипниках с диаметром меньше длины ПТУР и содержит в верхней части заглушку с зубчатыми колесами и выходной шестерней. Основание подъемной платформы закреплено нижней частью на заглушке вращающейся части поворотной платформы. Вертикальная стойка в верхней части содержит жесткое кольцо с подшипником. Люльки закреплены вместе с устройством управления на торцах вращающейся части. Изобретение позволяет снизить массу и габариты и упростить конструкцию боевого модуля. 2 з.п. ф-лы, 6 ил.

Изобретение относится к пусковым установкам, а именно к испытательным стендам. Стабилизирующее устройство монорельсовой ракетной тележки (РТ) ракетного трека содержит крыло в виде заостренной пластины, вал, устройство определения крена с гироскопом и двумя контактными датчиками, устройство вращения крыла в виде шагового двигателя или в виде двух пиротолкателей с цилиндрами, штоками и пороховыми зарядами, устройство управления устройством вращения крыла с источником питания, башмак, колодку, систему поджига порохового заряда пиротолкателей в виде запального порохового заряда, пару ракетных двигателей (РД). Крыло устанавливают в вертикальной плоскости и во время движения РТ устраняют изменение угла атаки, устанавливают пару РД и во время движения РТ устраняют крен. Изобретение позволяет стабилизировать крен на все длине разгонного участка. 4 н. и 11 з.п. ф-лы, 25 ил.

Изобретение относится к области вооружений и касается узла крепления многоствольных гранатометов (пусковых установок). Многоствольный гранатомет содержит основание с установленным в нем приводом, поворотную опору с блоком стволов, установленную на основании через опорное устройство. Основание выполнено с возможностью закрепления на кронштейне объекта-носителя. Во внутренней части основания выполнен выступ, в котором выполнены отверстие под кронштейн объекта-носителя и отверстие, в которое установлен фиксатор кронштейна. Достигается создание простого, малогабаритного, легкого, прочного узла крепления многоствольного гранатомета, возможность замены в полевых условиях. 2 з.п. ф-лы, 3 ил.

Предлагаемое изобретение относится к заряжающим устройствам орудий, используемых на транспортных средствах, и может быть использовано преимущественно в транспортно-заряжающих машинах реактивных систем залпового огня и зенитных ракетных комплексов. Устройство для заряжания и разряжания ракеты содержит траверсу, имеющую узел соединения с подъемным механизмом и снабженную элементами фиксации контейнера. Направляющие бугелей контейнера расположены на траверсе. Устройство имеет для стыковки с направляющими бугелей боевой машины узел стыковки, выполненный в виде двух вилок со стопорами, расположенными по обе стороны траверсы в горизонтальной плоскости. Узел стыковки снабжен отжимателем стопоров бугелей контейнера. Достигается исключение деформации направляющих бугелей и упрощение операции извлечения контейнера из боевой машины после пуска ракеты. 2 ил.
Наверх