Ленточный втсп-провод


 


Владельцы патента RU 2518505:

Общество с ограниченной ответственностью "Научно-производственное предприятие "НАНОЭЛЕКТРО" (RU)

Изобретение относится к технологии высокотемпературных ленточных сверхпроводников на основе смешанных оксидов иттрия-бария-меди (YBCO) и может быть использовано при конструировании и изготовлении высокотемпературных сверхпроводящих проводов второго поколения, в частности в импульсных магнитных системах или в других установках, в которых требуются сверхпроводники с высокой механической прочностью. Задачей предлагаемого изобретения является создание надежной конструкции ВТСП-провода с высокой электропроводностью и механической прочностью выше 1000 МПа, который предназначен для использования в сверхпроводниковых силовых кабелях. Технический результат заявляемого изобретения состоит в стабилизации проводящих свойств ВТСП-провода в условиях изгибающих деформаций. Технический результат достигается тем, что ВТСП-провод включает текстурированную ленточную подложку, нанесенные на нее последовательно буферный слой, ВТСП-слой, защитное покрытие ВТСП-слоя, а также припаянное с двух сторон ленточное металлическое покрытие, причем ленточное покрытие выполнено из нанокомпозиционного материала Cu-Nb, содержащего от 5 до 30% Nb и обладающего механической прочностью от 400 МПа до 1000 МПа. 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к технологии высокотемпературных ленточных сверхпроводников на основе смешанных оксидов иттрия-бария-меди (YBCO) и может быть использовано при конструировании и изготовлении высокотемпературных сверхпроводящих проводов второго поколения, в частности в импульсных магнитных системах или в других установках, в которых требуются сверхпроводники с высокой механической прочностью.

Высокотемпературные сверхпроводящие проводники второго поколения (далее - ВТСП) основаны на явлении резкого падения электрического сопротивления некоторых поликристаллических смешанных оксидов редкоземельного металла, щелочноземельного металла и меди (например, оксидов иттрия-бария-меди) при температурах выше температуры кипения жидкого азота (77,4 К). В результате двух десятилетий активных исследований и разработок основой для создания промышленных технологий ВТСП стали два соединения: (Bi,Pb)2Sr2Ca2Cu3Ox (сокращенно BSCCO или 2223, Тс=105-120 К) и YBa2Cu3O7 (YBCO или 123, Tc=90-92 К). Из них провода на основе YBa2Cu3O7 демонстрируют рекордную среди всех прочих сверхпроводников устойчивость критического тока в магнитных полях. В этом состоит их принципиальное отличие и преимущество по сравнению с проводниками первого поколения на основе Bi-керамик. Основное преимущество использования сверхпроводников на основе YBa2Cu3O7 состоит в том, что кабели на их основе способны передавать большую мощность при достаточно малых габаритах и низких напряжениях. Создание ВТСП-проводов предшествует появлению принципиально нового высокоэффективного и компактного электрического оборудования самого различного назначения, например таких, как сверхпроводниковые силовые кабели, сверхпроводниковые индуктивные накопители, трансформаторы высокой мощности и высокополевые магниты.

Технологии ВТСП второго поколения основаны на использовании поликристаллических смешанных оксидов редкоземельного металла, щелочноземельного металла и меди, например оксидах иттрия-бария-меди (YBCO). Эти оксиды формируют в виде тонкого слоя с высокой степенью кристаллографической упорядоченности (текстуры) на поверхности гибкой лентовидной подложки с высокой степенью кристаллографической текстурированности. При этом текстура поверхности подложки обеспечивает образец-шаблон для эпитаксиального роста кристаллического ВТСП-материала, а также структурную целостность слоя ВТСП.

Для изготовления подложки используются такие материалы, как никель, медь, серебро, железо, серебряные сплавы, никелевые сплавы, железные сплавы, нержавеющие стали и медные сплавы. Текстурирование поверхности подложки может быть осуществлено с применением деформационных процессов, таких как деформация с использованием прокатки и рекристаллизационного отжига подложки. Примером такого процесса является процесс биаксиального текстурирования подложки с помощью прокатки (RABiTS-процесс, от англ. «rolling-assistedbiaxiallytexturedsubstrate»). В этом случае металл может быть экономично обработан путем деформации и отжига с получением высокой степени текстурированности. Этим способом до сих пор производили металлические полосы шириной, например, вплоть до 4 см, каждую из которых потом можно было продольно нарезать на множество меньших проводов, например, 10 полос с проводами шириной 0,4 см.

На поверхности подложки с подходящим кристаллографическим шаблоном перед выращиванием ВТСП-материала осаждают один или несколько буферных слоев, которые предотвращают диффузию атомов из материала подложки в кристаллическую решетку ВТСП-материала и способствуют сохранению его электрических свойств. Кроме того, буферные слои обеспечивают улучшенную адгезию между подложкой и слоем ВТСП, а также компенсацию коэффициентов теплового расширения ВТСП-материала и подложки. Слой ВТСП может быть осажден из металлорганических соединений (MOD), химическим осаждением из паровой фазы (MOCVD), импульсным лазерным осаждением (PLD), термовакуумным или электронно-лучевым напылением, или другими подходящими способами. На поверхность ВТСП-пленки наносят верхний слой, например, из серебра, который помогает предотвратить загрязнение слоя ВТСП сверху.

Пример многослойного ВТСП-проводника включает в себя: текстурированную подложку из сплава никеля с 5% вольфрама; последовательно осажденные эпитаксиальные слои Y2O3, YSZ и CeO2; эпитаксиальный слой YBCO; и верхний слой Ag. Примерные толщины этих слоев следующие: подложка - примерно 25-75 микрон, буферные слои - примерно 75 нм каждый, YBCO-слой - примерно 1 микрон, и верхний слой - примерно 1-3 микрона.

При использовании ВТСП-провода для изготовления электротехнических приборов и оборудования он должен выдерживать изгибающие напряжения, связанные с деформациями на растяжение и сжатие. Такие воздействия могут приводить к возникновению повреждений и отслоений слоя ВТСП и резкому ухудшению его электрических свойств. Поэтому эти провода должны удовлетворять многочисленным техническим требованиям, что ставит серьезные задачи при разработке конструкций проводов и при разработке промышленной технологии их производства.

Для повышения и стабилизации электротехнических и механических свойств ВТСП-проводов и защиты их от воздействия окружающей среды используют различные покрытия. Методы нанесения защитных покрытий, материалы для их выполнения и конструкции изоляции для узлов ВТСП описаны, например, в патенте США №6444917, МПК Н01В 12/00. Эти покрытия надежно защищают провод от внешней среды в процессе его эксплуатации, в частности от воздействия жидкого азота.

Однако предлагаемые конструкции ВТСП-провода не обеспечивают его высокую механическую прочность, которая необходима при изготовлении и эксплуатации сверхпроводниковых силовых кабелей, сверхпроводниковых индуктивных накопителей, трансформаторов высокой мощности, высокополевых магнитов и другого электротехнического оборудования на основе сверхпроводников.

В описании изобретения к патенту РФ №2408956, МПК H01L 39/02 описан многослойный ВТСП-провод, имеющий улучшенное перераспределение тока, хорошие механические свойства, надежную изоляцию ВТСП-узла от окружающей среды. Этот провод состоит из двух ленточных ВТСП-проводников, которые соединены между собой со стороны подложек в единый ВТСП-провод. Этот бинарный провод включает двухстороннее покрытие в виде двух металлических лент, расположенных со стороны сверхпроводящих покрытий, и электропроводящий наполнитель (припой), связующий элементы ВТСП-провода в единое целое.

Однако ВТСП-провод описанной конструкции не обеспечивает его высокой механической прочности, которая необходима при использовании его в конструкциях сверхпроводниковых силовых кабелей, сверхпроводниковых индуктивных накопителях энергии, трансформаторах, двигателях, генераторах, магнитах и других электротехнических устройствах.

Известен описанный в патенте США №6828507, МПК Н01В 12/00 ВТСП-провод, включающий текстурированную подложку, нанесенный на нее сверхпроводящий слой, защитные покрытия и медную полосу, размещенную со стороны сверхпроводящего слоя. Толщина медной полосы выбирается с учетом механических свойств и толщины подложки и рассчитывается так, чтобы при изгибе провода сверхпроводящий слой оказывался в средней зоне с минимальными напряжениями и деформациями в поперечном сечении провода. Изобретение предусматривает вариант выполнения конструкции с дополнительной надежностью и электропроводностью, в которой два ВТСП-проводника соединены припоем вместе своими медными полосами с образованием единого ВТСП-провода.

Однако ВТСП-провод описанной конструкции также не обеспечивает его высокой механической прочности, которая необходима для изготовления сверхпроводниковых силовых кабелей, сверхпроводниковых индуктивных накопителях энергии, трансформаторах, двигателях, генераторах, магнитах и других электротехнических устройствах.

Задачей предлагаемого изобретения является создание надежной конструкции ВТСП-провода с высокой электропроводностью и механической прочностью выше 1000 МПа, который предназначен для использования в сверхпроводниковых силовых кабелях.

Технический результат заявляемого изобретения состоит в стабилизации проводящих свойств ВТСП-провода в условиях изгибающих деформаций.

Технический результат достигается тем, что ВТСП-провод включает текстурированную ленточную подложку, нанесенные на нее последовательно буферный слой, ВТСП-слой, защитное покрытие ВТСП-слоя, а также припаянное с двух сторон ленточное металлическое покрытие, причем ленточное покрытие выполнено из нанокомпозиционного материала Cu-Nb, содержащего от 5 до 30% Nb и обладающего механической прочностью от 400 МПа до 1000 МПа.

Технический результат достигается также тем, что нанокомпозиционный материал Cu-Nb имеет размер структурных составляющих: ОЦК (объемно-центрированная кубическая кристаллическая структура) элементов Nb, Fe, V - 5-30 нм и ГЦК (гранецентрированная кубическая кристаллическая структура) элемента Cu - 40÷60 нм, предел прочности при растяжении - 400÷1000 МПа и электропроводность - 50÷80% IACS (IACS - международный стандарт электропроводности отожженной меди; 100% IACS = 1,7241 мкОм·см при 20°С).

Технический результат достигается также тем, что толщина ленточного покрытия, припаянного со стороны ВТСП-слоя, равна сумме толщин подложки и ленточного покрытия, припаянного со стороны подложки.

Отличительными признаками изобретения является то, что ленточное покрытие выполнено из нанокомпозиционного материала Cu-Nb, содержащего от 5 до 30% Nb и обладающего механической прочностью от 400 МПа до 1000 МПа.

Толщины лент покрытия из нанокомпозита Cu-Nb выбирают с учетом механических свойств и толщины подложки и рассчитывают так, чтобы при изгибе провода сверхпроводящий слой оказывался в средней зоне с минимальными напряжениями и деформациями в поперечном сечении провода.

На чертеже приведено поперечное сечение ВТСП-провода.

Провод состоит из металлической подложки (1) с текстурированной рабочей поверхностью, нанесенного на подложку (1) текстурированного буферного слоя (буферных слоев) (2), слоя ВТСП (3), защитного слоя (4), (5) ленточного покрытия (6), выполненного из нанокомпозита Cu-Nb и припаянного со стороны ВТСП-слоя (3), ленточного покрытия (7), выполненного из нанокомпозитного материала Cu-Nb и припаянного со стороны подложки (1), и припоя (8).

Получение ленточного ВТСП-провода, в соответствии с заявляемым изобретением, осуществляют следующим образом.

На подложку в виде ленты из высоколегированного никелевого сплава Хастеллой толщиной 40 мкм наносят известными методами буферные слои (YSZ) с биаксиальной текстурой из оксида церия, оксида иттрия и циркония, общей толщиной 1÷1,5 мкм. На полученную поверхность нанесен ВТСП-слой на основе YBa2Cu3O7 толщиной 1,5÷3 мкм, на который нанесен слой серебра методом магнетронного напыления для защиты ВТСП-слоя от внешнего воздействия. Общая толщина буферных слоев совместно с ВТСП-слоем и серебряным покрытием составляет 10 мкм. На полученную ВТСП ленту припаивают с двух сторон ленточные покрытия, выполненные из нанокомпозита Cu-Nb. При этом толщина ленточного покрытия, припаянного со стороны сверхпроводящего слоя, составляет 60 мкм, и толщина слоя ленточного покрытия, припаянного со стороны подложки, составляет 20. Такие размеры слоев покрытия позволяют обеспечить примерное равенство прочности ленточного покрытия (6), с одной стороны, и общей прочности ленточного покрытия (7) вместе с подложкой, с другой стороны. Такая конструкция обеспечивает не только высокую прочность провода, но и размещение ВТСП-слоя в зоне минимальных деформаций при его изгибе.

Процесс спайки двухстороннего ленточного покрытия с ВТСП-узлом осуществляют с помощью припоя с температурой припоя не выше 300°С, что гарантирует стабильность наноструктуры Cu-Nb ленты и сохранение ее высоких прочностных свойств. В качестве такого припоя используют сплавы с температурой плавления от 180°С до 232°С, например, композицию, состоящую из 40% олова, 58,5% свинца и 1,5% серебра. Для повышения электрической и тепловой стабильности, а также коррозионной устойчивости припой выполняют из электропроводящего материала и находится в электрическом контакте с ВТСП-узлом и покрывает его не только со стороны ленточного покрытия, но и с торцевой стороны.

Изобретение может быть использовано для получения технических ВТСП-проводников с высокими прочностными и проводящими свойствами, способных выдерживать без деградации критического тока значительные деформации. Такие провода могут найти применение для реализации проектов создания сверхпроводниковых силовых кабелей, сверхпроводниковых индуктивных накопителей энергии, трансформаторов, двигателей, генераторов, магнитов и других электротехнических устройств. Применение предложенных сверхпроводников перспективно и при создании компактных магнитных систем различного назначения с повышенными критическими характеристиками. Важной особенностью предлагаемого сверхпроводника является достижение существенного повышения прочности ленточного ВТСП-провода без снижения электрических и тепловых характеристик и коррозионной устойчивости. Использование предложенной конструкции позволяет снизить вероятность нарушения целостности ВТСП-слоя при деформациях провода в процессе изготовления электротехнического оборудования. Использование предлагаемого решения в технологии изготовления ВТСП-проводников обеспечивает их высокую прочность при оптимальных условиях сохранения целостности сверхпроводящего слоя при сгибе ВТСП-провода. Такая конструкция провода позволяет в значительной мере компенсировать повышенную хрупкость свехпроводящего слоя и возможные потери электропроводности ВТСП-провода.

1. Ленточный ВТСП-провод, включающий текстурированную ленточную подложку, нанесенные на нее последовательно буферный слой, ВТСП-слой, защитное покрытие и припаянные с двух сторон ленточные металлические покрытия, отличающийся тем, что ленточные металлические покрытия выполнены из нанокомпозиционного материала Cu-Nb, содержащего от 5 до 30% Nb и обладающего механической прочностью на растяжение от 400 МПа до 1000 МПа.

2. Ленточный ВТСП-провод по п.1, отличающийся тем, что нанокомпозиционный материал Cu-Nb имеет размер структурных составляющих: ОЦК элементов Nb, Fe, V - 5-30 нм и ГЦК элемента Cu - 40÷60 нм, предел прочности при растяжении - 400÷1000 МПа и электропроводность - 50÷80% IACS.

3. Ленточный ВТСП-провод по п.1, отличающийся тем, что толщина ленточного покрытия, припаянного со стороны ВТСП-слоя, равна сумме толщин подложки и ленточного покрытия со стороны подложки.



 

Похожие патенты:

Изобретение относится к области сверхпроводимости и нанотехнологий, а именно к способу получения и обработки композитных материалов на основе высокотемпературных сверхпроводников (BTCП), которые могут быть использованы в устройствах передачи электроэнергии, для создания токоограничителей, трансформаторов, мощных магнитных систем.

Изобретение относится к области химической технологии, а именно к получению новых сверхпроводящих борсодержащих соединений. .

Изобретение относится к технологии получения высокотемпературных проводников в системе металл-оксид металла и может использоваться для получения соединений, обладающих особыми физическими свойствами.

Изобретение относится к области химической технологии, а именно к получению новых сверхпроводящих соединений в области высоких давлений от 17 ГПа до 160 ГПа. .

Изобретение относится к технологии получения высокотемпературных проводников в системе металл-оксид металла и может использоваться для получения соединений, обладающих особыми физическими свойствами.

Изобретение относится к технологии получения высокотемпературных проводников в системе металл-теллурид металла и может использоваться для получения соединений, обладающих особыми физическими свойствами.

Изобретение относится к технологии получения высокотемпературных проводников в системе металл - оксид металла и может использоваться для получения соединений, обладающих особыми физическими свойствами.

Изобретение относится к технологии получения высокотемпературных проводников в системе металл-оксид металла и может использоваться для получения соединений, обладающих особыми физическими свойствами.

Изобретение относится к области технологии получения высокотемпературных проводников в системе металл - оксид металла и может использоваться для получения соединений, обладающих уникальными физическими свойствами.

Изобретение относится к способу обработки сверхпроводящих материалов на основе композитных высокотемпературных сверхпроводников (ВТСП) и может быть использовано для передачи электроэнергии, для создания токоограничителей, трансформаторов, мощных магнитных систем.

Изобретение относится к способу охлаждения по меньшей мере одного сверхпроводящего кабеля, установленного в имеющем по меньшей мере одну термически изолированную трубу криостате с охваченным трубой свободным пространством, в котором установлены кабель и по меньшей мере одно трубчатое устройство, через которое из находящейся на одном конце точки подачи до отдаленного конца пропускается охлаждающее средство. Охлаждающее средство до охлаждения кабеля до его рабочей температуры пропускается через криостат и трубчатое устройство исключительно в одном направлении, а на отдаленном конце отводится в окружающую среду. По достижении рабочей температуры охлаждающее средство с отдаленного конца установки возвращается через трубчатое устройство обратно к точке подачи. Техническим результатом является повышение эффективности при охлаждении сверхпроводящего кабеля до рабочей температуры. 2 з.п. ф-лы, 3 ил.

Изобретение относится к электротехнике и может быть использовано при конструировании и изготовлении сверхпроводящих проводов на основе соединения Nb3Sn для установок термоядерного синтеза, импульсных магнитных систем или для других перспективных технологий, в которых требуются сверхпроводники с повышенной критической плотностью тока. Способ включает формирование первичной композиционной заготовки единичного волокна из большого количества (более 19) прутков из ниобия и из сплава Nb-Ti, причем количество титана по отношению к ниобию в пересчете на все волокно составляет от 0,5 до 5 масс.%, каждая упомянутая первичная композиционная заготовка единичного волокна выполняется с покрытием из меди или медного сплава и может содержать источник олова, а также формирование композиционной заготовки сверхпроводника, содержащей единичные волокна из ниобия и из сплава Nb-Ti, которые размещены в матрице из меди или медного сплава, источник олова, диффузионный барьер и медное покрытие, многостадийное волочение и термообработку композиционной заготовки до получения провода нужного поперечного сечения, реакционную термообработку провода для образования сверхпроводящего соединения Nb3Sn. Изобретение обеспечивает повышение токонесущей способности и стабильности электрофизических характеристик каждого единичного волокна сверхпроводника за счет уменьшения размеров и повышения однородности кристаллитов Nb3Sn. 1 з.п. ф-лы, 2 ил.

Способ относится к электротехнике и может быть использован при конструировании и изготовлении сверхпроводящих проводов на основе соединения Nb3Sn для сверхпроводящих магнитных систем энергетических установок термоядерного синтеза. Технический результат состоит в исключении трудоемких процессов химического травления, вакуумирования и герметизации составных заготовок, а также в получении сверхпроводника с заданным распределением волокон в поперечном сечении сверхпроводника. Формируют заготовку Cu/Nb субэлемента, которая содержит прутки из ниобия или сплава на его основе, распределенные в матрице из меди или сплава на ее основе, и центральный сердечник из олова или из сплава на основе олова, деформируют заготовку до промежуточного размера, нарезают ее на части, из которых формируют длинномерную композиционную заготовку, включающую наружный цилиндрический слой из высокочистой меди и внутренний цилиндрический диффузионный барьер, деформируют композиционную заготовку волочением вхолодную до конечного диаметра и проводят реакционную термообработку для формирования сверхпроводящего соединения Nb3Sn, при этом заготовку Cu/Nb субэлемента формируют в индукционной вакуумной печи путем заливки расплавом меди или сплава на основе меди прутков из ниобия или сплава на его основе, которые размещают в изложнице в виде пространственного каркаса. 7 з.п. ф-лы, 3 ил.

Изобретение относится к области производства сверхпроводящих материалов и может быть использовано в электротехнической промышленности и других отраслях техники для изготовления сверхпроводящих магнитных систем различного назначения. Способ включает формирование первичной композитной заготовки, содержащей наружную оболочку и осевой цилиндрический блок, герметизацию первичной композитной заготовки, обжатие, экструзию и последующую деформацию до получения прутка заданной формы и размера, резку прутка на мерные длины, формирование вторичной композитной заготовки путем сборки нарезанных прутков в наружную оболочку, герметизацию вторичной композитной заготовки, обжатие, экструзию и последующую деформацию до конечного размера провода. Деформацию после экструзии и первичной композитной заготовки, и вторичной композитной заготовки осуществляют волочением, при этом количество переходов при многократном волочении определяют по определенной формуле. Изобретение обеспечивает безобрывную деформацию композитной заготовки до получения конечного размера сверхпроводящего провода.

Изобретение относится к технологии получения сверхпроводящих материалов и может быть использовано в электротехнической промышленности и других отраслях науки и техники при изготовлении сверхпроводящих магнитных систем различного назначения. Задачей, на решение которой направлено предлагаемое изобретение, является упрощение способа изготовления композиционного сверхпроводящего провода на основе соединения Nb3Sn, а также упрощение технологической линии для его изготовления путем сокращения технологического передела, снижения трудоемкости процесса и сокращения количества образующихся отходов в процессе производства, исключение разрушения как бронзовых элементов, так и самого композиционного проводника в процессе деформирования. Способ изготовления композиционного сверхпроводящего провода на основе соединения Nb3Sn, который включает получение бронзовых литых трубных и/или прутковых заготовок в печи непрерывного литья оловянной бронзы с содержанием олова 12-17 мас.%, их гомогенизационный отжиг при температуре 500-750°C, формирование первой композиционной заготовки путем размещения в чехле из сплава Cu-Sn нарезанных на определенные длины и прошедших осветляющее травление прутков из сплава Cu-Sn и ниобиевых прутков, с последующим ее вакуумированием и заваркой, выдавливание первой композиционной заготовки на прессе при температуре нагрева контейнера и матрицы 350-500°C с получением композиционного прутка первой композиционной заготовки, деформацию композиционного прутка первой композиционной заготовки на прокатном и/или волочильном стане со скоростью менее 20 м/мин с промежуточными отжигами в печи при температуре 400-550°C в неокислительной атмосфере для снятия наклепа после деформации 5-50% с получением композиционных прутков круглого или шестигранного сечения, формирование второй композиционной заготовки путем размещения нарезанных на определенные длины и прошедших осветляющее травление композиционных прутков в чехле, выполненном из высокочистой меди, внутри которого размещен диффузионный барьер из ниобия с танталовыми вставками, с последующим вакуумированием и заваркой, выдавливание второй композиционной заготовки на прессе при температуре нагрева контейнера и матрицы 350-500°C с получением композиционного прутка второй композиционной заготовки, деформацию композиционного прутка второй композиционной заготовки на прокатном и/или волочильном стане со скоростью менее 20 м/мин с промежуточными отжигами в печи при температуре 400-550°C в неокислительной атмосфере для снятия наклепа после деформации 5-50% с получением композиционного провода требуемого поперечного сечения и его диффузионный отжиг до получения сверхпроводящего соединения Nb3Sn при 550-700°C в течение 100-600 ч. 2 н. и 7 з.п. ф-лы, 1 ил.

Изобретение относится к области изготовления сверхпроводящих магнитных систем различного назначения. Способ получения многоволоконной заготовки для изготовления сверхпроводящего провода на основе соединения Nb3Sn заключается в формировании первичной многоволоконной заготовки путем размещения в чехле из сплава Cu-Sn Nb-содержащих прутков, объединенных в блоки путем размещения между ними прутков из сплава Cu-Sn, а толщину стенки чехла первичной многоволоконной заготовки выбирают в интервале 0,5-0,8 минимального расстояния между ближайшими Nb-содержащими прутками, не принадлежащими одному блоку, которую деформируют, и формируют многоволоконную заготовку путем размещения прутков, полученных из первичной многоволоконной заготовки, в чехле из меди или сплава Cu-Sn, при этом Nb-содержащий пруток выполняют с размещенным вдоль его центральной оси легирующим вкладышем из сплава Ti-Sn, содержащим олово в количестве от 3 до 15 мас.%, а степень разовой деформации при деформировании первичной многоволоконной заготовки волочением не превышает 20%. Технический результат изобретения заключается в возрастании токонесущей способности сверхпроводящего провода. 1 ил.

Изобретение относится к созданию новых высокотемпературных сверхпроводящих (ВТСП) материалов и позволяет получить материал, обладающий сверхпроводимостью при температуре 197 К. Данное изобретение может найти широкое применение в области энергетики в качестве энергосберегающих материалов, в частности является наиболее подходящей основой для создания ВТСП кабелей. Образец номинального состава Bi-2223 после охлаждения ниже температуры сверхпроводящего перехода (Тс) помещают в вакуум (Р≤10-6 Торр) и при воздействии на образец материала Bi-2223 внешнего давления Р≤10-6 Торр он проявляет свойства сверхпроводящего материала с температурой перехода 197 К. Сверхпроводящий материал, полученный предлагаемым способом, обладает значительно более высокой критической температурой, чем все известные ВТСП. 2 з.п. ф-лы, 2 ил., 3 пр.

Изобретение относится к электротехнике, к многослойным магнитным блокам из высокотемпературных сверхпроводящих лент второго поколения и может быть использовано при промышленном производстве устройств для магнитной левитации, экранов магнитного поля, постоянных магнитов захваченного магнитного потока и компонентов роторов электрических машин и т.д. Технический результат состоит в повышении производительности, прочности, обеспечении возможности получения изделий любых форм и размеров. Сверхпроводящий многослойный блок включает пакет из сверхпроводящих листов, установленных один на другой и механически связанных друг с другом, где каждый лист выполнен из отрезков высокотемпературных сверхпроводящих лент второго поколения, уложенных в ряд и механически связанных друг с другом по длинным сторонам. Ленты в каждом последующем листе размещены так, что продольные оси лент последующего листа расположены параллельно осям лент предыдущего листа и смещены относительно упомянутых осей лент предыдущего листа в поперечном направлении или продольные оси лент последующего листа расположены под углом к осям лент предыдущего листа. 2 н. и 12 з.п. ф-лы, 8 ил.
Наверх