Способ получения покрытий на основе диоксида кремния

Изобретение относится к листовому стеклу, используемому в строительной индустрии, для считывающих устройств, для солнечных батарей. Техническим результатом изобретения является создание для листового стекла покрытия, обладающего повышенными показателями микротвердости и стойкости к царапанию без существенной потери прозрачности в видимой области спектра. Способ получения покрытия включает золь-гель процесс тетраалкоксида кремния, нанесение золя на стекло, нагревание образца с покрытием в атмосфере воздуха. В золь дополнительно вводят суспензию порошка наноалмаза в водном растворе ПАВ с концентрацией 0,04-0,06 моль/л, при этом количество наноалмаза по отношению ко всей смеси составляет 0,3-0,5%, смесь подвергают механическому перемешиванию в течение 5-10 мин, далее УЗ-воздействию при частоте 18-20 кГц в течение 20-30 мин, после чего в подготовленную смесь погружают флоат-стекло, которое затем извлекают со скоростью 5-7 см/мин и далее подвергают сушке и термообработке при 450-470°C в течение 20-30 мин с дальнейшим охлаждением. В качестве ПАВ используют катионактивные вещества, в частности четвертичные аммонийные соли типа цетилтриметиламмонийбромид, или октадециламмонийхлорид, или триметилгексадециламмонийхлорид. Способ обеспечивает стойкость стекла к царапанию, повышение микротвердости более чем на 200% и светопропускание на уровне 80-85%. 1 з.п. ф-лы, 1 табл., 2 пр.

 

Изобретение относится к листовому стеклу, используемому в строительной индустрии, для считывающих устройств, для солнечных батарей, в частности к способу получения прозрачных золь-гель покрытий на основе диоксида кремния, армированного детонационным наноалмазоом для повышения твердости и износостойкости листового стекла.

В настоящее время повышение физико-механических свойств листового стекла, придание ему различных функций осуществляется за счет модифицирования его поверхности путем нанесения покрытий: солнцеотражающих, низкоэмиссионных, токопроводящих, износостойких, фотовольтаических и т.д. (Smith Donald. Thin film deposition: principles and practice. Elsevier, 1995; Pulker H.K. Coating on Glass. Elsevier, 1999; Danielzik В., Heming M., Krause D., Thelen A. Thin Films on Glass, Elsevier, 2003).

Химические составы покрытий охватывают широкий класс соединений: металлы (Ag, Аu, Сu), сплавы (NiCr, нержавеющая сталь), оксиды (SiO2, TiO2, SnO2, In2O3 и т.д.), фториды, арсениды, селениды, кремнийорганические соединения.

Широко распространенными являются прозрачные SiO2-содержащие покрытия, обеспечивающие эффект просветления и супергидрофобные свойства (Satish A. Mahadik, Mahedra S. Kavale, S.K. Mukherjee / Transparent Superhydrophobic silica coating on glass by sol-gel method / Applied Surface Science, 257, 2010, 333-359). Однако при этом многие исследователи отмечают снижение механических свойств (микротвердости, износостойкости) при нанесении на поверхность стекла золь-гель SiO2-содержащих покрытий. Решение проблемы некоторые авторы (Y.L. Wu, Z. Chen, X.T. Zeng / Nanoscale morphology for high hydrophobicity of hard sol-gel thin film / Applied Surface Science, 254, 2008, 6952-6958) находят в создании золь-гель композиций определенных химических составов, в частности во введении в золь-гель полиметилсилоксана, обеспечивающего баланс физико-механических и оптических свойств, при этом микротвердость находится на максимально возможном для этих составов и способа нанесения уровне 0,9 ГПа.

Известны алмазоподобные покрытия (DLC-diamond-like carbon), наносимые на листовое стекло в качестве зашиты от царапания и повышения микротвердости (Патент RU 2469002, патенты US 6303226, 6531182, 6592992, 6592993). DLC-покрытия содержат группы со связями С-С с sp-гибридизацией, присущей алмазу, и со связями С-С с sp-гибридизацией и 50% содержанием водородных атомов Н. Преобладание в покрытии первого вида групп приводит к повышению микротвердости до 10-50 ГПа.

Недостатком этого решения проблемы является применение технологически сложного и дорогого плазмохимического метода нанесения алмазоподобных покрытий, уменьшающих к тому же и светопропускание стекла.

Наиболее близким аналогом заявленного изобретения по составу покрытия, методу нанесения и составу золь-гель композиции является прозрачное покрытие на основе SiO2 (Патент RU 2466948), наносимое на оптические элементы с целью повышения их светопропуекания. Достигается это способом получения покрытий, включающим золь-гель процесс тетраалкоксида кремния в присутствии органических соединений, с использованием техники самоорганизации наноструктур, вызванной испарением растворителя при нанесении золя на стекло и нагреванием образца с покрытием в атмосфере воздуха при 500°C в течение 5-6 часов.

Основным недостатком прототипа являются низкие механические свойства (микротвердость и стойкость к царапанию) получаемых покрытий.

Техническим результатом настоящего изобретения является создание для листового стекла покрытия, обладающего повышенными показателями микротвердости и стойкости к царапанию без существенной потери прозрачности в видимой области спектра.

Этот технический результат достигается способом получения покрытий на основе диоксида кремния на стекле, включающим золь-гель процесс тетраалкоксида кремния, нанесение золя на стекло, нагревание образца с покрытием в атмосфере воздуха, причем в золь дополнительно вводят суспензию порошка наноалмаза в водном растворе ПАВ с концентрацией 0,04-0,06 моль/л, при этом количество наноалмаза по отношению ко всей смеси составляет 0,3-0,5%, смесь подвергают механическому перемешиванию в течение 5-10 мин, далее УЗ-воздействию при частоте 18-20 кГц в течение 20-30 мин, после чего в подготовленную смесь погружают флоат-стекло, которое затем извлекают со скоростью 5-7 см/мин и далее подвергают сушке и термообработке при 450-470°C в течение 20-30 мин с дальнейшим охлаждением.

Наноалмаз представляет собой углеродную наноструктуру, имеющую кристаллическую решетку алмаза. В качестве допирующей добавки использован детонационный наноалмаз (ДНА), получаемый путем химических превращений на фронте детонационной волны при взрыве мощных взрывчатых веществ (смесь тротила и гексогена). В газах, образующихся при детонации, содержится значительное количество свободного углерода, из которого в условиях высоких температур и давлений, достигаемых при взрыве, формируется алмазная фаза углерода. Детонационный синтез является сравнительно дешевым и быстрым во времени способом получения наноалмазов, имеющих округлую форму диаметром 3-6 нм и удельную поверхность на уровне 300 м/г.

При использовании наночастиц в качестве наполнителя проблемной является стадия их дезагрегации и однородного диспергирования в объеме золя. Техническим решением этой проблемы является одновременное проведение дезагрегации наноалмаза, его диспергирование в водной среде поверхностно-активного вещества и перемешивание с SiO2-содержащим золем путем механического и затем ультразвукового воздействия.

В качестве ПАВ наиболее целесообразно использовать катионактивные вещества, которые в водном растворе подвергаются диссоциации с образованием поверхностно-активных катионов, имеющих в своем составе органическую цепь и определяющих поверхностную активность. Среди катионных ПАВ наибольшее значение имеют четвертичные аммониевые соединения и амины. Катионоактивные ПАВ, такие как ЦТАБ (цетилтриметиламмоний бромид) или октадециламмонийхлорид (ОДЦАХ), способны стабилизировать высококонцентрированные водные эмульсии, так как органическая часть катионов хорошо входит в контакт с поверхностью частиц, и сама молекула ПАВ придает поверхности частиц высокие значения ξ-потенциала на границе с водой, что способствует электростатическому отталкиванию и предотвращает коагуляцию частиц.

Листовое флоат-стекло с нанесенным золь-гель покрытием на основе диоксида кремния, содержащим детонационный наноалмаз, имеет микротвердость на уровне 9,5-9,7 ГПа, стойко к царапанию и имеет светопропускание не ниже 80%.

Достижение заявленного технического результата подтверждается следующими примерами.

Пример 1.

В стеклянную колбу на 100 мл наливают 24,5 мл тетраэтоксисилана (ТЭОС), 18,5 мл этилового спирта, добавляют воду в соотношении 4:1 по отношению к ТЭОС и далее соляную кислоту в концентрации 6,2·10-3 моль на 1 моль ТЭОС. Содержимое колбы перемешивают при комнатной температуре в течение 20 минут. Далее готовят суспензию наноалмаза в 0,04% водном растворе цетилтриметиламмонийбромида и добавляют ее в золь SiO2 в количестве, соответствующем концентрации наноалмазов 0,5% по отношению к массе конечной смеси, далее смесь подвергают механическому перемешиванию в течение 10 мин и УЗ-воздействию при частоте 18-20 кГц в течение 25 минут.

Покрытия наносят на стекло при комнатной температуре (18-20°C) методом погружения в подготовленный золь, допированный наноалмазом. Скорость извлечения образцов флоат-стекла из смеси составляет 5 см/мин. Стекла оставляют при комнатной температуре в течение 22 часов. Далее стекла с покрытиями помещают в муфельную печь и нагревают в воздушной среде со скоростью 5°C/мин от 20 до 470°C. При этой температуре образцы выдерживают в течение 20 минут. После медленного охлаждения образцы вынимают из печи и определяют микротвердость с помощью микротвердомера Microhardness Tester HVS-1000, стойкость к царапанию с помощью кварца и светопропускание в интервале длин волн 400-900 нм на спектрометре Spekord M400. Величина микротвердости находится на уровне 9,80 ГПа, покрытие стойко к царапанию, и величина светопропускания при 550 нм составляет 80%.

Пример 2.

В стеклянную колбу на 100 мл наливают 24,5 мл тетраэтоксисилана (ТЭОС), 18,5 мл этилового спирта, добавляют воду в соотношении 4:1 по отношению к ТЭОС и далее соляную кислоту в концентрации 6,2·10-3 моль на 1 моль ТЭОС. Содержимое колбы перемешивают при комнатной температуре в течение 20 минут. Далее готовят суспензию наноалмаза в 0,06% водном растворе октадециламмонийхлорида и добавляют ее в золь SiO2 в количестве, соответствующем концентрации наноалмазов 0,3% по отношению к массе конечной смеси. Далее смесь подвергают механическому перемешиванию в течение 10 мин и УЗ-воздействию при частоте 18-20 кГц в течение 20 минут.

Покрытия наносят на стекло при комнатной температуре (18-20°C) методом погружения в подготовленный золь, допированный наноалмазом. Скорость извлечения образцов флоат-стекла из золя составляет 5 см/мин. Стекла оставляют при комнатной температуре в течение 20 часов. Далее стекла с покрытиями помещают в муфельную печь и нагревают в воздушной среде со скоростью 5°C/мин от 20 до 450°C. При этой температуре образцы выдерживают в течение 30 минут. После медленного охлаждения образцы вынимают из печи и определяют их светопропускание и механические характеристики. Величина микротвердости находится на уровне 9,60 ГПа, покрытие стойко к царапанию, и величина светопропускания при 550 нм составляет 83%.

Другие примеры осуществления изобретения раскрыты в таблице, из которой следует, что выбранные сочетания прекурсоров при получения SiO2-содержащего золя, суспензии с катионактивными ПАВ и детонационными наноалмазами (ДНА), условия их дезагрегации и однородного перемешивания, правильно подобранные температурно-временные режимы сушки и термообработки позволили получить образцы листового стекла с прозрачными покрытиями на основе диоксида кремния, допированного наноалмазом при концентрации не более 0,5%, характеризующиеся повышенной микротведостью, стойкостью к царапанию без существенной потери прозрачности. Так, исходное стекло без покрытия имеет светопропускание при длине волны 550 нм 89%, микротвердость 4,62 ГПа, при воздействии кварцем наблюдается царапина глубиной до 1 мм. Нанесение на флоат-стекло предлагаемого покрытия на основе SiO2, содержащего детонационный наноалмаз (ДНА), обеспечивает стойкость к царапанию, повышение микротвердости более чем на 200% и светопропускание на уровне 80-85%.

Из таблицы также видно, что использование в качестве ПАВ анионактивных соединений типа додецилсульфата натрия приводит к моментальной агрегации частиц наноалмаза, что отрицательно сказывается на свойствах покрытий.

Исходное стекло без покрытия имеет светопропускание при длине волны 550 нм 89%, микротвердость 4,62 ГПа, при воздействии кварцем наблюдается царапина глубиной до 1 мм.

1. Способ получения покрытий на основе диоксида кремния на стекле, включающий в себя золь-гель процесс тетраалкоксида кремния, нанесение золя на стекло, нагревание образца с покрытием в атмосфере воздуха, отличающийся тем, что в золь дополнительно вводят суспензию порошка наноалмаза в водном растворе ПАВ-четвертичных аммонийных солей с концентрацией 0,04-0,06 моль/л, при этом количество наноалмаза по отношению ко всей смеси составляет 0,3-0,5%, смесь подвергают механическому перемешиванию в течение 5-10 мин, далее УЗ-воздействию при частоте 18-20 кГц в течение 20-30 мин, после чего в подготовленную смесь погружают флоат-стекло, которое затем извлекают со скоростью 5-7 см/мин и далее подвергают сушке и термообработке при 450-470°C в течение 20-30 мин с дальнейшим охлаждением.

2. Способ получения покрытий на основе диоксида кремния на стекле по п.1, отличающийся тем, что в качестве ПАВ-четвертичных аммонийных солей используют цетилтриметиламмонийбромид, или октадециламмонийхлорид, или триметилгексадециламмонийхлорид и др.



 

Похожие патенты:
Изобретение относится к тонкопленочным просветляющим покрытиям на стекле и может быть использовано в стекольной промышленности и в электронике. Техническим результатом изобретения является получение антиотражающих покрытий на основе наночастиц SiO2, имеющих высокую адгезию к поверхности стекла.

Изобретение относится к суспензии для пиролитического покрытия. Технический результат изобретения заключается в повышении долговечности пиролитических покрытий.

Изобретение относится к области изготовления оптически прозрачных тонкопленочных покрытий из жидкой фазы на поверхности прозрачных материалов, например изделий из органических стекол, использующихся в остеклении авиационной техники.

Изобретение относится к конструкциям оконных стекол для транспортных средств и способам их изготовления. .

Изобретение относится к оконному стеклу для транспортного средства и способу его изготовления. .

Изобретение относится к области стекломатериалов для функциональных покрытий с необходимыми электрофизическими свойствами. .

Изобретение относится к тонкопленочным интерференционным покрытиям для просветления оптических элементов. .
Изобретение относится к получению пленочных покрытий широкой цветовой гаммы при изготовлении тонированного, светоотражающего стекла, при нанесении декоративных покрытий на керамические изделия, а также при формировании диэлектрических и полупроводниковых покрытий в электронике.
Изобретение относится к области получения пленочных покрытий и касается разработки способа получения титанооксидных и/или железооксидных пленочных покрытий, обладающих тепло- и светоотражающими свойствами, и может быть использовано при изготовлении тонированного, светоотражающего стекла большого формата, при нанесении декоративных покрытий, рисунков на керамические изделия, а также при формировании диэлектрических и полупроводниковых покрытий со специальными свойствами в электронике.

Изобретение относится к области теплообмена, в частности к теплообменным поверхностям, интенсифицирующим теплоотдачу при пленочном и переходном режимах кипения жидкостей.

Изобретение относится к области технологии изготовления наночастиц и может быть использовано при получении новых материалов для микро- и оптоэлектроники, светодиодных ламп, силовой электроники и других областей полупроводниковой техники.
Изобретение относится к способу синтеза покрытий производных фуллеренов. Способ включает физическое распыление в вакууме мишени ионным пучком, перенос пара к ростовой поверхности подложек и наращивание покрытий заданного состава и определенной структуры.

Изобретение относится к контрольно-измерительной технике. Технический результат - расширение функциональных возможностей одновременного определения электропроводности и толщины полупроводниковых пластин и электропроводности и толщины тонких полупроводниковых эпитаксиальных слоев в структурах «полупроводниковый слой - полупроводниковая подложка».
Изобретение относится к области катализа. Описан способ получения наноструктурного катализатора демеркаптанизации нефти и газоконденсата на основе производных фталоцианина кобальта и его хлорзамещенных продуктов, в котором полученные путем размола исходных фталоцианинов в шаровой мельнице при 100-120°C в присутствии спиртов общей формулы R-(OCH2- CH2)n-OH, где при n=1 R=С6H5, C4H9; при n=2 R=Н, C2H5, наночастицы фталоцианина кобальта и его хлорзамещенных производных обрабатывают концентрированными водными растворами алканоламмониевых солей дисульфокислот фталоцианина кобальта и его хлорзамещенных производных с последующей стабилизацией катализатора линейными полиэфирами (полиэтиленгликолями).
Изобретение относится к магнитоуправляемому сорбенту для удаления эндо- и экзотоксинов из организма человека, приготовленному из наночастиц магнетита Fe3O4. Поверхность магнетита модифицирована соединением, образующим прочную связь с частицей-носителем за счет поверхностно-активных групп, придающих свойства селективности и выполненных в виде оболочки из нормальных углеводородных цепей C12H25, присоединенных к ядру посредством сульфидной связи Fe-S, причем в качестве упомянутого соединения, обеспечивающего связывание железа с углеродной цепочкой, выбран додецилмеркаптан.

Группа изобретений относится к области медицины и может быть использована для профилактики гнойно-септических осложнений в акушерстве. Формованный сорбент содержит нанодисперсный мезопористый углеродный материал в виде цилиндров диаметром 8-13 мм, длиной 50-80 мм, толщиной наружной стенки 2,2-3,0 мм, с одним внутренним каналом круглого сечения или шестью каналами треугольного сечения с толщиной перегородок между каналами 1,1-1,2 мм.

Изобретение относится к технологиям повышения износостойких, прочностных и антифрикционных свойств металлорежущего инструмента, внешних поверхностей обшивки авиационных и космических летательных аппаратов, оптических приборов и нанотехнологиям.

Изобретение относится к химической промышленности. Углерод-металлический материал в виде смеси углеродных волокон и капсулированных в неструктурированном углероде частиц никеля диаметром от 10 до 150 нанометров получают каталитическим пиролизом этанола при атмосферном давлении.

Изобретение относится к химической и электротехнической промышленности и может быть использовано для модификации резин и каучуков, при производстве высокоемких конденсаторов и композитных материалов.

Изобретение относится к промышленности строительных материалов и может быть использовано для получения бетонных строительных изделий. Технический результат - снижение плотности заполнителя и изделия, снижение теплопроводности при сохранении прочности. Гранулированный наноструктурирующий заполнитель на основе высококремнеземистых компонентов для бетонной смеси, состоящий из кремнеземсодержащего сырья в виде гранул размером 0,5-10 мм, имеющих ядро, скрепленное водным раствором щелочесодержащего связующего, и защитную оболочку, где ядро состоит из высококремнеземистой породы, измельченной до прохождения на сите с ячейкой 0,315 мм или вспученного перлитового песка с размером частиц до 0,16 мм, в качестве связующего используется водный раствор гидроксида щелочного металла и силиката натрия, взятые в соотношении 0,6-0,99:0,01-0,4 по массе, в количестве 5-30% от смеси, а защитная оболочка на поверхности ядра сформирована его окатыванием сухим портландцементом с последующим твердением до прочности не менее 0,12 МПа. Бетонная смесь для изготовления строительного изделия по одному варианту содержит, мас.%: портландцемент 15-25, песок 50-65, вода 10-13, указанный выше заполнитель 2-20, по другому варианту содержит, мас.%: портландцемент 20-35, вода 10-15, указанный выше заполнитель 50-70. Бетонное строительное изделие, изготовленное из указанной выше смеси по одному или другому варианту.4 н. п. ф-лы, 2 табл., 1пр.
Наверх