Нержавеющая сталь, обладающая хорошими проводимостью и пластичностью, для применения в топливном элементе, и способ ее производства



Нержавеющая сталь, обладающая хорошими проводимостью и пластичностью, для применения в топливном элементе, и способ ее производства
Нержавеющая сталь, обладающая хорошими проводимостью и пластичностью, для применения в топливном элементе, и способ ее производства
Нержавеющая сталь, обладающая хорошими проводимостью и пластичностью, для применения в топливном элементе, и способ ее производства
Нержавеющая сталь, обладающая хорошими проводимостью и пластичностью, для применения в топливном элементе, и способ ее производства
Нержавеющая сталь, обладающая хорошими проводимостью и пластичностью, для применения в топливном элементе, и способ ее производства

 


Владельцы патента RU 2518832:

ДжФЕ СТИЛ КОРПОРЕЙШН (JP)

Изобретение относится к области металлургии, а именно к получению листа нержавеющей стали для сепаратора топливного элемента. Сталь имеет состав, мас.%: С: 0,01% или менее, Si: 1,0% или менее, Mn: 1,0% или менее, S: 0,01% или менее, Р: 0,05% или менее, Al: 0,20% или менее, N: 0,02% или менее, Cr: от 20 до 40%, Мо: 4,0% или менее и по крайней мере один элемент, выбранный из Nb, Ti и Zr: от 0,05 до 0,60% в сумме, и Fe и неизбежные примеси остальное. Подвергнутый холодной прокатке лист, имеющий толщину 200 µм или менее, охлаждают при регулировании скорости охлаждения R (°С/с) в зависимости от толщины t (µм) стального листа по меньшей мере до 500°С после отжига так, чтобы скорость охлаждения R удовлетворяла формуле: 17,27 × ln ( t ) + 92 R 70 . На 100 µм2 присутствует по меньшей мере одно выделение, имеющее эквивалентный диаметр окружности 0,1 µм или более, а отношение толщины t (µм) листа к максимальному диаметру Dmax выделений, удовлетворяет следующей формуле: 20 t / D max . Нержавеющая сталь обладает высокими проводимостью и пластичностью, что позволяет ее использовать при производстве листов для сепараторов топливных элементов. 2 н.з.п. ф-лы., 2 ил., 2 табл., 1 пр.

 

Область техники, к которой относится изобретение

Настоящее изобретение относится к нержавеющей стали, обладающей хорошими проводимостью и пластичностью, для применения в топливном элементе.

Уровень техники

В последние годы в связи с проблемой защиты глобальной окружающей среды ускорилось разработка топливных элементов, которые обладают высокой эффективностью генерирования энергии и не выделяют диоксида углерода. Топливный элемент представляет собой устройство, которое генерирует энергию путем создания условий для реакции между водородом и кислородом. Базовая структура топливного элемента похожа на сэндвич и состоит из электролитной мембраны (т.е. ионообменной мембраны), двух электродов (т.е. топливного электрода и воздушного электрода), диффузионного слоя для диффузии водорода и кислорода (воздуха) и двух сепараторов. Фосфорнокислотные топливные элементы, топливные элементы с расплавленным карбонатом, топливные элементы на твердых оксидах, щелочные топливные элементы, топливные элементы с протонообменной мембраной и т.п. были разработаны в соответствии с типом используемого электролита.

Из этих топливных элементов топливные элементы с протонообменной мембраной имеют, в частности, следующие преимущества перед топливными элементами с расплавленным карбонатом, фосфорнокислотными топливными элементами и т.п.:

(a) Рабочая температура является существенно низкой, т.е. примерно 80°С.

(b) Возможно уменьшение веса и размеров главного корпуса топливного элемента.

(c) Малое время запуска и высокие кпд по топливу и выходная мощность.

Соответственно, топливные элементы с протонообменной мембраной являются одними из наиболее перспективных топливных элементов для бортовых источников энергии для электрических транспортных средств и компактно размещаемых силовых систем бытового назначения (компактный электрогенератор стационарного типа).

Топливный элемент с протонообменной мембраной основан на принципе извлечения энергии из водорода и кислорода через полимерную мембрану и имеет структуру, показанную на фиг.1, на которой мембранно-электродное устройство 1 включает в себя штабелированные газодиффузионные слои 2 и 3 типа углеродных полотен и сепараторы 4 и 5, которые образуют единый структурный элемент (называемый также моноэлементом). Электродвижущая сила генерируется между сепараторами 4 и 5.

Мембранно-электродная сборная конструкция (называется также МЕА) выполняется путем совместной сборки полимерной мембраны и электродного материала типа сажи с нанесенным на нее платиновым катализатором, в процессе чего электродный материал помещается на передней и задней лицевых поверхностях полимерной мембраны. Толщина мембранно-электродной сборной конструкции 1 составляет от нескольких десятков до нескольких сотен микрометров. В мембранно-электродную сборную конструкцию 1 часто встраивают газодиффузионные слои 2 и 3.

Когда топливные элементы с протонообменной мембраной используют для названных выше применений, от нескольких десятков до нескольких сотен описанных выше элементов соединяют последовательно с образованием топливно-элементного блока и используют в виде такого топливно-элементного блока.

Сепараторы 4 и 5 необходимы для выполнения следующих функций:

(A) функция разделителя, разделяющего моноэлементы;

(B) функция проводника, который переносит генерируемые электроны;

(C) функция канала для кислорода (воздуха) и водорода (воздушные каналы 6 и водородные каналы 7 на фиг.1) и

(D) функция разгрузочного канала для выгрузки образуемых воды и газа (в качестве этого разгрузочного канала служат также воздушные каналы 6 и водородные каналы 7).

Для использования топливного элемента с протонообменной мембраной на практике должны использоваться сепараторы, обладающие высокими долговечностью и проводимостью.

Предполагаемая долговечность должна быть порядка 5000 часов для топливных элементов для электрических транспортных средств и порядка 40000 часов для электрогенераторов постоянного типа, используемых как компактно размещаемые силовые системы для бытового применения и т.п.

В топливных элементах с протонообменной мембраной было введено в практику использование в качестве сепараторов углеродных материалов. Однако поскольку углеродные сепараторы легко разбиваются при ударе, это не только затрудняет уменьшение размера, но при этом высока также и стоимость процесса образования каналов. В частности, именно проблема стоимости оказывает наибольшее влияние на распространение топливных элементов.

По этой причине предпринимались попытки использовать в качестве материала для сепараторов вместо углеродных материалов какой-либо металлический материал, в частности нержавеющую сталь.

Как уже указывалось выше, сепараторы выполняют функцию проводника для переноса генерируемых электронов и должны обладать проводимостью. Что касается проводимости в случаях, когда в качестве сепараторов используется нержавеющая сталь, доминантным становится контактное сопротивление между сепараторами и газодиффузионными слоями. Вследствие этого возникает потребность в способах снижения контактного сопротивления.

Например, в публикации, не прошедшей экспертизу, японской патентной заявки №2007-254794 раскрыта нержавеющая сталь, имеющая на поверхности 1011 фаз Лавеса с диаметром зерна 0,3 µм или более на 1 квадратный метр.

Раскрытие изобретения

Техническая проблема

Хотя раскрытый в патентном документе JP 2007-254794 способ пригоден для снижения контактного сопротивления, он требует длительной обработки старения, что снижает производительность. Кроме того, осадки описанного выше типа, которые выделяются в результате длительной обработки старения, являются крупными и их влияние на пластичность не было замечено. Таким образом, необходимая для сепараторов обрабатываемость (технологичность) не была удовлетворительной.

Целью настоящего изобретения является решение проблемы описанного выше уровня техники и создание нержавеющей стали, обладающей высокими проводимостью и пластичностью для применения в сепараторах топливных элементов. Предложен также способ ее изготовления.

Решение проблемы

Авторы изобретения широко исследовали влияние выделений на проводимость и пластичность.

В результате этого они обнаружили, что хорошая проводимость может быть получена, если допустить существование при определенной плотности распределения не только фаз Лавеса (А2В, где А обозначает Fe, Cr, Si и т.п., а В обозначает Nb, Mo, W и т.п.), но также и осадков особого размера, содержащих интерметаллические композиты, такие как сигма-фазы, хи-фазы и мю-фазы, карбиды, нитриды, карбонитриды и их смеси.

Авторами изобретения также обнаружено, что пластичность значительно снижается, когда отношение максимального диаметра осадков к толщине имеет определенное или более высокое значение. Это противоречит традиционному представлению об уменьшении пластичности, вызываемому дисперсионным твердением зерен, и означает, что существует вероятность поломки из-за разницы в поведении пластической деформации между выделениями и родительской фазой, когда присутствуют выделения, не способствующие упрочнению, а отношение выделений к толщине является большим.

Эти данные указывают на то, что, согласно способу поддержания проводимости с использованием выделений, является исключительно важным, чтобы сепараторы, для которых часто используют тонкие листы из нержавеющей стали, имели интерметаллические композиты, карбиды, нитриды, карбонитриды и их смеси, выделяющиеся в такой степени, которая бы не ухудшала пластичность. Настоящее изобретение выполнено на основе этих данных. Раскрытие настоящего изобретения включает в себя следующее:

(1) Нержавеющая сталь для применения в сепараторе топливного элемента, которая имеет состав (мас. %): С: 0,01% или менее, Si: 1,0% или менее, Mn: 1,0% или менее, S: 0,01% или менее, Р: 0,05% или менее, Al: 0,20% или менее, N: 0,02% или менее, Cr: от 20 до 40%, Мо: 4,0% или менее и по крайней мере один элемент, выбранный из Nb, Ti и Zr: от 0,05 до 0,60% в сумме, и Fe, и неизбежные примеси остальное, причем на 100 µм2 присутствует по меньшей мере одно выделение, имеющее эквивалентный диаметр окружности 0,1 µм или более, отношение толщины t (µм) к максимальному диаметру Dmax выделений, удовлетворяет следующей формуле (1):

20 t / D max                                ( 1 )

и толщина равна 200 µм или менее.

Упомянутые в описании выделения включают не только фазы Лавеса (А2В, где А обозначает Fe, Cr, Si и т.п., а В обозначает Nb, Мо, W и т.п.), но также и интерметаллические композиты, такие как сигма-фазы, хи-фазы и мю-фазы, карбиды, нитриды, карбонитриды и их смеси.

(2) Способ производства нержавеющей стали для применения в сепараторе топливного элемента, включающий охлаждение подвергнутого холодной прокатке листа нержавеющей стали при регулировании скорости охлаждения R (°С/с) в зависимости от толщины t (µм) до по меньшей мере 500°С после отжига так, чтобы скорость охлаждения R удовлетворяла приведенной ниже формуле (2), причем подвергнутый холодной прокатке лист нержавеющей стали имеет толщину 200 µм или меньше и следующий состав (в масс %): С: 0,01% или менее, Si: 1,0% или менее, Mn: 1,0% или менее, S: 0,01% или менее, Р: 0,05% или менее, Al: 0,20% или менее, N: 0,02% или менее, Cr: от 20 до 40%, Мо: 4,0% или менее и по крайней мере один элемент, выбранный из Nb, Ti и Zr: от 0,05 до 0,60% в сумме, и Fe и неизбежные примеси остальное:

17,27 × ln ( t ) + 92 R 70                     ( 2 )

Результат изобретения

Согласно настоящему изобретению можно стабильно получать нержавеющую сталь, обладающую хорошими проводимостью и пластичностью, для применения в сепараторе топливного элемента.

Краткое описание чертежей

Фиг.1 - схематический вид, показывающий базовую структуру топливного элемента.

Фиг.2 - график, демонстрирующий влияние скорости охлаждения на пластичность нержавеющей стали.

Осуществление изобретения

Согласно настоящему изобретению проводимость нержавеющей стали, используемой в качестве базового материала сепаратора топливного элемента, поддерживается с использованием выделений. В частности, чрезвычайно важно существование интерметаллических композитов, карбидов, нитридов, карбонитридов и их смесей, выделившиеся до такой степени, которая бы не ухудшала пластичность. Для достижения этой цели предпочтительна ферритная нержавеющая сталь, у которой легко контролируется морфология осадков.

Прежде всего описаны причины, по которым состав ферритной нержавеющей стали, т.е. исходного материала, ограничен указанными выше пределами в настоящем изобретении. Заметим, что «%» по отношению к компонентам, если не указано иное, означает масс %.

С: 0,01% или менее

Углерод связывается с Cr в стали и снижает стойкость к коррозии, вследствие чего предпочтительно, чтобы содержание С было как можно более низким. Стойкость к коррозии не снижается заметным образом до тех пор, пока содержание углерода составляет 0,01% или менее. Согласно настоящему изобретению содержание С ограничивается до 0,01% или менее. Хотя углерод связывается, как это описано ниже, по крайней мере с одним из Nb, Ti и Zr с образованием карбидов, карбонитридов и их смесей и улучшает при этом проводимость, такой эффект проявляется тогда, когда содержание С равно 0,001% или более, что является предельным уровнем декарбюризации в масштабах массового производства. По этой причине нижний предел для содержания С не устанавливают.

Si: 1,0% или менее

Кремний является элементом, используемым для раскисления, но в избыточно большом количестве он ухудшает пластичность. По этой причине содержание Si ограничивают до 1,0% или менее, преимущественно до 0,5% или менее.

Mn: 1,0% или менее

Марганец связывается с S с образованием MnS и снижает стойкость к коррозии. По этой причине содержание Mn ограничивают до 1,0% или менее, преимущественно до 0,8% или менее.

S: 0,01% или менее

Как уже отмечалось выше, S связывается с Mn, образуя MnS, и снижает стойкость к коррозии. По этой причине содержание S ограничивают до 1,0% или менее, преимущественно до 0,008% или менее.

Р: 0,05% или менее

Фосфор ухудшает пластичность и, следовательно, содержание Р должно быть как можно более низким. Пластичность в значительной степени не снижается до тех пор, пока содержание Р составляет 0,05% или менее. По этой причине содержание Р ограничивают до 0,05% или менее, преимущественно до 0,04% или менее.

Al: 0,20% или менее

Алюминий является элементом, используемым для раскисления, но при его содержании в чрезмерно большом количестве он ухудшает пластичность. По этой причине содержание Al ограничивают до 0,20% или менее, преимущественно до 0,15% или менее.

N: 0,02% или менее

Азот связывается в стали с Cr и снижает стойкость к коррозии, по причине чего предпочтительно, чтобы содержание N было как можно более низким. Стойкость к коррозии в значительной степени не снижается до тех пор, пока содержание N составляет 0,02% или менее. По этой причине содержание N ограничивают до 0,02% или менее, преимущественно до 0,015% или менее. Хотя азот связывается, как это описано ниже, по крайней мере с одним из Nb, Ti и Zr с образованием нитридов, карбонитридов или их смесей и улучшает проводимость, этот эффект проявляется до тех пор, пока содержание N равно 0,002% или более, что является предельным уровнем денитрификации в масштабах массового производства. По этой причине низший предел для содержания N не установлен.

Cr: от 20 до 40%

Хром является существенным элементом для поддержания стойкости к коррозии нержавеющей стали, при этом значительной стойкости к коррозии не достигают при содержании Cr менее 20%. Однако если содержание Cr превосходит 40%, ухудшается пластичность. По этой причине содержание Cr ограничивают диапазоном от 20 до 40%, преимущественно от 24 до 35%.

Мо: 4,0% или менее

Молибден является элементом, пригодным для улучшения стойкости к коррозии, в частности стойкости к локальной коррозии. Для достижения этого эффекта предпочтительно добавлять 0,02% или более Мо. Однако если содержание Мо превышает 4,0%, пластичность уменьшается, содержание Мо ограничивают 4,0% или менее, преимущественно 2,0% или менее.

По крайней мере один элемент, выбранный из Nb, Ti и Zr, в сумме от 0,05 до 0,60%.

Все элементы Nb, Ti и Zr являются полезными элементами, которые улучшают проводимость в результате образования карбидов, нитридов, карбонитридов, их смесей и интерметаллических композитов. Однако, если их содержание ниже 0,05%, то указанный эффект полностью не проявляется. С другой стороны, если это содержание превышает 0,60%, ухудшается пластичность. Таким образом, содержание названных элементов, добавляемых как по отдельности, так и в сочетании, ограничивают пределами от 0,05 до 0,60%, преимущественно от 0,10 до 0,50%.

В настоящем изобретении может содержаться по 1% или менее каждого из Ni, Cu, V, W, Та и Со с целью повышения стойкости к коррозии и по 0,1% или менее каждого из Са, Mg, РЗМ (редкоземельные металлы) и В для улучшения пригодности к горячей обработке.

Элементами, отличными от тех, которые указаны выше, являются в балансе железо и неизбежные примеси. Из неизбежных примесей преимущественно содержится кислород (О) в количестве 0,02% или менее.

Хотя выше приведен состав компонентов настоящего изобретения не достаточно, чтобы состав удовлетворял лишь этим указанным пределам. Определяющими являются размер и плотность распределения выделений.

Тип выделений

Выделения включают в себя не только фазы Лавеса (А2В, где А обозначает Fe Cr Si и т.п., а В обозначает Nb, Мо, W и т.п.), но также и другие интерметаллические композиты, такие как сигма-фазы, хи-фазы и мю-фазы, карбиды, нитриды, карбонитриды и их смеси. На 100 µм2 присутствует по меньшей мере одно выделение, имеющее эквивалентный диаметр окружности 0,1 µм или более.

Регулирование плотности распределения выделений, имеющих определенный или больший размер, является способом, который лежит в основе настоящего изобретения при поддержании проводимости. Те из выделений, которые имеют эквивалентный диаметр окружности, меньший 0,1 µм, не способствуют улучшению проводимости и, соответственно, в качестве объекта контроля выбирают выделения, имеющие эквивалентный диаметр окружности 0,1 µм или более. Если количество выделений этого размера меньше одного на 100 µм2, проводимость является недостаточной. Поэтому эта величина составляет 1 или больше и предпочтительно 3 или больше на 100 µм.

- Отношение толщины t (µм) к максимальному диаметру Dmax (µм) выделений: 20≤t/Dmax

Регулировка максимального диаметра Dmax выделений относительно толщины t для того, чтобы избежать неблагоприятного действия на пластичность, является центральным моментом настоящего изобретения. Если t/Dmax меньше 20, пустоты, создаваемые разницей в поведении пластической деформации между выделениями и родительской фазой, быстро приводят к поломке, тем самым значительно ухудшая пластичность. Соответственным образом, Dmax в настоящем изобретении ограничен до 20<t/Dmax, преимущественно до 25≤t/Dmax.

Далее приведено описание способа производства нержавеющей стали настоящего изобретения.

Способ производства вплоть до производства холоднокатаных листов нержавеющей стали в какой бы то ни было степени не ограничен и может быть использован любой известный способ для ферритной нержавеющей стали. Предпочтительные производственные условия являются следующими.

Сляб, имеющий состав, доведенный до описанных выше предпочтительных пределов, нагревают до температуры 1150°С или выше, подвергают горячей прокатке, отжигу при температуре от 1000 до 1100°С и затем холодной прокатке.

В результате образуется лист нержавеющей стали толщиной 200 µм или менее.

В настоящем изобретении толщина нержавеющей стали ограничена 200 µм или менее по следующим причинам. При толщине сверх 200 µм поломка, обусловленная разницей в поведении пластической деформации между выделениями и родительской фазой, происходит с затруднением. Толщина преимущественно составляет 200 µм или меньше, поскольку, когда лист используется в качестве части топливного элемента, достигают уменьшения веса и размера.

После этого холоднокатаный лист отжигается при температуре от 950 до 1100°С и затем охлаждается. В настоящем изобретении регулирование скорости охлаждения до по меньшей мере 500°С в диапазоне -17,27×ln(t)+92≤R≤70 является обязательным для регулирования отношения t/Dmax и выделений, имеющих особый или больший размер.

Исходная точка для расчета скорости охлаждения равна 950°С. Причина этого в том, что согласно интервалам композиции настоящего изобретения диапазон температур, в котором количество выделений значительно возрастает, лежит ниже 950°С. Если скорость охлаждения R низка, происходит не только увеличение t/Dmax, но происходит также уменьшение плотности распределения выделений, имеющих определенный или больший размер. Иными словами, если толщина t становится большей, возрастает также и верхний предел t/Dmax, который снижает нижний предел для R. Обратное будет иметь место при уменьшении t.

На фиг.2 показаны результаты изучения влияния скорости охлаждения на пластичность листа нержавеющей стали при разной толщине t (µм).

График показывает, что хорошая пластичность может быть достигнута в том случае, когда скорость охлаждения R равна (-17,27×ln(t)+92)°С/сек или выше. Если R превышает 70°С/с, необходимая для поддержания пластичности плотность распределения выделений получена быть не может.

Соответственно, в настоящем изобретении скорость охлаждения по меньшей мере до 500°С ограничена до -17,27×ln(t)+92≤R≤70 в зависимости от ее толщины t (µм).

Состояние выделений определяет лишь R, поскольку в интервалах композиции настоящего изобретения, в то время как температурный диапазон, в котором значительно увеличивается количество выделений составляет ниже 950°С, предпочтительный диапазон температур отжига составляет от 950°С и выше, и, таким образом, большая часть выделений появляется в процессе охлаждения.

Кроме того, в настоящем изобретении контактное сопротивление преимущественно снижается при проведении электролитической обработки, погружения в кислоту и т.п. после указанной выше операции охлаждения. Электролитическая обработка, обработка погружением в кислоту и т.п. могут проводиться до, после или в средней части операции обработки.

Пример 1

Сталь, имеющую химический состав, показанный в таблице 1, выплавляют в вакуумной плавильной печи и формуют в стальные слитки. Стальные слитки нагревают до 1150°С или выше и подвергают горячей прокатке с образованием горячекатаных листов толщиной 5 мм. Горячекатаные листы отжигают при 1000-1100°С и протравливают, удаляя окалину. После этого проводят последовательно холодную прокатку, отжиг и травление, получая холоднокатаные отожженные листы толщиной от 50 до 100 µм. Полученные холоднокатаные листы выдерживают 1 мин при температуре от 1000 до 1050°С и охлаждают со скоростью 5°С/с, 20°С/с, 50°С/с или 100°С/с до 500°С. Некоторые из холоднокатаных отожженных листов были для сравнения подвергнуты операции старения в течение 10 час при 800°С, как в патентном документе JP 2007-254794.

Чтобы обнажить поверхности выделений, полученные холоднокатаные отожженные листы очищают от окалины в водном растворе сульфата натрия (1,4 моль/л) при 80°С, используя анодный электролиз при 6 А/дм2 в течение 60 с, и подвергают затем анодному электролизу при 5 А/дм2 в течение 60 с в 5 мас. %-ной серной кислоте при 80°С. Результаты изучения t/Dmax, плотности распределения выделений, имеющих эквивалентный диаметр окружности 0,1 µм или больше, и полученные таким образом контактное сопротивление и полное удлинение листов нержавеющей стали приведены в таблицах 2-1 и 2-2.

Ниже описаны методы для измерения t/Dmax, плотности распределения выделений, имеющих эквивалентный диаметр окружности 0,1 µм или больше, контактного сопротивления и полного удлинения:

- t/Dmax и плотности распределения выделений, имеющих эквивалентный диаметр окружности 0,1 µм или больше

Поверхность нержавеющей стали визуально изучают с помощью сканирующего электронного микроскопа и произвольно собирают с каждого образца двадцать видов х20000-фотографий. На каждом изображении измеряют сфотографированный эквивалентный диаметр окружности каждого зерна выделений (интерметаллических композитов, карбидов, нитридов, карбонитридов и их смесей) и подсчитывают число зерен, имеющих эквивалентный диаметр окружности, равный 0,1 µм или больше на 100 µм. Эквивалентный диаметр окружности наибольшего из выделений определяют как Dmax. Оксиды типа продуктов раскисления не включаются в выделения. Идентификацию выделений проводят с использованием энергодисперсионного рентгеновского спектроскопа, служащего вспомогательным устройством в сканирующем электронном микроскопе.

- Контактное сопротивление.

От каждого образца берут по два листа нержавеющей стали (50 мм×50 мм), получаемых в одних и тех же условиях, и в чередующемся порядке укладывают один на другой между тремя листами копировальной бумаги (50 мм×50 мм TGP·H·120 производитель Torray Industries, Inc.). Полученный блок вводят в контакт с электродами, выполненными из позолоченных медных листов по обеим сторонам блока, и подают электрический ток под давлением 0,98 МПа (10 кгс/см2) для измерения разности потенциалов между листами из нержавеющей стали и проведения на основании этого измерения расчета электросопротивления. Для определения контактного сопротивления полученное выше значение умножают на площадь поверхности контакта и делят на число контактных поверхностей (=2). Образцы с контактным сопротивлением 20 мΩ·см2 или ниже оцениваются как хорошие, а образцы с контактным сопротивлением, превышающим 20 мΩ - см2, оцениваются как брак. Хотя контактное сопротивление может быть улучшено повышением давления во время измерения, давление было установлено на 0,98 МПа, равным давлению реальной окружающей среды.

- Полное удлинение

От каждого образца листов нержавеющей стали взяты по два образца типа JIS 13В, оговоренных в JIS Z 2201 (направление растяжения совпадало с направлением прокатки) и проведено испытание на растяжение при скорости деформации 10 мм/мин. Определено среднее значение полного удлинения для двух образцов. Образцы со средним полным удлинением равным 20% или более оцениваются как хорошие, а образцы с менее чем 20% как брак.

Таблицы 2-1, 2-2 и 2-3 показывают, что в примерах, которые имеют состав, удовлетворяющий требованиям настоящего изобретения в отношении распределения плотности и размера выделений, достигнуты как высокая проводимость, так и хорошая пластичность.

Применимость в промышленности

Согласно настоящему изобретению может быть получена обладающая хорошими проводимостью и пластичностью нержавеющая сталь для применения в топливных элементах, в которые могут быть установлены недорогие сепараторы из нержавеющей стали вместо используемых в настоящее время дорогостоящих углеродных или позолоченных сепараторов. Благодаря этому распространение топливных элементов может быть ускорено.

Таблица 1
Тип стали Химические компоненты (мас. %) Ссылка
С Si Mn Р S Al N Cr Мо Nb Ti Zr
А 0,002 0,34 0,19 0,025 0,004 0,11 0,011 25,2 1,81 0,48 - - Предпочтительная сталь
В 0,004 0,24 0,16 0,026 0,002 0,11 0,006 30,2 1,97 0,17 - - Предпочтительная сталь
С 0,003 0,22 0,17 0,022 0,003 0,10 0,009 29,4 1,52 - 0,13 - Предпочтительная сталь
D 0,004 0,15 0,23 0,022 0,004 0,08 0,007 30,0 1,89 - - 0,18 Предпочтительная сталь
Е 0,007 0,27 0,21 0,023 0,003 0,09 0,010 30,2 - 0,32 - - Предпочтительная сталь
F 0,004 0,22 0,18 0,022 0,004 0,09 0,009 25,6 1,28 0,28 0,11 - Предпочтительная сталь
G 0,004 0,21 0,20 0,024 0,005 0,09 0,007 30,8 1,18 - 0,15 0,13 Предпочтительная сталь
Н 0,004 0,18 0,19 0,023 0,004 0,08 0,009 30,1 1,58 0,02 - - Предпочтительная сталь
I 0,004 0,20 0,22 0,028 0,003 0,10 0,010 25,1 1,23 - 0,03 - Сравнительная сталь
J 0,003 1,12 0,20 0,024 0,003 0,09 0,010 29,8 1,52 0,15 - - Сравнительная сталь
К 0,004 0,22 0,21 0,053 0,003 0,09 0,008 29,4 1,83 0,22 - - Сравнительная сталь
L 0,003 0,24 0,18 0,026 0,004 0,31 0,009 30,1 1,78 0,19 - - Сравнительная сталь
М 0,003 0,23 0,22 0,025 0,004 0,11 0,009 40,7 1,78 0,16 - - Сравнительная сталь
N 0,004 0,25 0,15 0,024 0,005 0,09 0,008 30,3 4,08 0,17 - - Сравнительная сталь
0 0,004 0,23 0,19 0,025 0,004 0,08 0,009 25,5 1,53 0,68 - - Сравнительная сталь
Р 0,003 0,21 0,18 0,022 0,004 0,09 0,008 25,1 1,29 - 0,61 - Сравнительная сталь
Q 0,004 0,19 0,20 0,023 0,005 0,09 0,008 30,6 1,84 - - 0,62 Сравнительная сталь

1. Лист нержавеющей стали для сепаратора топливного элемента, имеющий следующий состав, мас.%:
С: 0,01% или менее, Si: 1,0% или менее, Mn: 1,0% или менее, S: 0,01% или менее, Р: 0,05% или менее, Al: 0,20% или менее, N: 0,02% или менее, Cr: от 20 до 40%, Мо: 4,0% или менее и по крайней мере один элемент, выбранный из Nb, Ti и Zr: от 0,05 до 0,60% в сумме, Fe и неизбежные примеси остальное, причем на 100 µм2 присутствует по меньшей мере одно выделение, имеющее эквивалентный диаметр окружности 0,1 µм или более, а отношение толщины t (µм) листа к максимальному диаметру Dmax выделений удовлетворяет следующей формуле:
20 t / D max                                ( 1 )
причем толщина листа равна 200 µм или менее.

2. Способ производства листа нержавеющей стали для сепаратора топливного элемента, включающий охлаждение подвергнутого холодной прокатке листа нержавеющей стали при регулировании скорости охлаждения R (°С/с) в зависимости от толщины t (µм) стального листа по меньшей мере до 500°С после отжига так, чтобы скорость охлаждения R удовлетворяла формуле:
17,27 × ln ( t ) + 92 R 70                     ( 2 )
причем подвергнутый холодной прокатке лист нержавеющей стали имеет толщину 200 µм или меньше и следующий состав, мас.%: С: 0,01% или менее, Si: 1,0% или менее, Mn: 1,0% или менее, S: 0,01% или менее, Р: 0,05% или менее, Al: 0,20% или менее, N: 0,02% или менее, Cr: от 20 до 40%, Мо: 4,0% или менее и по крайней мере один элемент, выбранный из Nb, Ti и Zr: от 0,05 до 0,60% в сумме, и Fe и неизбежные примеси остальное.



 

Похожие патенты:

Предложенное изобретение относится к области электротехники, а именно, к способу изготовления из листового материала сепаратора для топливного элемента, содержащего формованные или профилированные выпуклости и вогнутости, и устройству для изготовления указанного сепаратора.

Предложенное изобретение относится к биполярным пластинам топливных элементов (ТЭ). Предложенная биполярная пластина ТЭ круглой формы содержит разделительные пластины, имеющие среднюю зону, в которой каналы расположены по эвольвентам окружности, ограничивающей центральную зону, причем длина окружности, по которой строятся эвольвенты, равна произведению числа каналов на шаг, а шаг каналов равномерен по длине окружности, центральную зону, в которую входят внутренние концы эвольвентных каналов и ребра каналов которой на пластинах расположены таким образом, что при сборке они пересекаются, образуя плоские центральные коллекторы, периферийную кольцевую зону, состоящую из пересекающихся каналов и конических выступов, через которую организован подвод и отвод реагентов и хладагента к наружным концам соответствующих эвольвентных каналов.

Интерконнектор для топливного элемента, выполненный из штампованного металлического листа. Интерконнектор включает в себя впуски и выпуски, распределяющий поток впуск и уплотнительные поверхности зон выпуска, при этом пути потока на обеих сторонах интерконнектора полностью отформованы и образованы дискретными точечными или удлиненными выступами, изготовленными путем деформации листа.

Предложенное изобретение относится к способу изготовления электрохимического преобразователя энергии с твердым электролитом, который включает нанесение металлокерамического материала (2А), (2В) на обе стороны центральной керамической пластины (1), причем на обеих сторонах этой пластины в металлокерамическом материале (2А), (2В) проделывают каналы (3А), (3В), затем каналы (3А), (3В) по обе стороны пластины покрывают слоями металлокерамического материала (4А), (4В).

Изобретение относится к области электротехники, а именно к материалам для газодиффузионных электродов электрохимических источников тока, в том числе для топливных элементов с полимерными протонообменными мембранами, использующихся в качестве экологически чистых источников тока, например, в городском автотранспорте.

Изобретение относится к области топливных элементов, в частности топливных элементов с рабочим диапазоном температур 120-200°C, содержащих жидкую кислоту в качестве электролита в полимерной мембране.

Изобретение относится к титановому материалу для сепаратора твердополимерного топливного элемента, обладающего низким контактным сопротивлением, который может быть использован для автомобилей и маломерных электрогенерирующих систем.

Изобретение относится к способу и устройству для изготовления сепаратора, используемого в полимерэлектролитном топливном элементе. .

Изобретение относится к металлургии, конкретнее, к производству конструкционных сталей нормальной прочности улучшенной свариваемости для применения в строительстве, машиностроении и др.

Изобретение относится к области металлургии, а именно к ферритным нержавеющим сталям, используемым в при изготовлении выхлопных труб и кожухов нейтрализаторов автомобилей и мотоциклов, а также трубопроводов отработанного воздуха тепловых электростанций.

Изобретение относится к прокатному производству и может быть использовано при производстве широких горячекатаных листов из марок стали трубного сортамента, в основном, класса прочности Х60.
Сталь // 2445395
Изобретение относится к области черной металлургии, в частности к составам сталей, которые могут быть использованы в машиностроении. .
Изобретение относится к области черной металлургии, в частности к составам сталей, которые могут быть использованы в машиностроении. .

Изобретение относится к области металлургии, а именно к ферритной нержавеющей стали, используемой для изготовления элементов выхлопных систем. .

Изобретение относится к области металлургии, а именно к легированным коррозионно-стойким сталям, используемым для производства насосно-компрессорных и обсадных труб и нефтегазодобывающего оборудования.

Изобретение относится к металлургии, а именно к легированным коррозионно-стойким сталям, используемым для производства насосно-компрессорных и обсадных труб и нефтегазодобывающего оборудования.

Изобретение относится к области металлургии, а именно к ферритной нержавеющей стали, используемой для изготовления компонентов выхлопных систем. .
Изобретение относится к области металлургии, а именно к составам сталей ферритного класса, используемых в качестве жаростойкого и коррозионно-стойкого листового материала для изготовления котельного, печного, нефтехимического и другого высокотемпературного оборудования, работающего при температурах до 1200°С.

Изобретение относится к области металлургии, а именно к легированным сталям, предназначенным для изготовления нефтегазопроводных труб и другого оборудования для нефтяной промышленности.
Наверх