Углеродсодержащая композиция для радиозащитных материалов

Заявленное изобретение относится к области электротехники, а именно к составу углеродсодержащей композиции для получения радиозащитных материалов. Композиция содержит 5-16 мас.% ультрадисперсного активного углерода со средним размером частиц 5-100 нм и удельной поверхностью 16-320 м2/г, диспергатор в виде водного раствора натриевого стекла и стабилизатор в виде насыщенного раствора лингосульфоната аммония. Дополнительно в состав композиции может быть введен высокодисперсный коллоидный графит. Используется свойство композиции поглощать электромагнитное излучение радиоволнового диапазона при ее непосредственном равномерном распределении внутри твердой матрицы строительного материала или при нанесении на поверхности радиопоглощающих конструкций и строительных материалов. Повышение радиозащитных свойств материала является техническим результатом изобретения. 1 з.п. ф-лы, 3 табл.

 

Изобретение относится к области радиозащитных материалов, в частности к материалам для поглощения электромагнитного излучения. Используется свойство заявляемой углеродсодержащей композиции поглощать электромагнитное излучение радиоволнового диапазона при ее непосредственном распределении внутри твердой матрицы строительного материала, или нанесении на поверхности радиопоглощающих конструкций и строительных материалов, или нанесении на поверхности твердых наполнителей для радиопоглощающих устройств и радиозащитных строительных материалов.

Известен композиционный материал для поглощения электромагнитного излучения, получаемый путем терморасширения предварительно совмещенной смеси в режиме термоудара, состоящей из полимерного связующего, выбранного из ряда полиолефинов, и электропроводящего порошкового наполнителя, представляющего собой продукт модификации графита концентрированными серной и азотной кислотами (RU 2242487 С1, 26.06.2003).

Известен радиопоглощающий материал, в котором в качестве связующего используется пенополиуретан, а в качестве поглощающего наполнителя технический углерод. Смесь перемешивается и затем отверждается в формах при определенном температурном режиме (RU 2275719 С1, 06.09.2004). Известна композиция для покрытий, экранирующих электромагнитные излучения, содержащая в качестве полимерного связующего раствор хлорсульфированного полиэтилена в углеводородном растворителе, а в качестве наполнителя смесь сажи (10,0-12,0 мас.%) и графита (20,8-25,0 мас.%). Композицию наносят на различные подложки и поверхности (RU 2215764 С1, 13.11.2002).

Недостатком вышеуказанных материалов является использование порошкового наполнителя. Частицы порошка распределяются в матрице полимерного связующего как в виде отдельных частиц (меньшая часть), так и в виде агрегатов различного размера (большая часть), при этом размер агрегатов может достигать десятков и сотен микрон (десятков и сотен тысяч нанометров), что приводит к неоднородности материала и сказывается на нелинейности (осцилляции) характеристики коэффициента ослабления в зависимости от частоты электромагнитного поля (ЭМП). Удельная поверхность частиц наполнителя в этих материалах не превышает 0,05 метров квадратных на 1 грамм (м2/г), что сказывается на эффективности поглощения ЭМП и требует применения высоких концентраций наполнителя для получения сквозной проводимости (квантовых эффектов). Кроме того, к недостаткам этих материалов можно отнести сложность производства, ограниченность применения, высокую токсичность продуктов горения связующего материала.

Наиболее близким аналогом заявляемого материала является известная углеродсодержащая композиция - препарат ВКГС-0 ТУ 113-48-52-89, представляющий собой водную суспензию высокодисперсного графита, стабилизированную поверхностно-активными веществами, который применяется в качестве смазки при среднем и тонком волочении проволоки тугоплавких металлов и в других процессах горячей обработки металлов давлением (прототип).

Средний размер частиц графита в препарате 1-2 мкм (1000-2000 нм), удельная поверхность до 3 м2/г. Эти технические параметры позволяют получать эффективные радиозащитные экраны (поверхности, отражающие ЭМП), так как при нанесении препарата на поверхность материала растворитель испаряется и частицы графита смыкаются, образуя пленку со сквозной электропроводностью. Но для получения объемного радиопоглощающего материала (например, строительного бетона) требуется высокая массовая доля таких частиц в матрице (7-20%), что по минимальному значению соответствует расходу 150 кг сухого коллоидного графита или 500 кг 30%-ной водной суспензии на 1 кубический метр бетона. Количество привносимой с препаратом воды вдвое превышает допустимое для бетона по водоцементному отношению. Все это обуславливает увеличение стоимости единицы объема материала в 20 раз и 50%-ную потерю прочности.

Задачей изобретения является придание повышенных радиозащитных свойств широкому спектру строительных и конструкционных материалов.

Технический результат - создание высокоэффективной негорючей углеродсодержащей композиции, пригодной для получения радиозащитных экранов и радиопоглощающих покрытий, а также объемных радиопоглощающих материалов.

Технический результат достигается тем, что в отличие от известных технических решений в композиции в качестве радиопоглощающего вещества используется ультрадисперсный активный углерод со средним размером частиц 0,005-0,1 мкм (5-100 нм) и удельной поверхностью 16-320 м2/г, диспергированный в минеральном растворителе. В состав растворителя входят раствор натриевого жидкого стекла в воде (диспергатор) и лигносульфонат аммония (стабилизатор).

Растворение ультрадисперсного активного углерода производится в разбавленном водой жидком стекле с концентрацией SiO2 8-15 мас.%. Нижний предел концентрации обусловлен эффективностью диспергирования активного углерода, верхний - практической целесообразностью. Концентрация ультрадисперсного активного углерода в коллоидном растворе 5-16 мас.%. Использование концентрации менее 5% не дает заявляемого эффекта, а при концентрации более 16% коллоидный раствор переходит в гель. Стабилизатор, насыщенный раствор лигносульфоната аммония, вводится в последнюю очередь в количестве 2-6 мас.% в зависимости от концентрации активного углерода.

Полезным свойством предлагаемой композиции является возможность дополнительно диспергировать в ней до 28 мас.% высокодисперсного коллоидного графита, что увеличивает общую концентрацию радиозащитного наполнителя и расширяет область применения.

Основное назначение углеродсодержащей композиции - придание радиозащитных свойств обычным радиопрозрачным материалам за счет покрытия поверхности и (или) введения радиопоглощающих частиц в объем материала. Размер частиц активного углерода порядка 5-100 нм - это позволяет им легко проникать в микропоры и структурные каналы материала, создавая в объеме наноразмерный по сечению элементов и макроразмерный по протяженности электропроводный каркас, при этом ширина энергетической запрещенной зоны исходного диэлектрического материала уменьшается более чем на порядок, возникает набор энергетических уровней перехода, обеспечивающих широкополосное поглощение ЭМП. Дополнительное введение частиц графита с размером 1000-2000 нм создает центры рассеивания ЭМП и приводит к образованию релейных рассеивающих структур и зон различных размеров, в результате чего расширяется рабочий частотный диапазон материала и повышается уровень ослабления ЭМП, в том числе и за счет увеличения коэффициента отражения. Изменяя соотношение ультрадисперсный активный углерод/высокодисперсный графит в композиции, можно регулировать отношение коэффициентов отражения и поглощения ЭМП материала.

В процессе испытаний заявляемой углеродсодержащей композиции были изготовлены образцы картона, на которые было нанесено однослойное покрытие, и образцы бетона, при изготовлении которых композиция вводилась в воду затворения цементно-песчаной смеси. Измерение коэффициентов отражения и ослабления ЭМП производилось на измерителе КСВН панорамном Р2-113. Результаты измерений приведены в таблицах.

Таблица 1
Картон гофрированный трехслойный ГОСТ 7376-89
Обозначение образца Частота, ГГц Измеренное ослабление, дБ (раз) КСВН Отражение, % Поглощение, дБ (раз)
0 4,0 0 1,02 0 0
1 4,0 7,3 (5,4) 3,30 28,6 5,2 (3,3)
2 4,0 4,7 (3,0) 2,49 18,2 3,8 (2,4)
3 4,0 8,8 (7,6) 4,06 36,6 5,6 (3,6)

Характеристика образцов

0 - картон без покрытия;

1 - одностороннее однослойное покрытие углеродсодержащей композицией, содержащей 15,9 мас.% ультрадисперсного активного углерода;

2 - одностороннее однослойное покрытие углеродсодержащей композицией, содержащей 8 мас.% ультрадисперсного активного углерода;

3 - одностороннее однослойное покрытие углеродсодержащей композицией, содержащей 13,5 мас.% ультрадисперсного активного углерода и 5 мас.% высокодисперсного коллоидного графита.

Таблица 2
Бетон
Номер образца Частота ЭМП, ГГц Измеренная величина ЭМ-ослабления, дБ КСВН Отражение, % Поглощение, дБ Толщина образца, см Удельное поглощение, дБ/см
0-1 4,0 7,2 3,6 32,0 4,9 5,0 1,0
1-1 4,0 10,8 3,8 34,0 7,1 4,0 1.8
1-2 4,0 35,8 4,1 37,0 22,6 4,7 4,8
1-3 4,0 42,4 4,6 41,3 24,9 5,0 5,0
1-4 4.0 32,0 6,1 51,6 15,5 2,5 6,2

Характеристика образцов

Все образцы бетона имели одинаковое массовое соотношение компонентов цемент:песок:щебень:вода:углеродсодержащая композиция, состав углеродсодержащей композиции изменялся.

0-1 - контрольный образец без углеродсодержащей композиции;

1-1 - углеродсодержащая композиция с содержанием ультрадисперсного активного углерода 5,9 мас.%;

1-2 - углеродсодержащая композиция с содержанием ультрадисперсного активного углерода 15,9 мас.%;

1-3 - углеродсодержащая композиция с содержанием ультрадисперсного активного углерода 15,9 мас.% и 8 мас.% высокодисперсного коллоидного графита;

1-4 - углеродсодержащая композиция с содержанием ультрадисперсного активного углерода 8 мас.% и 28 мас.% высокодисперсного коллоидного графита.

Для удобства анализа результатов таблицы 2 в таблице 3 помещены расчетные значения, приведенные к толщине образца бетона в 3 см.

Таблица 3
Номер партии Удельное поглощение, дБ/см Ослабление ЭМП за счет поглощения слоем толщиной 3 см, дБ (раз) Ослабление ЭМП за счет отражения, дБ (раз) Ослабление ЭМП всего, дБ (раз)
0-1 1,0 3,0 (2) 1,4(1,4) 4,4 (2,8)
1-1 1,8 5,4 (3,5) 2,8(1,9) 8,2 (6,6)
1-2 4,8 14,4 (27,5) 8,5 (7) 22,9(195)
1-3 5,0 15,0(31,6) 10,6(11,5) 25,6 (363)
1-4 6,2 18,6(72) 19,8(96) 38,4 (6900)

Прочность образцов на сжатие - 1,05-0,80 от прочности контрольного образца. Увеличение стоимости 1 м3 бетона за счет добавки ультрадисперсного активного углерода 25-70% в сочетании с высокодисперсным коллоидным графитом - 200-400%. Добавка графита полезна при создании материалов для экранирования (радиозащитных экранов) ЭМП. Для придания высоких радиозащитных свойств строительным материалам общего назначения эффективна как в техническом, так и в экономическом плане углеродсодержащая композиция, содержащая только ультрадисперсный активный углерод.

1. Углеродсодержащая композиция для радиозащитных материалов, включающая воду, диспергатор в виде водного раствора натриевого жидкого стекла, радиозащитный углеродный наполнитель и стабилизатор, отличающаяся тем, что содержит ультрадисперсный активный углерод со средним размером частиц 5-100 нм и удельной поверхностью 16-320 м2/г при следующем соотношении компонентов, мас.%:
SiO2 - 8-15, ультрадисперсный активный углерод - 5-16, насыщенный раствор лигносульфоната аммония - 2-6, вода - остальное.

2. Углеродсодержащая композиция по п.1, отличающаяся тем, что дополнительно содержит 5-28 мас.% высокодисперсного коллоидного графита.



 

Похожие патенты:

Изобретение относится к антенной технике, а именно к поглотителям электромагнитных волн, и может быть использовано при оснащении безэховых камер и экранированных помещений.
Изобретение относится к области изготовления объемных поглотителей СВЧ-энергии из высокотемпературного поглощающего материала, применяемых в высокочастотных трактах радиоэлектронной аппаратуры.

Изобретение относится к способу изготовления поглощающего покрытия, обеспечивающего поглощение в инфракрасном диапазоне длин волн для создания эталонов абсолютно черного тела в имитаторах излучения для аппаратуры дистанционного зондирования земли со стабильными характеристиками.
Изобретение относится к области радиоэлектроники, а именно к полимерным композиционным материалам, предназначенным для поглощения высокочастотной энергии в СВЧ-устройствах.

Изобретение относится к радиопоглощающему материалу, содержащему полимерное связующее и наполнитель, состоящий из порошкообразного карбонильного железа. При этом в наполнитель введены дискретные углеродные волокна в соотношении, мас.%: дискретные углеродные волокна 40-10, порошкообразное карбонильное железо 60-90, при следующем соотношении компонентов, мас.%: связующее 85-15, наполнитель 15-85.

Изобретение относится к малоотражающим покрытиям и может быть использовано в наземной, наводной, авиационной и космической технике, а также в объектах и устройствах бытового назначения для уменьшения радиолокационной заметности объектов.

Изобретение относится к радиотехнике, в частности к поглотителям электромагнитных волн, в том числе в диапазоне сверхвысоких частот. Технический результат - повышение коэффициента поглощения, механической прочности при сохранении низкого коэффициента отражения материала.

Изобретение относится к полимерным композициям, предназначенным для поглощения воздействующих излучений. Полимерная композиция содержит в качестве основы каучук низкомолекулярный диметилсилоксановый СКТН, катализатор холодного отверждения К-68, в качестве поглощающего наполнителя железо карбонильное радиотехническое Р-10, дополнительно содержит раствор высокомолекулярного каучука СКТ в жидкости полиметилсилоксановой и тетраэтоксисилане или его производных, а также полиэтиленполиамин в качестве регулятора скорости отверждения.

Изобретение относится к области защиты сухопутной и морской техники от естественного и искусственного излучения. .
Изобретение относится к технологии радиопоглощающих ферритов, которые находят все более широкое применение в производстве безэховых камер, обеспечивающих исключение отражения радиоволн от стен камеры.
Изобретение относится к области металлургии, а именно к разработке новых нерадиоактивных материалов, и может быть использовано в атомной энергетической промышленности.
Изобретение относится к области металлургии, а именно к разработке новых нерадиоактивных материалов, и может быть использовано в атомной энергетической промышленности.

Изобретение относится к медицинской технике, а именно к устройствам для лучевой терапии злокачественных опухолей быстрыми нейтронами. .

Изобретение относится к области методологии проведения испытаний противорадиационной защиты объектов и может быть использовано в специализированных центрах по радиационным испытаниям.

Изобретение относится к промышленности строительных материалов и может быть использовано для изготовления строительных деталей, изделий и конструкций, предназначенных для защиты от ионизирующих излучений.
Изобретение относится к области приготовления радиационно-защитных материалов для атомной и радиотехнической промышленности. .
Изобретение относится к промышленности строительных материалов и может быть использовано для изготовления строительных деталей, изделий и конструкций, предназначенных для защиты от ионизирующих излучений.

Изобретение относится к промышленности строительных материалов и может быть использовано для изготовления строительных деталей и изделий, предназначенных для защиты от ионизирующих излучений.

Изобретение относится к способам защиты от проникающей радиации (фотонов) и может быть использовано при создании защитных экранов. .
Изобретение относится к материалам с нейтронопоглощающими свойствами для защиты от нейтронного излучения. Предложен термостойкий нейтронозащитный материал, состоящий из магнийфосфатного связующего (24-33 мас.%) и порошковой части (76-67 мас.%), при этом порошковая часть содержит гидрид титана ТiH2 (90,3-95,5 мас.%), оксид магния MgO (2,7-4,5 мас.%) и карбид бора В4С (1,8-5,2 мас.%). Компоненты перемешивают до однородного состояния и заливают в специальную полость, а после отвердевания подвергают термической обработке. Технический результат: полученный материал обладает долговременной механической прочностью, термостойкостью до ≈300°С, высокой теплопроводностью, температурным коэффициентом линейного расширения, близким к коэффициенту конструкционных сталей, и большой удельной плотностью содержащихся в нем водорода и бора, что обеспечивает высокие коэффициенты ослабления нейтронного излучения. 1 табл.
Наверх