Способ получения сложных полиэфирполиолов с низким содержанием побочного диоксана


 


Владельцы патента RU 2519938:

БАЙЕР МАТИРИАЛЬСАЙЕНС АГ (DE)

Изобретение относится к способу получения сложных полиэфирполиолов, их применению, а также применению ПУР- или ПИР-пеноматериала, включающего сложный полиэфирполиол, и металлокомпозиционному элементу, включающему ПУР- и ПИР-пеноматериал. Способ получения сложных полиэфирполиолов заключается в смешивании по меньшей мере одного ангидрид карбоновой кислоты (A), диэтиленгликоля (B) и по меньшей мере одного гликоля (C) с числом атомов углерода от 2 до 4, а также по меньшей мере одного алифатической дикарбоновой кислоты (D) с числом атомов углерода от 5 до 12. Мольное соотношение компонентов (B) и (A) находится в интервале от 1,5 к 1 до 1,1 к 1. Массовая доля компонентов (A) и (B), в пересчете на массу всех компонентов в смеси, находится в области между 66 и 95% мас. Технический результат - ограничение количества образующегося диоксана относительно количества использованного диэтиленгликоля при получении сложных полиэфирполиолов. 4 н. и 7 з.п. ф-лы, 2 табл., 3 пр.

 

Данное изобретение касается получения и применения сложных полиэфирполиолов, образованных по меньшей мере из одного ангидрида карбоновой кислоты и диэтилен гликоля, причем с помощью определенного способа проведения реакции образование из диэтиленгликоля 1,4-диоксана в значительной мере подавляется.

Сложные полиэфирполиолы представляют собой важную составную часть многих вспененных и невспененных полиуретановых систем. Сложные полиэфирполиолы, такие как те, что находят применение для образования полиуретанов, в подавляющем большинстве имеют концевые гидроксильные группы, которые доступны для дальнейшей реакции с изоцианатными группами. Обычно молекулярная масса этих сложных полиэфирполиолов лежит в области 200-5000 дальтонов. Их получение, главным образом, осуществляется путем поликонденсации поликарбоновых кислот, в частности дикарбоновых кислот, и полиолов, в частности диолов, благодаря тому, что в условиях удаления воды карбоксильные и гидроксильные группы вводятся в реакцию с образованием сложноэфирных групп. В качестве альтернативы, также могут применяться ангидриды поликарбоновых кислот, например ангидрид фталевой кислоты.

Условия, при которых удаляется вода, могут быть достигнуты, например, с помощью применения вакуума, выдувания воды из реакции при помощи потока инертного газа или азеотропной продувкой с помощью разделяющего агента (Houben-Weyl, Methoden der organischen Chemie, Band 14/2, Makromolekulare Stoffe, Thieme Verlag Stuttgart, Hrsg. E. Müller, стр.1-47, 1963).

Специалисту известно, что при этерификации ароматической фталевой кислоты, в большинстве случаев использующейся в форме ангидрида фталевой кислоты, диэтиленгликолем в качестве побочного продукта образуется нежелательный 1,4-диоксан. Образовавшийся диоксан при производстве на промышленных установках выводится вместе с реакционной водой, а затем должен подвергаться расщеплению, например, в очистных установках, или после концентрирования сжигаться. Из-за этой дополнительной стадии процесса повышается стоимость производства сложных полиэфирполиолов.

Образующийся в качестве побочного продукта 1,4-диоксан также приводит к тому, что выход желаемого продукта снижается, поскольку часть использованного диэтиленгликоля не встраивается в полученный сложный полиэфир, а, как было описано, удаляется из реакционной смеси в форме 1,4-диоксана. Таким образом, из-за образования 1,4-диоксана вытекает существенный экономический недостаток.

Кроме того, количество 1,4-диоксана, которое может получаться в производственной установке, может быть ограничено разрешающими нормативами. Тем самым, ограничение количества диоксана в этих случаях косвенным образом ведет к ограничению производственной мощности установки для получения сложных полиэфирполиолов.

Следовательно, задачей данного изобретения является разработка способа получения сложных полиэфирполиолов, образованных по меньшей мере из одного ангидрида карбоновой кислоты и диэтиленгликоля, в котором устраняются недостатки уровня техники.

В частности, задачей данного изобретения является - при получении сложных полиэфирполиолов по меньшей мере из одного ангидрида карбоновой кислоты и диэтиленгликоля - ограничить количество образующегося диоксана относительно количества использованного диэтиленгликоля. При этом количество диоксана может ограничиваться менее чем 8 г на один кг, предпочтительно менее чем 6 г на один кг использованного диэтиленгликоля.

Другой задачей данного изобретения является - при получении сложных полиэфирполиолов по меньшей мере из одного ангидрида карбоновой кислоты и диэтиленгликоля - уменьшить количество образующегося диоксана относительно количества образовавшегося сложного полиэфирполиола. При этом количество диоксана может ограничиваться менее чем 4 г на один кг, предпочтительно менее чем 3 г на один кг образовавшегося сложного полиэфирполиола.

Указанная выше задача решается с помощью предложенного способа получения сложных полиэфирполиолов, в котором смешивают по меньшей мере один ангидрид карбоновой кислоты (А), диэтиленгликоль (В) и по меньшей мере один гликоль (С) с числом атомов углерода от 2 до 4, а также по меньшей мере одну алифатическую дикарбоновую кислоту (D) с числом атомов углерода от 5 до 12 или по меньшей мере один гликоль (Е) с числом атомов углерода от 5 до 10, а также по меньшей мере одну дикарбоновую кислоту (F), содержащую 4 атома углерода, причем мольное соотношение компонентов (В) и (А) находится в интервале от 1,5 к 1 до 1,1 к 1, а массовая доля компонентов (А) и (В), в пересчете на массу всех компонентов в смеси, находится в области от 66 до 95% мас.

Количества компонентов (С), (D), (Е) и (F) выбирают таким образом, что количества всех компонентов (А), (В), (С) и (D) или соответственно (Е) и (F) в смеси в сумме составляют 100% мас.

В предпочтительном варианте исполнения изобретения ангидрид карбоновой кислоты (А) является ароматическим.

Предпочтительно ангидрид карбоновой кислоты (А) выбирается из группы, состоящей из ангидрида фталевой кислоты, ангидрида тримеллитовой кислоты и ангидрида пиромеллитовой кислоты. Особенно предпочтительно ангидрид карбоновой кислоты представляет собой ангидрид фталевой кислоты.

Благодаря замене малых количеств ароматических дикарбоновых кислот на эквивалентное количество алифатической дикарбоновой кислоты (D или F), а также замены малых количеств диэтиленгликоля на эквивалентные количества гликолей (С) или (Е) количество побочного диоксана при получении сложных полиэфирполиолов сокращается намного больше величины, которую следует ожидать по причине эффекта разбавления. При этом свойства полученного сложного полиэфирполиола остаются почти такими же, то есть сложные полиэфирполиолы, которые получаются по способу согласно изобретению, обладают такими же свойствами, как и соответствующие сложные полиэфирполиолы, которые были получены без добавления алифатических дикарбоновых кислот ((D) или (F)) и без добавления гликолей (С) или (Е).

Предпочтительно гликоль (С) с числом атомов углерода от 2 до 4 выбирается из группы, состоящей из этиленгликоля, 1,3-пропандиола, 2-метил-1,3-пропандиола и 1,2-пропандиола. Особенно предпочтительно гликоль (С) с числом атомов углерода от 2 до 4 представляет собой этиленгликоль.

Предпочтительно алифатическая дикарбоновая кислота (D) с числом атомов углерода от 5 до 12 выбирается из группы, состоящей из глутаровой кислоты, адипиновой кислоты, пимелиновой кислоты, пробковой кислоты, азелаиновой кислоты, себациновой кислоты, ундекандикарбоновой кислоты и додекандикарбоновой кислоты. Особенно предпочтительными в качестве алифатических дикарбоновых кислот (D) являются адипиновая кислота или себациновая кислота.

Предпочтительно гликоль (Е) с числом атомов углерода от 5 до 10 выбирается из группы, состоящей из 1,5-пентандиола, 3-метил-1,5-пентандиола, 1,6-гександиола и 1,8-октандиола. Особенно предпочтительно гликоль (Е) с числом атомов углерода от 5 до 10 представляет собой 3-метил-1,5-пентандиол или 1,6-гександиол.

Предпочтительно дикарбоновая кислота (F), содержащая 4 атома углерода, выбирается из группы, состоящей из янтарной кислоты, фумаровой кислоты и малеиновой кислоты. Особенно предпочтительно дикарбоновая кислота (F), содержащая 4 атома углерода, является янтарной кислотой.

Предпочтительно молекулярная масса полученного сложного полиэфирполиола находится в области между 750 и 350, особенно предпочтительно в области между 620 и 370.

Предпочтительно ОН-число полученного сложного полиэфирполиола находится в интервале между 150 и 320 г КОН/кг, предпочтительно в интервале между 180 и 300 г КОН/кг.

Это ОН-число определяют, сначала подвергая концевые гидроксильные группы в образце сложного полиэфирполиола взаимодействию с определенным избытком ангидрида, например ангидрида уксусной кислоты, избыточный ангидрид гидролизуют, а содержание свободных карбоксильных групп определяют с помощью прямого титрования сильным основанием, например гидроксидом натрия. Разность между карбоксильными группами, внесенными в форме ангидрида, и карбоксильными группами, обнаруженными экспериментально, представляет собой меру для количества гидроксильных групп в образце. Если эту величину корректируют на число карбоксильных групп, содержащихся в первоначальном образце вследствие неполной этерификации, то есть на кислотное число, то получается ОН-число. При этом титрования, проведенные по большей части с гидроксидом натрия, пересчитывают в эквивалентное количество гидроксида калия, так что кислотное и гидроксильное числа имеют размерность в г КОН/кг. При этом между гидроксильным числом (ОН#) и среднечисленной молекулярной массой (М) существует следующее математическое соотношение: М=(56100 * F) / ОН#. В данном случае F обозначает среднечисленную функциональность и может с хорошим приближением получаться из рецептуры.

Предпочтительно вязкость полученного сложного полиэфирполиола при температуре 50°С находится в интервале между 400 и 3000 мПа·с, предпочтительно в интервале между 450 и 1500 мПа·с.

Вязкость определяется с помощью вискозиметра типа конус-пластинка, например, Physica MCR 51 фирмы Anton Paar, причем экстраполируют к нулевой скорости сдвига. Полиолы согласно изобретению насколько возможно не являются структурновязкими.

Предпочтительно массовая доля компонентов (А) и (В) в пересчете на массу всех компонентов лежит в интервале между 70 и 85% мас.

Предпочтительно полученные сложные полиэфирполиолы имеют кислотное число от 0,5 до 3,5 г КОН/кг.

Функциональность полученных сложных полиэфирполиолов предпочтительно находится в интервале от 1,9 до 3. Функциональности больше 2 получаются благодаря тому, что при этерификации частично совместно используются образующие структурные элементы с функциональностями больше 2, например, триолы или тетраолы и/или три- или тетракарбоновые кислоты, и/или трифункциональные гидроксикарбоновые кислоты. Типичными представителями являются глицерин, 1,1,1-триметилолпропан, пентаэритрит, тримеллитовая кислота, тримезиновая кислота, яблочная кислота, винная кислота, лимонная кислота, диметилолпропионовая кислота и т.д. Предпочтительно функциональность в интервале от 2,0 до 2,3 может устанавливаться путем применения глицерина или 1,1,1-триметилолпропана. При этом вязкость, измеренная при 25°С, менее чем на 20% отличается от величины вязкости, которая измеряется для сложного полиэфирполиола, имеющего аналогичные функциональность и гидроксильное число, который, помимо повышающих функциональность компонентов (например, 1,1,1-триметилолпропана), образован исключительно из ангидрида фталевой кислоты и диэтиленгликоля.

Предпочтительно вакуумный процесс для получения сложных полиэфирполиолов согласно изобретению проводится при давлениях в области от нормального давления до 5 мбар конечного вакуума и при температурах в области 100-230, предпочтительно от 180 до 215°С.

Предпочтительно этот способ для получения сложных полиэфирполиолов согласно изобретению проводится путем того, что все компоненты загружаются одновременно и сначала подвергаются конденсации при нормальном давлении и использовании атмосферы инертного газа при температурах в области от 100 до 230°С, особенно предпочтительно при температурах в области от 180 до 215°С, до тех пор, пока больше не будет отгоняться вода из реакции, а затем, при необходимости после добавления катализатора этерификации, понижают давление в течение промежутка от 1 до 4 часов до величины менее 20 мбар и, наконец, проводят поликонденсацию при температурах в области от 180 до 215°С в полном вакууме, создаваемом водоструйным насосом, пока не получают кислотное число менее 5 г КОН/кг.

Для получения сложных полиэфирполиолов согласно изобретению могут применяться все катализаторы, известные специалисту. Предпочтительно применяются хлорид олова (II) и тетраалкоксилаты титана.

Взаимодействие компонентов для получения сложных полиэфирполиолов согласно изобретению предпочтительно осуществляется в массе.

В качестве альтернативы эти сложные полиэфирполиолы могут также получаться с помощью способа с продувкой азотом, при котором конденсат выносится из реакционного сосуда под действием тока азота (J.H. Saunders и Н.Т. Frisch в публикации Polyurethanes: Chemistry and Technology, Part I. Chemistry, Interscience published John Wiley and Sons, New York 1962, Seite 45).

Другим объектом данного изобретения является способ получения полиуретан-полиизоциануратного пеноматериала (ПУР-ПИР-пеноматериала), включающий следующие стадии:

a) взаимодействие сложного полиэфирполиола, который может получаться по способу, описанному выше, с

b) полиизоцианатсодержащим компонентом,

c) пенообразующим агентом,

d) одним или несколькими катализаторами,

e) при необходимости, огнезащитными средствами и/или другими вспомогательными веществами и добавками.

Полиизоцианатсодержащий компонент включает полиизоцианаты.

Используемые полиизоцианаты представляют собой обычные изоцианаты из области химии полиуретанов. Как правило, рассматривают алифатические, циклоалифатические, арилалифатические и ароматические изоцианаты с несколькими изоцианатными группами. Предпочтительно применяются ди- и полиизоцианаты. Предпочтительными примерами являются 2,4- и 2,6-толуилендиизоцианаты, а также любые смеси этих изомеров, 2,2'-, 2,4'- и 4,4'-дифенилметандиизоцианаты, а также любые смеси этих изомеров, смеси из 2,2'-, 2,4'- и 4,4'-дифенилметан-диизоцианатов (двухъядерных МДИ) и полифениленполиметиленполи-изоцианатов (МДИ). В качестве альтернативы также могут использоваться смеси из толуилендиизоцианатов и МДИ.

В качестве пенообразующего агента могут использоваться общеизвестные соединения, проявляющие химическое или физическое действие. В качестве химически действующих пенообразующих агентов предпочтительно может использоваться вода. Примерами физических пенообразующих агентов являются (цикло)алифатические углеводороды, содержащие от 4 до 8 атомов углерода, а также гидрофторуглероды (ГФУ) и гидрохлорфторуглероды (ГХФУ), которые при условиях образования полиуретанов переходят в газообразное состояние. В предпочтительном варианте исполнения изобретения в качестве пенообразующих агентов применяются пентан и циклопентан, а также смеси из пентана и циклопентана.

Количество использованного пенообразующего агента по большей части рассчитывается в зависимости от желаемой плотности пеноматериала. Как правило, воды применяется от 0 до 5% мас., в пересчете на всю композицию, предпочтительно от 0,1 до 3% мас. Кроме того, как правило, может применяться пенообразующий агент физического действия в количестве от 0 до 8% мас., предпочтительно от 0,1 до 5% мас. В качестве пенообразующего агента также может использоваться диоксид углерода, который предпочтительно растворяется в исходных компонентах в виде газа.

В качестве катализаторов для получения полиуретановых или соответственно полиизоциануратных пеноматериалов согласно изобретению используются обычные и известные катализаторы образования полиуретанов или полиизоциануратов, например, органические соединения олова, такие как диацетат олова, диоктоат олова, дибутиоловодилаурат и/или сильно основные амины, такие как 2,2,2-диазабициклооктан, триэтиламин или предпочтительно триэтилендиамин или простой бис(N,N-диметиламиноэтиловый)эфир, а также, для катализа реакций образования ПИР, ацетат калия и алифатические четвертичные аммонийные соли.

Катализаторы предпочтительно используются в количестве от 0,1 до 3% мас., предпочтительно от 0,5 до 2% мас., в пересчете на общую массу всех компонентов.

Взаимодействие указанных выше компонентов осуществляется при необходимости в присутствии вспомогательных веществ и/или добавок, таких как, например, регуляторы пористости, разделительные средства, пигменты, упрочняющие добавки, такие как стекловолокно, поверхностно-активные соединения и/или стабилизаторы по отношению к окислительному, термическому, гидролитическому, микробиологическому разложению или старению. Обычно эти пенополиуретаны имеют плотность от 20 до 250 г/л, предпочтительно от 25 до 150 г/л, особенно предпочтительно от 30 до 100 г/л, в высшей степени предпочтительно от 35 до 75 г/л.

Для получения пенополиуретана согласно изобретению, как правило, все компоненты, смешанные с помощью обычной смесительной головки высокого или низкого давления, подвергаются взаимодействию в таких количествах, что эквивалентное соотношение МСО-групп и суммы реакционноспособных по отношению к ним атомов водорода в случае чистого ПУР-пеноматериала находится в области между от 1 к 0,8 до 1 к 1,60, предпочтительно в области между от 1 к 0,9-1,15. При этом соотношению 1 к 1 соответствует изоцианатный индекс (NCO индекс), равный 100.

В случае пеноматериалов из ПУР-ПИР эквивалентное соотношение NCO-групп и суммы реакционноспособных по отношению к ним атомов водорода находится в области между от 1 к 1,6 до 1 к 5,0, предпочтительно между от 1 к 2,0 до 1 к 4,0.

Другим объектом данного изобретения является применение сложных полиэфирполиолов, которые получаются по описанному выше способу, для изготовления полиуретана. Полиуретан представляет собой многоцелевой материал, который находит применение во многих областях. Благодаря большому разнообразию исходного сырья, которое можно использовать, могут быть получены продукты с самыми различными характеристиками, например, жесткие пенополиуретаны для звукоизоляции, блочные мягкие пенопласты для матрасов, гибкие формованные пеноматериалы для автомобильных сидений и подушек на сидения, акустические пеноматериалы для звукоизоляции, термопластичные пеноматериалы, пеноматериалы для обуви или мелкоячеистые пеноматериалы, а также плотные системы для литья и термопластичные полиуретаны.

Другим объектом данного изобретения является применение пеноматериала из ПУР или соответственно из ПИР, которые был получен согласно способу, описанному выше, для изготовления металлокомпозиционных элементов.

Металлокомпозиционные элементы представляют собой слоистые композиционные элементы, состоящие по меньшей мере из двух покрывающих слоев и одного находящегося между ними слоя ядра. В частности, композиционные элементы металл-пеноматериал состоят по меньшей мере из двух покрывающих слоев из металла и одного слоя ядра из пеноматериала, например, полиуретанового (ПУР) твердого пеноматериала, или соответственно полиуретан-полиизоциануратного (ПУР-ПИР) твердого пеноматериала. Композиционные элементы металл-пеноматериал такого типа являются достаточно известными из уровня техники и обозначаются также как металлокомпозиционные элементы. Между слоем ядра и покрывающими слоями могут быть предусмотрены другие слои. Например, покрывающие слои могут быть покрыты, например, лаком.

Примерами использования металлокомпозиционных элементов такого типа являются плоские или линованные элементы стен, а также профилированные элементы кровли для строительства промышленных зданий и холодильных складов, также как и для надстроек на грузовых автомобилях, дверей в помещениях или транспортных контейнеров.

Изготовление этих металлокомпозиционных элементов может осуществляться по непрерывному или периодическому способу.

Оборудование для непрерывного изготовления известно, например, из немецких заявок на патент DE 1609668 А или DE 1247612 А.

Примеры

Общий список исходных веществ, использованных в Примерах

Ангидрид фталевой кислоты (ФА): Технический ФА фирмы Lanxess
Адипиновая кислота: Адипиновая кислота фирмы BASF
Диэтиленгликоль (ДЭГ): ДЭГ фирмы Ineos
Этиленгликоль (ЭГ): ЭГ фирмы Ineos
Дигидрат хлорида олова (II) фирмы Aldrich

Использованные методы анализа:

Вискозиметр: MCR 51 фирмы Anton Paar

А) Получение сложных полиэфирполиолов

Пример 1(V) (Стандартный способ, для сравнения):

В 4-литровую колбу с 4-мя горлами, оснащенную колбонагревателем, механической мешалкой, внутренним термометром, колонной с насадочными телами высотой 40 см, верхней частью колонны, нисходящим холодильником интенсивного охлаждения и охлаждаемым сухим льдом приемником дистиллята, а также мембранным вакуумным насосом, в атмосфере азота при 140°С помещали 1437 г (9,71 моль) ФА и медленно добавляли 1737,3 г (16,39 моль) ДЭГ. Спустя 1 час температуру поднимали до 190°С, при перемешивании добавляли 65 мг дигидрата хлорида олова (II), давление понижали до 700 мбар, а температуру в реакции поднимали до 215°С. В течение последующих 5 часов непрерывно понижали давление до конечной величины 160 мбар и доводили реакцию до конца до достижения полной продолжительности 26 часов. В течение всего превращения отгоняемые фракции собирали в приемнике для дистиллята, охлаждаемом сухим льдом. Количество образовавшегося 1,4-диоксана определялось методом газовой хроматографии и составило 34,3 г.

Анализ сложного полиэфира:

Гидроксильное число: 238,2 мг КОН/г

Кислотное число: 1,7 мг КОН/г

Вязкость: 10400 мПа·с (25°С), 890 мПа·с (50°С), 180 мПа·с (75°С)

Количество образовавшегося сложного полиэфирполиола: 2965 г

Количество диоксана в пересчете на количество сложного полиэфирполиола: 34,3 г / 2,965 кг=11,6 г диоксана/кг сложного полиэфира

Количество диоксана в пересчете на количество использованного ДЭГ: 34,3 г /1,738 кг=19,7 г диоксана/кг ДЭГ

Пример 2(V) (Стандартный способ, более низкая температура, для сравнения):

В установку согласно Примеру 1 в атмосфере азота при 140°С помещали 1437 г (9,71 моль) ФА и медленно добавляли 1737,3 г (16,39 моль) ДЭГ. Спустя 1 час температуру поднимали до 180°С, при перемешивании добавляли 65 мг дигидрата хлорида олова (II), давление понижали до 700 мбар. В течение последующих 5 часов непрерывно понижали давление до конечной величины 45 мбар. Температуру поднимали до 200°С, а давление до 115 мбар и доводили реакцию до конца до достижения полной продолжительности 27 часов. В течение всего превращения отгоняемые фракции собирали в приемнике для дистиллята, охлаждаемом сухим льдом. Количество образовавшегося 1,4-диоксана определялось методом газовой хроматографии и составило 17,6 г.

Анализ сложного полиэфира:

Гидроксильное число: 234,5 мг КОН/г

Кислотное число: 1,6 мг КОН/г

Вязкость: 11300 мПа·с (25°С), 930 мПа·с (50°С), 190 мПа·с (75°С)

Количество образовавшегося сложного полиэфирполиола: 2982 г

Количество диоксана в пересчете на количество сложного полиэфирполиола: 17,6 г / 2,982 кг=5,9 г диоксана/кг сложного полиэфира

Количество диоксана в пересчете на количество использованного ДЭГ: 17,6 г /1,738 кг=10,2 г диоксана/кг ДЭГ

Пример 3 (Стандартный способ, согласно изобретению):

В установку согласно Примеру 1 в атмосфере азота при комнатной температуре помещали 1444 г (9,76 моль) ФА, 1386 г (13,08 моль) ДЭГ, 356 г (2,44 моль) адипиновой кислоты и 429 г (6,92 моль) ЭГ и перемешивали в течение 1 часа при 140°С. Затем температуру в течение 3 часов поднимали до 200°С. После этого при перемешивании добавляли 65 мг дигидрата хлорида олова (II), давление понижали до 400 мбар. В течение последующих 5 часов непрерывно понижали давление до конечной величины 60 мбар. Доводили реакцию до конца до достижения полной продолжительности 32 часа при 110 мбар. В течение всего превращения отгоняемые фракции собирали в приемнике для дистиллята, охлаждаемом сухим льдом. Количество образовавшегося 1,4-диоксана определялось методом газовой хроматографии и составило 6,9 г.

Анализ сложного полиэфира:

Гидроксильное число: 242 мг КОН/г

Кислотное число: 0,3 мг КОН/г

Вязкость: 7310 мПа·с (25°С), 740 мПа·с (50°С), 170 мПа·с (75°С)

Количество образовавшегося сложного полиэфирполиола: 3353 г

Количество диоксана в пересчете на количество сложного полиэфирполиола: 6,9 г / 3,353 кг=2,1 г диоксана/кг сложного полиэфира

Количество диоксана в пересчете на количество использованного ДЭГ: 6,9 г /1,386 кг=5,0 г диоксана/кг ДЭГ

Таблица 1
Примеры получения сложных полиэфирполиолов с 1(V) по 3. В качестве катализатора применялись соответственно 20 частей на млн дигидрата хлорида олова (II)
Прим. 1(V) 2(V) 3
Ангидрид фталевой кислоты (ФА) [моль] 9,71 9,71 9,76
[г] 1437,1 1437,1 1444,5
Диэтиленгликоль (ДЭГ) [моль] 16,39 16,39 13,08
[г] 1737,3 1737,3 1386,5
Адипиновая кислота [моль] 2,44
[г] 356,2
Этиленгликоль [моль] 6,92
[Г] 429
Соотношение (ДЭГ/ФА) [моль/моль] 1,69 1,69 1,34
Доля (ДЭГ+ФА) [% масс.] 100 100 78,3
Гидроксильное число [мг КОН/г] 238 234 242
Кислотное число [мг КОН/г] 1,7 1,6 0,3
Макс.температура реакции [°С] 215 200 200
Время протекания [час] 26 27 32
Диоксан, найдено [г] 34,3 17,6 6,9
Масса сложного эфира, теоретич. [г] 3000 3000 3353
Масса сложного эфира, без диоксана [г] 2965 2982 3346
Диоксан/кг сложного эфира [г диоксана/ кг сложного эфира] 11,56 5,92 2,06
Диоксан/кг ДЭГ [г диоксана/ кг ДЭГ] 19,73 10,16 4,96
Вязкость (при 50°С) [мПа·с] 900 930 740

Таблица 1 на основании Примеров 1(V) и 2(V) показывает, что понижение температуры реакции с 215 до 200°С уже сопровождается значительным улучшением в отношении количества образующегося диоксана: количество диоксана, которое образуется в расчете на 1 кг сложного эфира, снижается с 11,56 г до 5,92, или соответственно в расчете на 1 кг использованного ДЭГ, с 19,73 г до 10,16 г.Однако значительно сильнее перекрывает это улучшение Пример 3 согласно изобретению, при котором один лишь только эффект разбавления - из ДЭГ и ФА состоят 78,3% этого сложного эфира - позволял ожидать величину, составляющую примерно 4,6 г диоксана на 1 кг сложного эфира или соответственно 7,92 г диоксана на 1 кг использованного ДЭГ, однако в предпочтительном варианте были обнаружены только 2,06 или соответственно 4,96.

Исходные вещества для жестких пеноматериалов:

а) Сложный полиэфир из Примеров 1(V), 2(V) и 3

Добавка к пеноматериалу, состоящая из b.) - f.):

b) TCPP, трис(1-хлор-2-пропил)фосфат фирмы Lanxess

с) ТЕР, триэтилфосфат фирмы Levagard

d) Добавка 1132 фирмы Bayer MaterialScience

e) PET V 657, трифункциональный простой полиэфирполиол с молекулярной массой примерно 660 Да фирмы Bayer MaterialScience AG

f) стабилизатор, сополимеризат простого полиэфира и полисилоксана фирмы Evonik

g) активатор: Desmorapid VP.PU 30HB13 фирмы BMS

h) Desmodur VP.PU 44V70L, полиизоцианат фирмы Вауеr MaterialScience

Таблица 2
Рецептуры для жестких пеноматериалов
4(V) 5(V) 6
Сложный полиэфирполиол из Прим. 1(V) [частей] 63,8
Сложный полиэфирполиол из Прим. 2(V) [частей] 63,8
Сложный полиэфирполиол из Прим. 3 [частей] 63,8
Добавка к пеноматериалу [частей] 36,2 36,2 36,2
Пентан [частей] 15,8 15,5 15,6
Активатор [частей] 6,0 4.7 4.7
Desmodur 44V70L [частей] 165 159.0 160
Свойства жестких
пеноматериалов:
Класс пожаробезопасности/высота пламени [мм] кл. 5/100-110 кл. 5/100-120 кл. 5/100-120
Адгезия [H] 30 30 40
Нарушение структуры малое малое малое
Твердость 5 5 5
Температура внутри перерабатываемого материала [°С] 161 160 155

В лабораторном масштабе все исходные вещества для рецептуры твердого пеноматериала, за исключением полиизоцианатного компонента, отвешиваются в бумажный стаканчик, термостатируются до температуры 23°С, смешиваются с помощью лабораторного смесителя фирмы Pendraulik (например, тип LM-34 фирмы Pendraulik) и при необходимости дополняются быстро испаряющимся пенообразующим агентом (пентаном). Затем к полиоловой смеси при перемешивании был добавлен полиизоцианатный компонент (также термостатированный до температуры 23°С), эту смесь интенсивно перемешивали и заливали реакционную массу в формы, которые выложены металлическим покрывающим слоем (фирмы Corus). Спустя 2,5 минуты определяли твердость пеноматериала с помощью метода вдавливания, а спустя 8-10 минут максимальную температуру внутри перерабатываемого материала. Для последующего полного прохождения реакции оставляли по меньшей мере дополнительно на 24 часа при 23°С, а затем определяли следующие характеристики:

Горение:

испытания на воспламеняемость (BVD-Test), соответствующие швейцарским основным испытаниям для определения степени возгораемости строительных материалов Объединения обществ по страхованию от огня швейцарских кантонов (Schweizer Grundtest zur Ermittlung des Brennbarkeitsgrades von Baustoffen der Vereinigung kantonaler Feuerversicherungen) выпуска 1988 года, с дополнениями 1990, 1994, 1995 и 2005 г.г. (можно ознакомиться в Объединении обществ по страхованию от огня швейцарских кантонов, Bundesstr. 20, 3011 Берн, Швейцария).

Адгезия:

определяется, путем того, что удалили вспененный покрывающий слой и определили силу, необходимую для этого, с помощью пружинного динамометра.

Нарушение структуры:

визуальная оценка образования пустот. Различали «отсутствие, малое, среднее и сильное» образование пустот.

1. Способ получения сложных полиэфирполиолов,
причем смешивают по меньшей мере один ангидрид карбоновой кислоты (A), диэтиленгликоль (B) и по меньшей мере один гликоль (C) с числом атомов углерода от 2 до 4, а также по меньшей мере одну алифатическую дикарбоновую кислоту (D) с числом атомов углерода от 5 до 12,
отличающийся тем, что мольное соотношение компонентов (B) и (A) находится в интервале от 1,5 к 1 до 1,1 к 1, а массовая доля компонентов (A) и (B), в пересчете на массу всех компонентов в смеси, находится в области между 66 и 95% мас.

2. Способ по п.1, отличающийся тем, что ангидрид карбоновой кислоты (A) выбирают из группы, состоящей из ангидрида фталевой кислоты, ангидрида тримеллитовой кислоты и ангидрида пиромеллитовой кислоты, предпочтительным ангидридом карбоновой кислоты является ангидрид фталевой кислоты.

3. Способ по п.1, отличающийся тем, что гликоль (C) с числом атомов углерода от 2 до 4 выбирают из группы, состоящей из этиленгликоля, 1,3-пропандиола, 2-метил-1,3-пропандиола и 1,2-пропандиола, предпочтительно гликоль (C) с числом атомов углерода от 2 до 4 представляет собой этиленгликоль.

4. Способ по п.1, отличающийся тем, что алифатическую дикарбоновую кислоту (D) с числом атомов углерода от 5 до 12 выбирают из группы, состоящей из глутаровой кислоты, адипиновой кислоты, пимелиновой кислоты, пробковой кислоты, азелаиновой кислоты, себациновой кислоты, ундекандикарбоновой кислоты и додекандикарбоновой кислоты, предпочтительной дикарбоновой кислотой (D) с числом атомов углерода от 5 до 12 являются адипиновая кислота или себациновая кислота.

5. Способ по п.1, отличающийся тем, что молекулярная масса полученного сложного полиэфирполиола находится в области между 750 и 350, предпочтительно в области между 620 и 370.

6. Способ по п.1, отличающийся тем, что OH-число полученного сложного полиэфирполиола находится в интервале между 150 и 320 г КОН/кг, предпочтительно в интервале между 180 и 300 г КОН/кг.

7. Способ по п.1, отличающийся тем, что вязкость полученного сложного полиэфирполиола при температуре 50°C находится в интервале между 400 и 3000 мПа·с, предпочтительно в интервале между 450 и 1500 мПа·с.

8. Способ по п.1, отличающийся тем, что массовая доля компонентов (A) и (B), в пересчете на массу всех компонентов в смеси, находится в области между 66 и 95% масс., предпочтительно в области между 70 и 85% мас.

9. Применение сложного полиэфирполиола, получаемого по одному или по нескольким из пп.1-8 для получения полиуретанового (ПУР) или полиизоциануратного (ПИР) пеноматериала, причем сложный полиэфирполиол содержит диоксан в количестве менее чем 4 г на кг, в частности менее чем 3 г на кг.

10. Применение ПУР- или ПИР-пеноматериала, включающего сложный полиэфирполиол, получаемого по одному или по нескольким из пп.1-8 для изготовления металлокомпозиционных элементов, причем сложный полиэфирполиол содержит диоксан в количестве менее чем 4 г на кг, в частности менее чем 3 г на кг.

11. Металлокомпозиционный элемент, включающий ПУР- или ПИР-пеноматериал, получаемый способом, включающим следующие стадии:
a) взаимодействие сложного полиэфирполиола, получаемого способом, причем смешивают по меньшей мере один ангидрид карбоновой кислоты (A), диэтиленгликоль (B) и по меньшей мере один гликоль (C) с числом атомов углерода от 2 до 4, а также по меньшей мере одну алифатическую дикарбоновую кислоту (D) с числом атомов углерода от 5 до 12 и причем мольное соотношение компонентов (B) к (A) находится в интервале от 1,5 к 1 до 1,1 к 1, а массовая доля компонентов (A) и (B), в пересчете на массу всех компонентов в смеси, находится в области между 66 и 95% мас., с
b) полиизоционатсодержащим компонентом,
c) пенообразующим агентом,
d) одним или несколькими катализаторами,
e) при необходимости, огнезащитными средствами и/или другими вспомогательными веществами и добавками.



 

Похожие патенты:

Изобретение относится к нанодисперсной системе на основе глины для получения полиуретанового нанокомпозита и способу ее получения. Нанодисперсная система содержит предварительно вспученную неорганическую глину, не модифицированную органическим противоионом, и изоцианат, не модифицированный органическим ониевым ионом, причем указанная предварительно вспученная неорганическая глина расщепляется на тонкие пластинки с образованием указанной нанодисперсной системы на основе глины.

Изобретение относится к процессам получения пористых пленочных материалов с размером пор микрометрового диапазона из алифатических сополиамидов. Способ включат получение раствора сополимера ε-капролактама и полигексаметиленадипинамида с соотношением компонентов 40:60-60:40 мас.% или сополимера полигексаметиленадипинамида и полигексаметиленсебацинамида с соотношением компонентов 60:40 мас.% концентрацией 10-30 мас.% при Т=50-70°C в спирто-водной смеси с содержанием этанола 45-97 об.%, фильтрацию раствора, его обезвоздушивание и подачу через щелевую фильеру на подложку, выдержку на воздухе сформованного раствора при Т=20-40°C в течение 30-150 сек, осаждение в воде при Т=20°C в течение 1-5 мин, сушку полученной пленки при Т=20-70°C.

Изобретение относится к водным композициям покрытий с низким содержанием летучих органических соединений (ЛОС). Композиция включает, по меньшей мере один латексный полимер, по меньшей мере один пигмент, воду и по меньшей мере одну вспомогательную добавку.

Настоящее изобретение может быть использовано в химии полимеров и относится к фосфорно-серному соединению, представленному структурой и способу получения вспененного полимера, который включает образование расплавленной смеси горючего термопластичного или термореактивного полимера, по меньшей мере, одного вспенивающего средства и указанного фосфорно-серного соединения под давлением с последующим экструдированием расплавленной смеси.

Изобретение относится к новым форполимерам, которые получают из диизоцианатов и олигомеров, терминированных формамидом, а также к применению этих форполимеров. Форполимеры обладают следующей общей формулой I X − [ − N ( C H O ) − C O − N H − R 1 − N C O ] n                   ( I ) в которой R1 означает остаток арилалкила, имеющий от 6 до 13 атомов углерода, или остаток алкилена, имеющий от 4 до 13 атомов углерода, n равно целому числу от 2 до 4, Х означает n-валентный органический остаток, предпочтительно остаток формулы II Y − [ − ( C H 2 − C H R 3 − ( C H 2 ) p − O ) m − C H 2 − C H R 4 − ( C H 2 ) o − ] n −           ( I I ) в которой Y означает n-функциональный, насыщенный остаток, имеющий от 2 до 6 атомов углерода, n имеет указанное выше значение, R3 означает водород или метил, R4 означает водород или метил, m равно целому числу от 2 до 30, о равно 0 или 1, р равно 0, 1 или 2.

Изобретение относится к экспандируемому тетрафторэтиленовому (ТФЭ) сополимеру, пористому материалу, в виде профилированного изделия, содержащему такой сополимер, и профилированному изделию.

Изобретение относится к конструкционному материалу для авиа- и судостроения, машиностроения, промышленного и гражданского строительства, способу получения такого материала и его применению для получения конструкций и изделий.

Изобретение относится к способу получения вспененного полимера на основе стирольного гомополимера или сополимера и к экструдированным пенопластам, полученным этим способом.

Изобретение относится к области получения листовых полимерных пеноматериалов и может найти применение в производстве ортопедических изделий, детских игрушек, спортивных покрытий и ковриков, разнообразнейших декоративных материалов.
Изобретение относится к термопластичным полимерным пенам, и в особенности к экструдированным пеносмесям низкой плотности, и к их переработке. .

Изобретение относится к новым фотохромным мономерам и новым полимерам на их основе, предназначенным для создания двухфотонных фотохпромных регистрирующих сред для трехмерной оптической памяти и фотопереключателей оптических сигналов.

Настоящее изобретение относится к способу получения полиэфир-сложноэфирных полиолов, причем стартовые соединения с активными по Церевитинову атомами водорода (а) взаимодействуют с, по меньшей мере, одним алкиленоксидом (b) в присутствии, по меньшей мере, одного амина (с), выбранного из группы, состоящей из третичного амина, незамещенного имидазола и замещенного имидазола, в присутствии, по меньшей мере, одного сложного эфира жирной кислоты (d) и где более 99 %масс.

Настоящее изобретение относится к биосовместимому полиизоцианатному макромеру или смеси макромеров для использования в качестве клея или уплотнителя для внутреннего применения, представленных формулой: где f равно двум или более; а находится в диапазоне от 1 до 5 и R1 представляет собой где d находится в диапазоне от 0 до 5 и с может находиться в диапазоне от 1 до 100; R2 представляет собой где R3 представляет собой линейный или разветвленный остаток водорастворимого полимера, который образует сложноэфирные связи с R4 и уретановые связи с R1, когда а равно единице или более; и R4 представляет собой линейный или разветвленный органический остаток, содержащий две или более карбоксилатные концевые группы, и х указывает количество повторяющихся R4 и находится в диапазоне 2≤х≤6.
Изобретение раскрывает способ приготовления не содержащего растворителя двухкомпонентного полиуретанового клея с низким содержанием свободного мономера МДИ (дифенилметандиизоцианата).

Настоящее изобретение относится к изоцианат-реакционноспособной смеси, применяемой в качестве полиольного компонента при получении полиизоциануратов, включающей катализатор тримеризации, выбранный из карбоксилатов щелочного металла, карбоксилатов четвертичного аммония и их смесей, при этом карбоксилаты имеют 1-12 углеродных атомов, и получаемой путем реакции фталевого ангидрида и/или тримеллитового ангидрида с полиолом, имеющим среднюю эквивалентную массу 100-2500 и среднюю номинальную гидроксильную функциональность 2-8 в таких количествах, что молярное количество ангидрида изменяется в пределах от 0,1 до 99% от эквивалентного количества гидроксила полиола, где отношение числа групп карбоновой кислоты к числу сложноэфирных групп, где и те и другие образуются в реакции между ангидридными группами и полиолом, составляет 0,9-1,1 к 1, и где, по меньшей мере, 60% ангидридных групп прореагировали.
Настоящее изобретение относится к пенополиуретанам, полученным из сложных полиэфирполиолов, полученных реакцией диолов со смесью двухосновных кислот, произведенных из смеси динитрильных соединений, получаемых как побочные продукты в производстве адипонитрила путем гидроцианирования бутадиена.

Настоящее изобретение относится к полиэфирполиолам на основе сложных эфиров, используемых для получения полиуретановых и полиизоциануратных продуктов, также изобретение относится к полиольной композиции для получения жесткого пеноматериала и к способу получения жесткого пеноматериала.

Изобретение относится к способу получения реакционно-способной полиуретановой эмульсии для пропитывающего состава и/или покрытия для текстильных поверхностей, а также к мягкому полиуретану.

Изобретение относится к полиуретановым эластомерным изделиям, таким как непневматические покрышки, полученным из форполимерных смесей, в которых содержание свободного дифенилметандиизоцианата (МДИ) составляет от 2,0 до 5,0 мас.% в расчете на массу форполимерной смеси.
Наверх