Тампонажный состав "реолит"

Изобретение относится к области нефтедобычи, в частности к строительству и ремонту скважин, при цементировании обсадных колонн и проведении водоизоляционных работ при низких и нормальных скважинных температурах. Технический результат заключается в повышении изолирующей способности, прочностных и адгезионных свойств образующегося цементного камня, при одновременном обеспечении прокачиваемости тампонажного состава и достижении оптимальных сроков его твердения при низких и нормальных скважинных температурах при цементировании обсадных колонн и проведении водоизоляционных работ в скважинах. Тампонажный состав содержит цемент и комплексную добавку. В качестве цемента содержит портландцемент. Комплексная добавка состоит из поливинилпирролидона, поликарбоксилата и воды технической. Дополнительно она содержит ультрадисперсный кремнезем и пеногаситель, при следующем соотношении компонентов, вес.ч.: при следующем соотношении компонентов тампонажного состава, вес.ч.: портландцемент 100, поливинилпирролидон 0,7-0,8, поликарбоксилат Melflux 1641F 0,25-0,4, ультрадисперсный кремнезем в виде белой сажи БС-120 0,2-0,4, пеногаситель 0,03-0,04, вода техническая 42-43. 3 пр., 2 табл.

 

Изобретение относится к области нефтедобычи, в частности к строительству и ремонту скважин, при цементировании обсадных колонн и проведении водоизоляционных работ при низких и нормальных скважинных температурах.

Известен тампонажный раствор (патент RU №2315077, МПК С09K 8/467, опубл. 20.01.2008 г.), содержащий портландцемент, воду и пластификатор - алкилбензилметиламин хлорид и поливинилпирролидон при следующем соотношении компонентов мас.%: портландцемент - 66, алкилбензилметиламинхлорид - 0,1-0,3, поливинилпирролидон - 0,2, вода - остальное.

Известен тампонажный состав для установки зарезных опорных мостов (патент RU №2434923, МПК С09K 8/467, опубл. 27.11.2011), содержащий Микродур, ускоритель сроков схватывания, добавку и воду, дополнительно содержит портландцемент, в качестве добавки - пластификатор - поликарбоксилат Melflux F и пеногаситель - Полицем ДФ, а в качестве ускорителя сроков схватывания - полиоксихлорид алюминия и хлорид кальция при их массовом соотношении 1:4, при этом все компоненты взяты в следующем соотношении, мас.%: портландцемент - 65,3-70,4, Микродур - 0,72-7,6, указанный пластификатор - 0,02-0,23, Полицем ДФ - 0,07-0,15, полиоксихлорид алюминия - 0,06-0,53, хлорид кальция - 0,24-2,12, вода техническая - 24,1-28,5

Известен полимерцементный тампонажный раствор для низкотемпературных скважин (патент RU №2370515, МПК С09K 8/487, опубл. 20.10.2009), содержащий портландцемент, понизитель водоотдачи - CFL-117, адгезионную добавку - Конкрепол, расширяющую добавку и воду. В качестве портландцемента раствор содержит портландцемент ПТЦ-50-1-50, а в качестве расширяющей добавки - НРС-1М при следующем соотношении компонентов, вес.ч.: портландцемент ПТЦ-50-1-50 - 90-92, CFL-117 - 0,2-0,3, Конкрепол - 1,0, НРС-1 М - 8-10, вода - 45-50.

Известен полимерцементный тампонажный раствор (патент RU №2319722, МПК С09K 8/467, опубл. 20.03.2008), ближайший по технической сущности к заявляемому составу и принятый за прототип, содержащий цемент, полимерную добавку и воду, в качестве добавки содержит понизитель водоотдачи - CFL-117 и упрочняющую и адгезионную - Конкрепол (поливинилпирролидон) при следующем соотношении ингредиентов, вес.ч.: цемент - 100, CFL-117 - 0,4-0,8, Конкрепол - 0,6-1,0, вода - 42-50.

Недостатком известного тампонажного раствора являются невысокие реологические характеристики (прокачиваемость) полимерцементного раствора и недостаточная адгезия к поверхности обсадной колонны и к стенкам скважин при введении в композицию минеральных расширяющих добавок.

Задачей, на решение которой направлено заявляемое изобретение, является повышение качества цементного камня: увеличение прочности цементного камня на сжатие и изгиб, его сцепления с обсадными трубами, снижение проницаемости и контракции при сохранении высокой подвижности (прокачиваемости) полимерцементной суспензии.

Технический результат, достигаемый предлагаемым изобретением, заключается в повышении изолирующей способности, адгезионных свойств и уменьшение водоотделения образующегося цементного камня при цементировании обсадных колонн и проведении водоизоляционных работ в скважинах в условиях низких и нормальных скважинных температур.

Указанный технический результат достигается тем, что в тампонажном составе, содержащем цемент и комплексную добавку, новым является то, что в качестве цемента содержит портландцемент, комплексная добавка состоит из поливинилпирролидона, поликарбоксилата и воды технической, а также дополнительно содержит ультрадисперсный кремнезем и пеногаситель, при следующем соотношении компонентов, вес.ч.:

В качестве поликарбоксилата содержит поликарбоксилат Melflux 1641F.

В качестве пеногасителя содержит пеногаситель Пента-465.

В качестве ультрадисперсного кремнезема содержит ультрадисперсный кремнезем БС-120.

Тампонажный состав с повышенными характеристиками прочности и долговечности цементного камня готовится на основе модифицирования структуры - регулирования химических и физико-химических процессов, протекающих при гидратации цемента. Такой способ модификации, как снижение содержания дисперсной среды (водоцементного отношения) при введении супер- и гиперпластификаторов, использование ультрадисперсных и наноструктурирующих добавок позволяет в первую очередь уплотнить структуру цементного камня и, как следствие, повысить его прочностные и изолирующие свойства.

Максимально снизить содержание дисперсионной среды (водоцементное отношение) в предлагаемом тампонажном составе позволяет введение поликарбоксилата Melflux 1641F, механизм действия которого, в отличие от обычных суперпластификаторов, обеспечивается за счет электростатического и стерического эффектов и позволяет получить необходимую подвижность тампонажного состава не только в процессе затворения, но и в процессе закачки и продавки его в заколонное пространство в скважине. При этом количество дисперсной среды в тампонажном составе остается достаточным для гидратации цемента и формирования качественного цементного камня. Добавка поликарбоксилата Melflux 1641F не оказывает значительно замедляющего эффекта при схватывании тампонажного состава, но улучшает прочностные свойства цементного камня за счет диспергирующего действия, которое способствует уплотнению структуры цементного камня за счет более плотной упаковки частиц цемента, не требуется большого количества добавки для получения максимального эффекта пластификации.

Добавка в тампонажный состав неионогенного высокомолекулярного полимера поливинилпирролидона приводит к стабилизации системы. Улучшаются фильтрационные свойства тампонажного раствора, дополнительно увеличиваются сроки схватывания и время набора пластической прочности. За счет эффективного снижения пористости и увеличения содержания нитевидных кристаллов C3SH в общей кристаллической структуре цементного камня, которая приобретает спутанно-волокнистый характер, увеличиваются прочность на сжатие и изгиб и адгезионные свойства тампонажного камня.

Добавка в тампонажный состав ультрадисперсного кремнезема наноразмерного масштаба частиц оказывает наибольшое влияние на прочностные свойства цементного камня. Средний диаметр наночастиц кремнезема (19-27 нм) в 103 раз меньше частиц самого цементного клинкера. Такие частицы приобретают иную физико-химическую и механохимическую активность, в силу чего могут принципиальным образом изменять процессы синтеза, структурообразования, менять термодинамическую и энергетическую обстановку в дисперсной системе, какой является тампонажный состав. Расчеты показывают, что уже при дозировке наноразмерных частиц кремнезема 0,1% от массы цемента в системе появляется порядка 105 м2 дополнительной активной площади раздела фаз и 2 МДж избыточной поверхностной энергии. Введение ультрадисперсного кремнезема в предлагаемом тампонажном составе позволяет существенным образом изменить обстановку формирования системы твердения. Структурообразующее участие и модифицирующее влияние микродобавки кремнезема в системе цемент-ультрадисперсный кремнезем заключается в связывании выделяющегося при гидратации цемента портландита активным компонентом ультрадисперсным кремнеземом в низкоосновные гидросиликаты кальция, а также микроармирующим действием образующихся гидроацетоалюминатов кальция, кристаллы которых повышают плотность и прочность цементного камня. Ультрадисперсный кремнезем в сочетании с образующимися гидроацетоалюминатами кальция принимает непосредственное участие в формировании структуры цементного камня, встраиваясь в структуру гидратов и заполняя поры, тем самым повышая непроницаемость цементного камня; а также приводит к образованию первичного каркаса, что обеспечивает кинетику набора прочности цементного камня на ранних сроках твердения.

Введение в состав комплексной добавки дополнительно пеногасителя Пента-465 позволяет исключить пенообразование в цементном растворе, которое в результате может привести к формированию пористого цементного камня и, как следствие, снижению его прочности.

Тампонажный состав «Реолит», содержащий портландцемент, комплексную добавку и воду, был испытан в лабораторных условиях. Для его приготовления были использованы следующие вещества: портландцемент ГОСТ 1581-96; вода техническая с жесткостью не более 5 мг-экв/л; полимерный водный раствор высокомолекулярного поливинилпиррилидона (реагент Конкрепол), выпускается ООО «ОргполимерсинтезСПБ» (Санкт-Петербург, Россия) по ТУ 9365-001-13802623-2003; суперпластификатор Melflux 1641 F, производитель BASF Constraction Polymers (Trostberg, Германия), химический состав - порошковый продукт, полученный методом распылительной сушки на основе модифицированного полиэфиркарбоксилата. Технические данные: форма - желтоватый порошок, насыпная плотность 400-600 г/л, потери при нагревании - макс. 2,0 мас.%, 20% раствор при 20°С имеет рН 6,5-8,5. Особенности: высокоэффективный диспергатор, снижает усадку, эффективен в широком диапазоне температур, обеспечивает высокую раннюю прочность; Белая сажа (БС-120) - ультрадисперсный кремнезем, гидратированный диоксид кремния, массовая доля двуокиси кремния не менее 86%, удельная поверхность 120±20 м2/г, выпускается ОАО «Сода» (Стерлитамак, Россия) согласно ГОСТ 18307-78; пеногаситель Пента-465 - водная эмульсия полиметилалкилсилоксанов, неионогенных ПАВ и аэросила, выпускается ООО «ПЕНТА-91» (Москва, Россия) согласно ТУ 2257-001-40245042-98.

Ингредиенты заявленного тампонажного состава «Реолит» обладают синергетическим действием только при полной совокупности заявленных компонентов и при заявленном их количественном соотношении. Замена, исключение или изменение количества одного из компонентов приводит к недостижению задач изобретения.

Примеры приготовления предлагаемого тампонажного состава «Реолит».

Пример №1. Для приготовления жидкости затворения брали 420 г воды, в которой растворяли 8 г поливинилпиррилидона, 3 г суперпластификатора Melflux 1641F, 0,3 г пеногасителя Пента-465 и добавляли 2,8 г ультрадисперсного кремнезема. Затем затворяли 1000 г портландцемента ПЦТ-1-G приготовленной жидкостью затворения. При этом получили тампонажный состав со следующим соотношением ингредиентов, вес.ч.: портландцемент 100; поливинилпиррилидон - 0,8; поликарбоксилат Melflux 1641 F - 0,3; пеногаситель Пента-465 - 0,03; ультрадисперсный кремнезем - 0,28; вода - 42.

Пример №2. Для приготовления жидкости затворения брали 430 г воды, в которой растворяли 7 г поливинилпиррилидона, 4 г поликарбоксилата Melflux 1641F, 0,4 г пеногасителя Пента-465 и добавляли 4 г ультрадисперсного кремнезема. Затем затворяли 1000 г портландцемент ПЦТ-I-G приготовленной жидкостью затворения. При этом получили тампонажный состав со следующим соотношением ингредиентов, вес.ч.: портландцемент - 100; поливинилпиррилидон - 0,7; поликарбоксилат Melflux 1641 F - 0,4; пеногаситель Пента-465 - 0,04; ультрадисперсный кремнезем - 0,4; вода - 43.

Пример №3. Для приготовления жидкости затворения брали 420 г воды, в которой растворяли 8 г поливинилпиррилидона, 2,5 г поликарбоксилата Melflux 1641F, 0,3 г пеногасителя Пента-465 и добавляли 2 г ультрадисперсного кремнезема. Затем затворяли 1000 г портландцемент ПЦТ-I-G приготовленной жидкостью затворения. При этом получили тампонажный состав со следующим соотношением ингредиентов, вес.ч.: портландцемент - 100; поливинилпиррилидон - 0,8; поликарбоксилат Melflux 1641 F - 0,25; пеногаситель Пента-465 - 0,03; ультрадисперсный кремнезем - 0,2; вода - 42.

Пример №4 (контрольльный). Для приготовления цементного раствора брали 440 г воды, в которой затворяли 1000 г портландцемент ПЦТ-I-G. При этом получили тампонажный состав со следующим соотношением ингредиентов, вес.ч.: портландцемент - 100; вода - 44.

Растекаемость определялась по конусу АзНИИ, плотность - пикнометром, коэффициент водоотделения в мерном цилиндре, сроки схватывания иглой Вика, время загустевания на консистометре Chandler, пределы прочности тампонажного камня на изгиб на Мультитестере; пределы прочности на сжатие на автоматизированном прессе (OFITE).

Данные о свойствах исследованных тампонажных составов и тампонажного камня приведены в таблице 1.

Таблица 1
Свойства тампонажного раствора и камня при 25°С
№примера тампонажного состава В/Ц Д, мм Сроки схватывания: начало-конец, мин σИЗГ, МПа σсж, МПа Водо-отделение, мл Адгезия к металлу, МПа
1 0,42 >255 450-595 6,33 25.77 1,2 1,55
2 0,43 >255 416-540 7,83 28,01 0,9 1,45
3 0,42 >255 333-508 7,23 31,14 1,8 2,09
4 контрольный 0,44 250 400-473 4,92 18,82 4 0,89

Тампонажный состав, содержащий цемент и комплексную добавку, отличающийся тем, что в качестве цемента содержит портландцемент, комплексная добавка состоит из поливинилпирролидона, поликарбоксилата и воды технической, а также дополнительно содержит ультрадисперсный кремнезем и пеногаситель, при следующем соотношении компонентов, вес.ч.:

Портландцемент 100
Поливинилпирролидон 0,7-0,8
Поликарбоксилат Melflux 1641F 0,25-0,4
Ультрадисперсный кремнезем в виде
белой сажи БС-120 0,2-0,4
Пеногаситель Пента-465 0,03-0,04
Вода техническая 42-43



 

Похожие патенты:
Изобретение относится к цементной композиции, способу цементирования в межтрубном пространстве между обсадной колонной скважины и буровой скважиной и к сухой цементной композиции.

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам герметизации эксплуатационной колонны скважины. Способ герметизации эксплуатационной колонны скважины включает спуск в эксплуатационную колонну насосно-компрессорных труб (НКТ) и установку открытого конца НКТ на глубине ниже интервала нарушения.

Изобретение относится к нефтегазодобывающей промышленности, может быть использовано при изоляции водопритоков в скважину. Способ изоляции водопритоков в скважину включает определение приемистости скважины при максимальном давлении, закачку в пласт гелеобразующего состава с последующим докреплением нефильтрующимся в пласт составом.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для ремонтно-изоляционных работ, увеличения нефтеотдачи пластов. Способ изоляции пластов цементно-силикатными растворами включает нагнетание в прискважинную зону пласта цементного раствора с ускорителем схватывания.
Изобретение относится к нефтяной промышленности, в частности к способу приготовления состава для получения кислоторастворимого тампонажного камня. Способ может быть использован для приготовления составов, применяемых преимущественно для закрепления водоизоляционных составов в горизонтальном стволе скважины, для временного блокирования пластов, установки опорного моста с целью зарезки бокового ствола скважины.
Изобретение относится к заканчиванию и ремонту нефтяных и газовых скважин и может быть использовано в условиях аномально высоких пластовых давлений и высоких температур для первичного и вторичного вскрытия продуктивных пластов, для глушения и выполнения различных видов работ, в том числе в многопластовых скважинах, имеющих разное пластовое давление и проницаемость пластов.

Изобретения могут быть использованы в области химии, а также в области обработки подземных формаций. Способ включает стадии обеспечения материала, содержащего бор, выбранного из группы, состоящей из улексита, пробертита, кернита и их смесей, введения материала, содержащего бор, в предварительно нагретую до температуры от 426,7 °С до 537,8 °С печь, а также его нагревание от примерно 5 мин до примерно 120 мин, удаления материала, содержащего бор, из печи и охлаждения его до комнатной температуры.
Изобретение относится к нефтегазовой промышленности, а именно к производству проппантов, используемых при добыче нефти и газа методом гидравлического разрыва пласта.

Предложение относится к нефтедобывающей промышленности, в частности к повышению нефтеотдачи пластов на поздней стадии разработки нефтяной залежи. Технический результат - увеличение нефтеотдачи пластов и снижение обводненности добывающих скважин, повышение эффективности охвата пласта воздействием, расширение технологических возможностей способа.

Изобретение относится к нефтедобывающей промышленности, в частности к осадко- и гелеобразующим реагентам на основе водорастворимых акриловых полимеров, предназначенным для снижения водопроницаемости неоднородных нефтяных пластов и ограничения притока вод в продуктивные скважины при разработке нефтяных месторождений заводнением.

Группа изобретений относится к эластомерам и, конкретнее, к армированным эластомерам. Способ выполнения скважинного уплотнения в стволе скважины содержит создание базового полимера и армирующего активного наполнителя, включающий в себя матрицу дискретных частей первого материала, расположенную в базовом полимере. Развертывают скважинное уплотнение в стволе скважины в первой фазе. Воздействуют на скважинное уплотнение текучей среды ствола скважины, при этом осуществляется переход уплотнения во вторую фазу под воздействием текучей среды ствола скважины. Причем дискретные части первого материала отличаются взаимодействиями между собой и/или с базовым полимером, более слабыми перед воздействием текучей среды ствола скважины, чем после воздействия. При этом первая фаза отличается первым модулем упругости, и вторая фаза отличается вторым модулем упругости, второй модуль больше первого модуля. Техническим результатом является повышение эффективности уплотнения. 3 н. и 22 з.п. ф-лы, 14 ил., 2 пр., 4 табл.

Изобретение относится к газовой промышленности и может быть использовано для крепления призабойной зоны пескопроявляющих газовых скважин, в том числе используемых для подземного хранения газа. Способ крепления призабойной зоны пласта с неустойчивыми породами включает создание фильтра путем приготовления и закачки отверждающегося полимерного состава в призабойную зону. При этом перед и после указанным составом закачивается растворитель, объем которого составляет 10-30% об. от полимерного состава. После чего скважину продувают потоком газа и производят выдержку на реагирование и отверждение состава. Причем качестве отверждающегося полимерного состава используется смесь кремнийорганической смолы и растворителя Химеко-П - 95,0-98 мас.%: отвердитель АГМ-9 - 5,0-2,0 мас.%, представляющий собой аминопропилтриэтоксисилан. В качестве растворителя используется ксилол или смесь кубовых остатков ректификации КОРЭ 0,0-100 мас.% и 100,0-0,0 мас.% ароматического растворителя Нефрас А. Техническим результатом является повышение эффективности способа. 1 ил., 1 табл.
Изобретение относится к нефтегазодобывающей промышленности, а именно к безглинистым гелево-эмульсионным буровым растворам для бурения наклонно-направленных и горизонтальных нефтяных и газовых скважин с различными отклонениями от вертикали. Буровой раствор, содержащий углеводородную фазу и поверхностно-активные вещества, утяжелитель, минеральные соли, стабилизатор и воду, содержит в качестве углеводородной фазы и поверхностно-активных веществ добавку МУЛЬТИОЛ, в качестве стабилизатора - МУЛЬТИСТАР и ксантановую камедь и дополнительно гидроксид натрия, при следующем соотношении компонентов, мас.%: реагент МУЛЬТИОЛ 8,5-25, стабилизатор МУЛЬТИСТАР 1,5-2,0, ксантановая камедь 0,2-0,5, карбонат кальция 5-20, хлорид магния 4-15, гидроксид натрия 1-2, вода остальное. Изобретение развито в зависимых пунктах формулы изобретения. Технический результат - повышение ингибирующих и смазочных свойств. 7 з.п. ф-лы, 2 пр., 2 табл.
Изобретение относится к созданию расклинивающих агентов - проппантов, которые используются для удержания в открытом состоянии трещин в породах, образованных при закачке жидкости с проппантом в нефтяные, газовые и геотермальные скважины. Проппант, полученный из каолина Нижне-Увельского месторождения, представляющий собой спеченные обожженные керамические гранулы со средним размером 0,15-2,0 мм, с насыпной плотностью 1,35-1,47 г/см3 и удельным весом 2,37-2,49 г/см3, состава, мас.%: оксид алюминия 17,00-29,00, диоксид кремния 65,00-77,00, оксид кальция 0,20-0,39, оксид хрома 0,03-0,0, оксид железа 1,80-4,20, оксид калия 0,40-0,95, оксид натрия 0,20-0,38, оксид титана 1,20-2,00, оксид магния 0,50-1,00, оксид марганца 0,00-0,01, пятиокись фосфора 0,00-0,01. Способ применения указанного выше проппанта в качестве расклинивающего агента при интенсификации добычи нефти и газа методом гидравлического разрыва пласта путем закачивания в продуктивный пласт смеси, содержащей гранулы проппанта. Технический результат - повышение прочности. 2 н.п. ф-лы, 1 табл.
Изобретение относится к нефтегазодобывающей промышленности, а именно к технологии изготовления керамических проппантов, предназначенных для использования в качестве расклинивающих агентов при добыче нефти или газа методом гидравлического разрыва пласта. Способ изготовления высокопрочного магнийсиликатного проппанта, включающий помол исходной шихты, ее гранулирование и обжиг полученных гранул, где помол исходной шихты, содержащей 24-28 масс.% MgO, осуществляют до фракции 8 мкм и менее, а гранулирование производят на воде с добавлением натриевой или калиевой соли полиметиленнафталинсульфокислоты или поликарбоксиметиленсульфокислоты в количестве 0,02-0,07% от массы шихты в пересчете на твердое вещество. Изобретение развито в зависимых пунктах формулы. Технический результат - получение среднеплотного высокопрочного проппанта. 2 з.п. ф-лы, 2 пр., 2 табл.

Изобретение относится к нефтегазодобывающей промышленности и может быть применено для гидравлического разрыва пласта. Способ включает перфорацию в интервале пласта, спуск колонны труб с пакером, посадку пакера, закачку в подпакерную зону гелированной жидкости разрыва, заполнение колонны технологической жидкостью, определение общего объема гелированной жидкости разрыва, создание в подпакерной зоне давления гидроразрыва пласта и продавку в образовавшуюся трещину пласта гелированной жидкости разрыва с проппантом, выдержку в течение времени, необходимого для спада давления на 70%, распакеровку и извлечение пакера с колонной труб из скважины. После определения общего объема гелированной жидкости разрыва закачивают в скважину по колонне труб гелированную жидкость разрыва - линейный гель - до образования трещин разрыва в пласте, оставшийся объем гелированной жидкости разрыва после образования трещин разрыва в пласте разделяют на две части: сшитый гель и линейный гель, циклически производят поочередную закачку сначала линейного, а затем сшитого геля с добавлением проппанта в 3-5 циклов. Причем линейный гель закачивают равными порциями с расходом 4-6 м3/мин и концентрацией проппанта 400 кг/м3, а сшитый гель закачивают со ступенчатым увеличением объема закачки от 3 до 7 м3 с расходом 1-2 м3/мин и концентрацией проппанта 1200 кг/м3. При этом в последние порции линейного и сшитого гелей с проппантом добавляют стекловолокно в количестве 1,5% от веса проппанта в каждой из последних порций линейного и сшитого гелей. Технический результат заключается в повышении эффективности гидравлического разрыва пласта. 2 ил.

Изобретение относится к доставке зернистого материала на участок, расположенный под землей. Скважинный флюид является жидкостью-носителем на водной основе, содержащим первый и второй гидрофобные зернистые материалы - частицы, суспендированные в нем, где первые частицы имеют больший удельный вес, чем вторые, и флюид содержит газ для смачивания поверхности частиц и связывания их вместе в агломераты. Способ доставки зернистого материала под землю, включающий подачу указанного выше флюида так, что агломераты из частиц, удерживаемых газом, находятся ниже грунта. Способ гидравлического разрыва подземного газонефтеносного пласта включает доставку указанного выше флюида к трещине и подачу его в трещину так, что агломераты из частиц, удерживаемые газом, находятся в трещине. Изобретение развито в зависимых пунктах формулы. Технический результат - облегчение транспортирования и размещения зернистых материалов в трещине гидравлического разрыва или гравийной набивке. 3 н. и 12 з.п. ф-лы, 5 табл., 8 пр., 6 ил.
Изобретение относится к нефтедобывающей промышленности и может быть использовано для кислотной обработки призабойной зоны пласта, представленного карбонатными или терригенными коллекторами. Технический результат - разработка многоцелевого состава для кислотной обработки призабойной зоны пласта, обладающего высокой проникающей способностью в пласт за счет замедления скорости реакции кислоты с породой пласта, ограничения образования и диспергирования отложений смолянистых осадков при контакте кислотного состава с нефтью, а также обладающего низким межфазным натяжением на границе кислотный состав/нефть и совместимостью с пластовой водой и нефтью. Состав для кислотной обработки призабойной зоны пласта включает, масс.%: соляную кислоту 24,9-90,0, реагент ИТПС-806 А 5,0-7,5, воду остальное. Состав может содержать фтористоводородную кислоту в количестве 4,0-10,0 масс.%. 1 з.п. ф-лы, 3 табл., 7 пр.

Представлен способ отклонения закачиваемой рабочей жидкости, содержащей понизитель трения, при гидравлическом разрыве пласта. Способ гидравлического разрыва подземной формации включает закачивание промежуточной жидкости с вязкостью менее чем приблизительно 50 мПа·с при скорости сдвига 100 с-1 при внешних условиях. Далее закачивают суспензию расклинивающего агента с вязкостью менее чем приблизительно 50 мПа·с при скорости сдвига 100 с-1 при внешних условиях. Закачивают загущенную жидкость с вязкостью более чем приблизительно 50 мПа·с при скорости сдвига 100 с-1 при внешних условиях или загущенную жидкость, которая во время закачки обладает вязкостью менее чем приблизительно 20 мПа·с, после чего загустевает. Техническим результатом является повышение эффективности гидроразрыва. 3 пр., 3 ил.

Изобретение относится к нефте-, газодобычи с применением проппантов. Способ получения проппанта включает получение смеси олигоциклопентадиенов путем нагрева дициклопентадиена до температуры 150-220°С и выдержки при данной температуре в течение 15-360 мин, охлаждение смеси до 20-50°С, последовательное введение в полученную смесь олигоциклопентадиенов следующих компонентов: по крайней мере одного из полимерных стабилизаторов, выбранных из указанной группы, по крайней мере одного из радикальных инициаторов, выбранных из указанных соединений, или их смеси, и катализатора - соединения приведенной формулы, при этом компоненты полимерной матрицы находятся в следующих количествах, масс.%: полимерные стабилизаторы 0,1-3; радикальные инициаторы 0,1-4; катализатор 0,001-0,02; смесь олигоциклопентадиенов - остальное, полученную полимерную матрицу выдерживают при температуре 20-50°С в течение 1-40 минут, после чего вводят в виде ламинарного потока в предварительно нагретую не ниже температуры матрицы воду, содержащую ПАВ из указанной группы, где смесь воды с ПАВ имеет вязкость ниже вязкости полимерной матрицы, в процессе постоянного перемешивания воду нагревают до 50-100°С, продолжая перемешивать в течение 1-60 мин, образовавшиеся микросферы отделяют от воды, нагревают в среде инертного газа до температуры 150-340°С и выдерживают в указанной среде при данной температуре в течение 1-360 мин. Полимерный проппант получен указанным выше способом. Технический результат - повышение термопрочности. 2 н.п. ф-лы, 33 пр.
Наверх