Гидродинамический стенд с системой поддержания давления

Изобретение относится к области испытательной техники и может быть использовано для опытного определения динамических характеристик пусковых устройств подводных аппаратов. Устройство содержит заполненный жидкостью прочный корпус с днищами, на одном из которых размещен быстроразъемный узел крепления пускового устройства подводного аппарата, направляющие элементы для подводного аппарата и устройство для его торможения, заполненную газом демпфирующую полость, систему уставки давления в демпфирующей полости, измерительно-регистрирующую и управляющую работой стенда аппаратуру и систему поддержания в демпфирующей полости постоянства установочного давления. При этом система поддержания давления содержит расположенный в демпфирующей полости уравнивающий цилиндр с пневматическим приводом, шток которого введен в демпфирующую полость прочного корпуса стенда и связан с поршнем уравнивающего цилиндра, замкнутый объем которого снабжен клапаном уравнивания в нем давления с демпфирующей полостью, а пневматический привод включает ресивер с воздухом высокого давления, программно-управляемый клапан и клапан сброса давления из рабочего объема пневматического привода. Технический результат заключается в обеспечении эффективного поддержания постоянного давления в демпфирующей полости стенда. 1 ил.

 

Изобретение относится к области экспериментальной техники и может быть использовано для опытного определения динамических характеристик пусковых устройств подводных аппаратов.

Известен гидродинамический стенд по патенту РФ №2398199, МПК G01M 10/00, 2010, содержащий камеру, заполненную водой, с направляющими дорожками для подводного аппарата, устройство для его торможения, воздушную демпфирующую емкость, систему установки гидростатического давления и узел крепления пускового устройства подводного аппарата, при этом в камере размещены подвижная перегородка для разграничения демпфирующей емкости и воды, выполненная в виде поршня с ограничивающим его ход упором и замыкателем для фиксации конечного положения поршня; переборка с откидывающейся крышкой, формирующая расходную полость, в которой установлен быстроразъемный узел крепления пускового устройства подводного аппарата, частично расположенного вне камеры, причем расходная полость и камера оснащены системой уравнивания давления с демпфирующей емкостью. Крышка переборки снабжена приводом открывания-закрывания, а стенд снабжен системой обеспечения давления в камере и расходной полости, включающей насос и клапаны наполнения и слива воды.

Такое техническое решение имеет следующий недостаток. При работе пускового устройства подводного аппарата пуск последнего осуществляется в закрытый объем камеры гидродинамического стенда, в результате чего в ней повышается давление. Это отрицательно сказывается на работе силовой установки пускового устройства и приводит к ухудшению наблюдаемых характеристик процесса пуска по отношению к аналогичным характеристикам, наблюдаемым в условиях постоянного внешнего давления. Это обстоятельство может быть частично нивелировано за счет существенного увеличения объема воздушной демпфирующей емкости стенда, что приводит к большим габаритным характеристикам и высокой стоимости последнего.

Для решения упомянутой проблемы создаются гидродинамические стенды, оснащенные системой поддержания давления в воздушной демпфирующей полости, например гидродинамический стенд по патенту РФ №2449254, МПК G01M 10/00, 2012, содержащий камеру с торцевыми переборками, заполненную жидкостью, и направляющими элементами для подводного аппарата, устройство для его торможения, воздушную демпфирующую полость, систему установки гидростатического давления, быстроразъемный узел крепления пускового устройства подводного аппарата, при этом торцевая переборка камеры, с размещенным в ней узлом для крепления пускового устройства, выполнена съемной, тормозное устройство штангами жестко позиционировано с пусковым устройством, по меньшей мере на двух штангах закреплены конструкции с направляющими элементами для подводного аппарата, а по меньшей мере на одной из штанг установлены датчики положения (движения) последнего относительно переднего среза пускового устройства в режиме пуска. Конструкции с направляющими элементами для подводного аппарата выполнены в виде рамочных кронштейнов, кабельные связи датчиков положения (движения) подводного аппарата с измерительно-регистрирующей и управляющей аппаратурой размещены внутри по меньшей мере одной штанги, прочная камера заполнена ингибитором, демпфирующая полость прочной камеры заполнена инертным газом и оснащена клапаном сброса газа или жидкости для их отвода по мере продвижения подводного аппарата при пуске.

Недостатком описанного выше технического решения является колебательный с большой амплитудой характер изменения давления в полости стенда при работе пускового устройства подводного аппарата, обусловленный наличием в системе поддержания давления только одного разгруженного пружинного клапана, имеющего большую инертность из-за большого проходного сечения, необходимого для обеспечения его эффективной работы.

Наиболее близким к настоящему изобретению и принятым в качестве прототипа является гидродинамический стенд с системой поддержания давления по патенту РФ №115477, МПК G01M 10/00, 2012, содержащий заполненный жидкостью прочный корпус с днищами, на одном из которых размещен быстроразъемный узел крепления пускового устройства подводного аппарата, направляющие элементы для подводного аппарата и устройство для его торможения, заполненную газом демпфирующую полость, систему уставки давления в демпфирующей полости, измерительно-регистрирующую и управляющую работой стенда аппаратуру и систему поддержания в демпфирующей полости постоянства установочного давления, при этом система поддержания давления содержит группу программно-управляемых в зависимости от расчетного закона повышения давления в демпфирующей полости электромагнитных клапанов разного проходного сечения, соединенных кабелями с управляющей аппаратурой.

Недостатком данного технического решения является необходимость одновременного функционирования нескольких программно-управляемых электромагнитных клапанов разного проходного сечения, что требует проведения сложной аналитической работы для координации процессов их открытия и закрытия во всем диапазоне имитируемых давлений. Кроме этого часть воздуха из демпфирующей полости безвозвратно выбрасывается в атмосферу, что требует восполнения его количества в демпфирующей полости перед каждым новым опытом.

Технической задачей настоящего изобретения является разработка конструкции гидродинамического стенда с системой поддержания давления, обеспечивающей минимально возможное отклонение давления в воздушной демпфирующей полости стенда от установочного при функционировании пускового устройства подводного аппарата за счет работы одного программно-управляемого клапана и не требующей сброса части воздуха из демпфирующей полости в атмосферу.

Техническим результатом полезной модели является обеспечение эффективного поддержания постоянного давления в воздушной демпфирующей полости стенда за счет работы одного программно-управляемого клапана без сброса части воздуха из демпфирующей полости в атмосферу.

Указанный результат достигается за счет того, что гидродинамический стенд с системой поддержания давления содержит заполненный жидкостью прочный корпус с днищами, на одном из которых размещен быстроразъемный узел крепления пускового устройства подводного аппарата, направляющие элементы для подводного аппарата и устройство для его торможения, заполненную газом демпфирующую полость, систему уставки давления в демпфирующей полости, измерительно-регистрирующую и управляющую работой стенда аппаратуру и систему поддержания в демпфирующей полости постоянства установочного давления, при этом система поддержания давления содержит расположенный в демпфирующей полости уравнивающий цилиндр с пневматическим приводом, шток которого введен в демпфирующую полость прочного корпуса стенда и связан с поршнем уравнивающего цилиндра, замкнутый объем которого снабжен клапаном уравнивания в нем давления с демпфирующей полостью, а пневматический привод включает ресивер с воздухом высокого давления, программно-управляемый клапан и клапан сброса давления из рабочего объема пневматического привода.

Сущность настоящего изобретения отражена на Фиг.1, где показана схема продольного разреза гидродинамического стенда с системой поддержания давления.

Гидродинамический стенд с системой поддержания давления содержит прочный корпус 1 с днищами 2, заполненный жидкостью 3 так, чтобы сформировать в верхней части корпуса 1 воздушную демпфирующую полость 4. На одном из днищ 2 размещен быстроразъемный узел крепления 5 пускового устройства 6 подводного аппарата 7, а на противоположном днище - устройство для его торможения 8. В корпусе 1 установлены направляющие элементы 9 для подводного аппарата 7. Внутри демпфирующей полости 4 расположен уравнивающий цилиндр 10, внутренний объем которого разделен поршнем 11 на два объема: замкнутый объем 12 и уравнивающий объем 13, свободно сообщающийся с демпфирующей полостью 4. Поршень 11 посредством штока 14 жестко соединен с поршнем 15 пневматического привода 16, делящим внутренний объем последнего на два объема: рабочий объем 17 и вентилируемый объем 18, постоянно сообщающийся с атмосферой через отверстия 19. Рабочий объем 17 через программно-управляемый регулирующий клапан 20 связан с ресивером 21, в котором находится запас воздуха высокого давления; кроме этого рабочий объем 17 имеет возможность вентиляции в атмосферу через клапан 22. В верхней части стенда расположен также клапан 23, позволяющий уравнивать давление внутри замкнутого объема 12 уравнивающего цилиндра 10 с давлением в демпфирующей полости 4.

На фиг.1 не показаны система уставки давления в демпфирующей полости, измерительно-регистрирующая и управляющая аппаратуры стенда.

Гидродинамический стенд с системой поддержания давления работает следующим образом.

Перед организацией на гидродинамическом стенде с системой поддержания давления опытных испытаний пускового устройства 6 подводного аппарата 7 исходя из проектных характеристик стенда и пускового устройства 6 производится комплексное компьютерное моделирование процесса пуска подводного аппарата 7 с целью получения расчетных законов повышения давления в воздушной демпфирующей полости 4 в зависимости от установочного (начального) давления в ней во всем диапазоне имитируемых глубин.

Перед началом испытаний с помощью быстроразъемного узла крепления 5 производится монтаж испытываемого пускового устройства 6 на стенд. Проверяется соосность пускового устройства 6, направляющих элементов 9 и устройства 8 для торможения подводного аппарата 7. Затем, с помощью не показанного на схеме заливного устройства, корпус 1 заполняется жидкостью 3 так, чтобы сформировать в верхней части последнего воздушную демпфирующую полость 4. Ресивер 21 наполняется воздухом высокого давления из не показанной на Фиг.1 системы воздуха высокого давления. Поршни 11 и 15 находятся в положении, когда рабочий 17 и уравнивающий 13 объемы минимальны, а вентилируемый 18 и замкнутый 12 объемы - максимальны (крайнее левое положение на Фиг.1). Стенд готов к работе.

С помощью не показанной на схеме системы уставки давления в демпфирующей полости 4 (соответственно, и в жидкости 3) создается начальное давление, имитирующее в процессе испытаний внешнее гидростатическое давление на определенной глубине. Затем с помощью клапана 23 давление внутри замкнутого объема 12 уравнивающего цилиндра 10 уравнивается с давлением в демпфирующей полости 4. Клапан 23 закрывается.

По команде от управляющей аппаратуры (на Фиг.1 не показана) срабатывает пусковое устройство 6, подводный аппарат 7 выходит внутрь прочного корпуса 1, что сопровождается увеличением давления в демпфирующей полости 4. Одновременно по сигналу управляющей аппаратуры срабатывает регулирующий клапан 20 и из ресивера 21 в рабочий объем 17 пневматического привода 16 подается сжатый воздух. Под действием давления сжатого воздуха поршень 15, шток 14 и поршень 11 начнут перемещаться вправо (см. Фиг.1), при этом:

- воздух из вентилируемого объема 18 будет выходить в атмосферу через отверстия 19, что позволит не создавать в нем дополнительное давление, препятствующее движению поршневой группы;

- давление в замкнутом объеме 12 будет расти вследствие уменьшения последнего;

- свободно сообщающийся с демпфирующей полостью 4 уравнивающий объем 13 уравнивающего цилиндра 10 будет увеличиваться, компенсируя повышение давления внутри демпфирующей полости 4.

Закон открытия регулирующего клапана 20 для каждой величины начального давления внутри корпуса 1 (имитируемого давления на глубине пуска) выбирается исходя из полученных перед испытаниями расчетных законов повышения давления в воздушной демпфирующей полости 4 таким образом, чтобы в каждый отдельный момент времени повышение давления в демпфирующей полости 4 компенсировалось увеличением ее объема за счет увеличения уравнивающего объема 13 уравнивающего цилиндра 10.

После начала выхода подводного аппарата 7 из пускового устройства 6 его перемещение внутри прочного корпуса 1 фиксируется не показанной на Фиг.1 измерительно-регистрирующей аппаратурой стенда.

После полного выхода из пускового устройства 6 подводного аппарата 7, его носовая оконечность входит в устройство для его торможения 8. За счет обтюрации подводного аппарата 7 в кольцевых переборках, давление в замыкаемой аппаратом 7 емкости тормозного устройства 8 возрастает, чем формируется тормозное воздействие, в результате чего аппарат останавливается (подробнее см. патент РФ на полезную модель №87510, МПК F41F 3/10, 2009).

После остановки подводного аппарата 7 поршень 15, шток 14 и поршень 11 переводятся в исходное положение, для чего регулирующий клапан 20 закрывается, а клапан 22 открывается. Воздух из рабочего объема 17 пневматического привода 16 сбрасывается в атмосферу и поршень 15, шток 14 и поршень 11 перемещаются в исходное (крайнее левое - см. Фиг.1) положение под действием давления в замкнутом объеме 12 уравнивающего цилиндра 10.

После возврата подводного аппарата 7 в пусковое устройство 6 и восполнения энергетического запаса последнего в демпфирующей полости 4 заново формируется давление, соответствующее имитируемой глубине пуска. Стенд готов к следующему срабатыванию.

Таким образом, предлагаемый гидродинамический стенд с системой поддержания давления позволяет решить поставленную техническую задачу разработки конструкции гидродинамического стенда с системой поддержания давления, обеспечивающей минимально возможное отклонение давления в воздушной демпфирующей полости стенда от установочного при функционировании пускового устройства подводного аппарата за счет работы одного программно-управляемого клапана и не требующей сброса части воздуха из демпфирующей полости в атмосферу.

Гидродинамический стенд с системой поддержания давления, содержащий заполненный жидкостью прочный корпус с днищами, на одном из которых размещен быстроразъемный узел крепления пускового устройства подводного аппарата, направляющие элементы для подводного аппарата и устройство для его торможения, заполненную газом демпфирующую полость, систему уставки давления в демпфирующей полости, измерительно-регистрирующую и управляющую работой стенда аппаратуру и систему поддержания в демпфирующей полости постоянства установочного давления, отличающийся тем, что система поддержания давления содержит расположенный в демпфирующей полости уравнивающий цилиндр с пневматическим приводом, шток которого введен в демпфирующую полость прочного корпуса стенда и связан с поршнем уравнивающего цилиндра, замкнутый объем которого снабжен клапаном уравнивания в нем давления с демпфирующей полостью, а пневматический привод включает ресивер с воздухом высокого давления, программно-управляемый клапан и клапан сброса давления из рабочего объема пневматического привода.



 

Похожие патенты:

Изобретения относятся к области судостроения, в частности к экспериментальным методам испытания моделей в опытовых и ледовых бассейнах при проведении испытаний заякоренных объектов, и могут быть использованы для непосредственных измерений инерционных характеристик изучаемой модели.

Группа изобретений относится к области гидродинамики, в частности к стендовому оборудованию для моделирования гидроабразивного износа насосов. Способ гидроабразивных испытаний погружных насосов, при котором насос с электродвигателем размещают в подвешенном состоянии, абразивный материал подают с рабочей жидкостью из узла подвода во вращающийся насос.

Изобретение относится к области судостроения, касается вопроса экспериментального определения характеристик нестационарных сил, возникающих на элементах судовых движителей.

Изобретение относится к области экспериментальной гидродинамики морского транспорта. .

Изобретение относится к области экспериментальной техники для исследований гидродинамики и динамики судов и касается создания опытовых бассейнов с возможностями моделирования в них волнения.

Изобретение относится к области экспериментальной техники и может быть использовано для испытаний различных подводных объектов и пусковых устройств, в частности пусковых устройств торпедных аппаратов.

Изобретение относится к испытательной технике, в частности к методам и средствам проверки технического состояния скважинных установок электроцентробежных насосов (УЭЦН) при проведении мероприятий по техническому обслуживанию.

Изобретение относится к области двигателестроения и может быть использовано в испытаниях топливной аппаратуры дизельных двигателей. .

Изобретение относится к области экспериментальной техники и может быть использовано для опытного определения динамических характеристик пусковых устройств подводных аппаратов.

Изобретение относится к нефтедобывающей промышленности и предназначено для повышения нефтеотдачи продуктивных пластов. .

Изобретение относится к судостроению и касается проектирования экранопланов. При определении аэродинамических характеристик горизонтального оперения экраноплана с установленными на нем работающими маршевыми двигателями изготавливают геометрически подобную модель горизонтального оперения и двигателей силовой установки. Модель испытывается в опытовом бассейне в прямом движении. Модель крепится на пилоне буксировочной тележки через динамометр, используемый для гидродинамических исследований, в зоне отсутствия вихреобразования от движения тележки. Моделирование струи силовой установки производится моделированием диаметра сопла и тяги. При движении тележки на фиксированной скорости и обдувки горизонтального оперения струями двигателей маршевой силовой установки определяются аэродинамические характеристики при различных сочетаниях углов атаки горизонтального оперения, тяги двигателей, отклонения рулей высоты, что позволяет экспериментально-расчетным способом оперативно определять параметры, являющиеся одним из основных элементов инструкции в обеспечении расчета управляемости на всех эксплуатационных режимах движения экраноплана и в чрезвычайных нестандартных ситуациях. Достигается осуществление полного аэродинамического расчета экраноплана в целом. 3 ил.

Изобретение относится к области судостроения, более конкретно - к экспериментальной гидромеханике, и касается вопросов проведения экспериментальных исследований в опытовых бассейнах моделей быстроходных судов с воздушными кавернами на днище. Предложена конструкция корпуса модели судна с искусственной каверной для проведения гидродинамических испытаний в опытовом бассейне, которая в днищевой части корпуса содержит нишу, ограниченную поперечным реданом стреловидной формы, скегами и профилированным кормовым участком днища, на котором происходит замыкание каверны. Профилированный кормовой участок днища, на котором происходит замыкание каверны, выполнен на резьбовых стойках, позволяющих регулировать его высоту над основной плоскостью, угол атаки и форму в поперечном сечении. Технический результат заключается в повышении эффективности проведения испытаний моделей. 3 ил.

Изобретение относится к ракетной технике и может быть использовано при экспериментальной отработке заборных устройств, установленных в топливных баках ракет, для экспериментального определения гидравлических остатков незабора топлива. Стенд содержит сливную емкость, расходную магистраль, в которой установлены датчики сплошности, расходомер, гидравлический насос, отсечной кран, а также устройство для заправки и слива, к которому подключен дозатор для дозаправки воды. Дозатор воды настроен на рабочий объем, равный объему ожидаемого гидравлического остатка незабора испытуемого топливного бака, подключенного к расходной магистрали. Верхняя часть сливной емкости выполнена в виде вертикального сужающегося кверху конусного насадка с конусностью 15°, на котором установлены второй датчик сплошности и емкость для перелива. В состав стенда входит магистраль закольцовки с запорным клапаном, встроенная в расходную магистраль на входе в насос, и магистраль заправки с клапаном, встроенная в расходную магистраль на выходе из насоса, второй конец которой подключен к расходной магистрали перед отсечным краном. Перед заправкой испытуемого бака полностью заполняют водой расходную магистраль и сливную емкость, а затем производят дозаправку гидросистемы дозированным объемом воды, равным ожидаемому гидравлическому остатку незабора. После этого производят испытание. При срабатывании обоих датчиков сплошности в любой последовательности закрывают отсечной кран, фиксируют момент прорыва газа в магистраль расхода и момент полного заполнения сливной емкости. Затем, зная расход и указанные моменты времени, а также объем дозаправки дозатором вычисляют величину гидравлического остатка незабора. Технический результат - повышение точности определения гидравлического остатка в испытуемом баке ракеты и снижение трудоемкости экспериментальных работ. 2 н.п. ф-лы, 1 ил.

Изобретение относится к ракетной технике и может быть использовано при экспериментальной отработке заборных устройств, установленных в топливных баках ракет, для экспериментального определения гидравлических остатков незабора топлива в динамических условиях. Стенд содержит подвижную горизонтальную платформу с приводом, сливную емкость с расходной магистралью, сливной трубопровод с датчиком сплошности и гибкое звено. Платформа установлена на раме стенда при помощи несколько параллельных шарнирных стоек. На платформе жестко закреплены испытуемый бак с заборным устройством и сливной трубопровод с датчиком сплошности. На расходной магистрали установлены расходомер, отсечной кран, регулятор расхода, гидравлический насос. Вход насоса подсоединен к сливной емкости магистралью закольцовки с установленным на ней клапаном. Сливной трубопровод жестко закреплен на платформе, подключен к испытуемому баку и через гибкое звено соединен с расходной магистралью. Гибкое звено выполнено в виде трубы с герметичными сферическими шарнирами на концах и расположено параллельно стойкам. Длина гибкого звена равна высоте стоек. Технический результат - повышение точности определения гидравлического остатка в испытуемом баке ракеты и исключение силовых нагрузок на сливной трубопровод испытуемого бака. 1 ил.

Изобретение относится к области судостроения, а более конкретно - к экспериментальной гидромеханике судов и морских инженерных сооружений, работающих в ледовых условиях, касается методов и оборудования для проведения ледовых модельных исследований в ледовом опытовом бассейне. Предложен способ определения толщины ледового поля при испытаниях моделей судов и морских инженерных сооружений в ледовом опытовом бассейне, заключающийся в зондировании ледового поля ультразвуковыми импульсами с последующим преобразованием отраженных импульсов в напряжение на электронном устройстве и регистрацией результатов измерения, при этом под нижнюю поверхность ледового поля на исследуемом участке подводят плоский жесткий экран, прижимая его к нижней поверхности ледового поля, отражающий зондирующие ледовое поле ультразвуковые импульсы. Предложено также устройство для осуществления данного способа. Технический результат заключается в повышении достоверности и точности результатов эксперимента по определению толщины ледового поля. 2 н. и 1 з.п. ф-лы, 1 ил.

Изобретение относится к области судостроения, а более конкретно к экспериментальной гидромеханике судов и морских инженерных сооружений, работающих в ледовых условиях, касается методов и оборудования для проведения модельных испытаний в ледовом опытовом бассейне. Предложен способ моделирования ледяного покрова в опытовом бассейне, включающий намораживание ледяного покрова, образование на ледяном покрове несквозных прорезей глубиной, равной менее толщины намораживаемого ледяного покрова, и последующее проведение испытаний модели инженерного сооружения или судна. Для образования несквозных прорезей на ледяном покрове предварительно, перед намораживанием ледяного покрова, в рабочей зоне вдоль опытового бассейна протягивают вертикально ориентированные полосы или ряд расположенных друг над другом нитей с общей высотой, соответствующей требуемой глубине создаваемых во льду несквозных прорезей, обладающих пониженной адгезионной прочностью сцепления со льдом, которые размещают друг от друга по ширине опытового бассейна на расстоянии, превышающем ширину модели инженерного сооружения или судна, испытуемой в ледовом опытовом бассейне, и располагают по высоте так, чтобы верхняя нить или верхний край полосы находились на уровне свободной поверхности воды в опытовом бассейне, а прорези на ледяном покрове получают путем извлечения из ледяного покрова вмороженных в толщу льда упомянутых полос или нитей. Предложено также устройство для осуществления данного способа. Технический результат заключается в повышении достоверности процесса моделирования частично надрезанного ледяного покрова. 2 н. и 2 з.п. ф-лы, 2 ил.

Изобретение относится к области экспериментальной техники и может быть использовано для опытного определения динамических характеристик пусковых устройств подводных аппаратов. Стенд для отработки всеглубинного пускового устройства арбалетного типа для необитаемых подводных аппаратов содержит смонтированную на неподвижном основании систему перезарядки силового блока. Система улавливания макета подводного аппарата выполнена в виде мешка из ударопоглощающего и ударостойкого материала и закреплена с помощью съёмных кронштейнов на неподвижном основании. Срабатывание исследуемого пускового устройства осуществляется в воздушной среде. Система измерения включает видеокамеру, с возможностью ускоренной съёмки движения макета и подвижных частей пускового устройства в процессе пуска. Достигается возможность эффективно организовывать экспериментальную проверку работоспособности и качества всеглубинных пусковых устройств арбалетного типа для необитаемых подводных аппаратов. 2 ил.

Изобретение относится к области экспериментальной аэродинамики, в частности к устройствам, предназначенным для исследования аэродинамических характеристик летательных аппаратов (ЛА). Способ заключается в том, что АДХ ЛА определяются в гидродинамической трубе (ГТ) при использовании в качестве среды обтекания ЛА воды. Модель ЛА устанавливают в ГТ, закрепляют в верхней державке головную часть модели и в нижней державке хвостовую часть модели, при этом в державках устанавливают тензодатчики замера поперечной и боковой силы, а также замера момента, в ГТ устанавливают датчики замера скорости потока воды. Затем включают двигатель, создающий поток жидкости в трубе, устанавливают необходимую скорость потока воды и замеряют силы поперечную и боковую силы и момента. Верхняя часть ГТ имеет систему наддува до заданного давления, необходимого для моделирования по числу Эйлера в рабочем участке ГТ. Устройство содержит рабочий участок, двигатель, вращающий импеллерный агрегат, создающий скоростной напор среды на модель ЛА, аппаратуру, регулирующую скоростной напор среды, тензодатчики замера поперечной и боковой сил и момента, регистрирующую аппаратуру. Труба обдува выполнена в виде гидродинамической трубы, а в качестве среды обдува применена вода. Технический результат заключается в расширении возможностей по моделированию обтекания модели ЛА потоком, включая старт и движение у поверхности земли, повышение точности измерения сил и моментов, повышение безопасности испытаний. 2 н. и 9 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к области судостроения и касается способа моделирования работы двухступенчатого лопастного движителя за корпусом судна в ходе самоходных испытаний в опытовом бассейне. Способ предусматривает прямолинейное движение модели судна с моделью двухступенчатого лопастного движителя в неподвижной воде бассейна, при этом модель судна соединяют с буксировочной тележкой через динамометр, которым замеряют гидродинамические нагрузки на модель судна, а упор и момент передней ступени на режиме полного хода регистрируют установленным на валу передней ступени одновальным винтовым динамометром. Дополнительно на режиме малого хода для измерения гидродинамических нагрузок используют одновальный винтовой динамометр, причем переднюю ступень движителя моделируют неподвижным гребным винтом, через ступицу которого проходит вал винтового динамометра к модели задней ступени, при этом установочный шаг модели задней ступени фиксируют в положении, соответствующем режиму малого хода. Изобретение позволяет повысить точность расчетов и гидродинамическую эффективность проектируемого движителя. 1 з.п. ф-лы, 1 ил.

Изобретение относится к гидравлическим испытательным стендам и может быть использовано для проведения испытаний на циклическую долговечность при отрицательных температурах гидравлических и пневматических емкостей. Сущность: стенд содержит насос (1), испытательную камеру (3) для размещения испытываемой емкости, трубопроводы (5), блок (6) управления, секцию (8) охлаждения, расположенную внутри испытательной камеры (3), и дополнительный теплоизолированный трубопровод (10), соединенный с секцией (8) охлаждения. При этом внутренний объем дополнительного теплоизолированного трубопровода (10) с находящейся в нем жидкостью составляет не менее объема жидкости, подаваемой в испытываемую емкость при наибольшем значении испытательного давления. Технический результат: увеличение коэффициента полезного действия стенда и уменьшение времени проведения циклических испытаний. 3 з.п. ф-лы, 2 ил.
Наверх