Парогазовая установка

Парогазовая установка (ПГУ) относится к области энергетики. Установка имеет два рабочих контура: парогазовый, представляющий собой газотурбинную установку (ГТУ), и паровой, включающий в себя теплообменник-конденсатор, установленный во входном канале ГТУ, теплообменник-нагреватель, установленный в выходном канале ГТУ, паровую турбину и насос высокого давления, которые закольцованы.

Рабочим телом ГТУ является смесь воздуха и водяного пара, которая образуется в результате испарения воды в теплообменнике-конденсаторе. Рабочим телом парового контура является пар, который образуется в результате испарения жидкости в теплообменнике-нагревателе с последующей конденсацией в теплообменнике-конденсаторе. Испарение воды и конденсация жидкости в теплообменнике-конденсаторе происходят одновременно. Изобретение позволяет повысить эффективность установки. 2 н. и 8 з.п. ф-лы, 8 ил.

 

Изобретение относится к теплоэнергетике.

Назначением тепловых машин является преобразование энергии топлива в полезную работу. Отношение указанной работы к количеству тепла, выделяющемуся при полном сгорании топлива, называется эффективным к.п.д. тепловой машины ηе.

Целью изобретения является повышение эффективного к.п.д. тепловых машин (газотурбинных установок).

В газотурбинных установках (ГТУ) затраты энергии на собственные нужды составляют значительную долю полезной работы установки. Эта доля уменьшается при увеличении удельной энтальпии (теплосодержания) рабочего тела. Теплосодержание рабочего тела возрастает, если в состав продуктов сгорания ГТУ добавлять водяные пары.

Известна парогазовая установка (патент RU 2272916 C2, 2006), в которой преобразование воды в пар осуществляется в теплообменнике-испарителе, расположенном за турбиной. Это позволяет осуществлять регенерацию теплоты выхлопных газов - увеличивать эффективный к.п.д. установки. Недостатком установки являются большие расходы воды и связанные с этим потери энергии, расходуемые на ее нагрев и парообразование, что не позволяет повышать эффективный к.п.д. более 50%.

Известна парогазовая установка (патент на полезную модель №50603, 2006), содержащая входное устройство, компрессор, камеру сгорания, турбину привода компрессора, выходное устройство, теплообменник-нагреватель, расположенный в канале выходного устройства за турбиной привода компрессора, и теплообменник-конденсатор, охлаждаемый водой. Указанные теплообменники закольцованы через паровую турбину и насос высокого давления: теплообменник-конденсатор с одной стороны соединен с выходным ресивером паровой турбины, с другой стороны - с входом в насос высокого давления; теплообменник-нагреватель с одной стороны соединен с входным ресивером паровой турбины, с другой стороны - с выходом из насоса высокого давления. Внутри теплообменников циркулирует жидкость, переходящая в пар и обратно. Эффективный к.п.д. установки ~50%.

Сущность изобретения заключается в том, что для повышения эффективного к.п.д. в парогазовой установке используются внутренние термодинамические циклы, к.п.д. которых в составе тепловой машины стремится к единице (Письменный В.Л. Внутренние термодинамические циклы // Конверсия в машиностроении, 2006, №3. С.5-10).

Поставленная цель достигается тем, что в ГТУ, содержащей входное устройство, компрессор, камеру сгорания, турбину привода компрессора, выходное устройство, в канале входного устройства перед компрессором расположен теплообменник-конденсатор, а в канале выходного устройства за турбиной привода компрессора - теплообменник-нагреватель. Теплообменники закольцованы через паровую турбину и насос высокого давления: теплообменник-конденсатор с одной стороны соединен с выходным ресивером паровой турбины, с другой стороны - с входом в насос высокого давления; теплообменник-нагреватель с одной стороны соединен с входным ресивером паровой турбины, с другой стороны - с выходом из насоса высокого давления. Внутри закольцованной системы циркулирует жидкость, переходящая в пар и обратно. Во входной канал (перед теплообменником-конденсатором) подается вода. При этом давление жидкости на входе в насос высокого давления не менее 0,15 МПа, а температура рабочего тела на входе в компрессор более 100°C (условия, при которых в теплообменнике-конденсаторе происходит конденсация жидкости и испарение воды одновременно).

В качестве жидкости, циркулирующей в теплообменниках, предпочтительно использовать воду.

Предпочтительно, чтобы:

степень повышения давления в компрессоре была более 18;

температура газа перед турбиной была более 1700 K;

расход воды был более 15% от расхода воздуха;

давление жидкости на выходе из насоса высокого давления было более 15 МПа;

топливо подавалось в камеру сгорания через теплообменник, расположенный в канале, соединяющем паровую турбину с теплообменником-конденсатором;

в качестве топлива использовалась криогенная жидкость;

в качестве топлива использовался водород.

Применение водорода в качестве топлива позволяет получить новое качество ПГУ, а именно: коэффициент использования тепла (доля полезной теплоты) стремится к единице (продуктом сгорания водорода является водяной пар, который вместе с паром, образованным из воды, используется для обогрева помещений и др. целей).

Недостатком ПГУ является то, что энергия парообразования воды не используется для получения полезной работы.

Недостаток уменьшается, если за теплообменником-нагревателем установить теплообменник-испаритель, преобразующий энергию парообразования воды в энергию пара легкоиспаряющейся жидкости с последующим ее преобразованием в полезную работу.

Сущность изобретения заключается в том, что рабочим телом в теплообменнике-испарителе является этиловый спирт или другая жидкость, имеющая температуру кипения ниже температуры кипения воды при давлении, соответствующем давлению газа в канале выходного устройства.

Поставленная цель достигается тем, что в газотурбинной установке, содержащей входное устройство, компрессор, камеру сгорания, турбину привода компрессора, выходное устройство, в канале входного устройства перед компрессором расположен теплообменник-конденсатор, а в канале выходного устройства за турбиной привода компрессора - теплообменник-нагреватель. Теплообменники закольцованы через паровую турбину и насос высокого давления: теплообменник-конденсатор с одной стороны соединен с выходным ресивером паровой турбины, с другой стороны - с входом в насос высокого давления; теплообменник-нагреватель с одной стороны соединен с входным ресивером паровой турбины, с другой стороны - с выходом из насоса высокого давления. Внутри закольцованной системы циркулирует жидкость, переходящая в пар и обратно. Во входной канал перед теплообменником-конденсатором подается вода. В выходном канале за теплообменником-нагревателем установлен теплообменник-испаритель, который закольцован через турбину, теплообменник и насос: теплообменник-испаритель с одной стороны соединен с входным ресивером турбины, с другой стороны - с выходом из насоса; выходной ресивер турбины соединен с входом в теплообменник, выход из которого соединен с входом в насос. Внутри закольцованной системы циркулирует легкоиспаряющаяся жидкость, переходящая в пар и обратно.

Предпочтительно, чтобы давление за турбиной было ниже атмосферного.

На фиг.1 изображена схема парогазовой установки;

на фиг.2 изображены зависимости эффективного к.п.д. ηе от относительного расхода воды δ и температуры газа перед турбиной Tг*;

на фиг.3 изображены зависимости удельной мощности ПГУ Neуд от относительного расхода воды δ и температуры газа перед турбиной Tг*;

на фиг.4 изображен термодинамический цикл ПГУ;

на фиг.5 изображена схема парогазовой установки;

на фиг.6 изображены зависимости эффективного к.п.д. ηе от относительного расхода воды δ и температуры газа перед турбиной Tг*;

на фиг.7 изображены зависимости удельной мощности ПГУ Neуд от относительного расхода воды δ и температуры газа перед турбиной Tг*;

на фиг.8 изображена диаграмма эффективности ПГУ.

Парогазовая установка (фиг.1) состоит из входного устройства 1, водяного коллектора 2, теплообменника-конденсатора 3, компрессора 4, камеры сгорания 5, турбины привода компрессора 6, теплообменника-нагревателя 7, выходного устройства 8, паровой турбины 9, насоса высокого давления 10, теплообменника 11, электрогенераторов 12, насосов н. Теплообменник-конденсатор 3 установлен в канале входного устройства 1 перед компрессором 4. Водяной коллектор 2 установлен на входе в теплообменник-конденсатор 3. Теплообменник-нагреватель 7 установлен в канале выходного устройства за турбиной привода компрессора 6. Паровая турбина 9, теплообменник-конденсатор 3, насос высокого давления 10 и теплообменник-нагреватель 7 закольцованы: теплообменник-конденсатор с одной стороны соединен с выходным ресивером паровой турбины, с другой стороны - с входом в насос высокого давления; теплообменник-нагреватель с одной стороны соединен с входным ресивером паровой турбины, с другой стороны - с выходом из насоса высокого давления. Внутри закольцованной системы циркулирует вода, переходящая в пар и обратно.

Работа установки осуществляется следующим образом. Воздух, поступающий из атмосферы в канал 1, смешивается с водой, поступающей в тот же канал через коллектор 2. В теплообменнике-конденсаторе смесь нагревается до 100°C и более, в результате чего вода, находящаяся в смеси, превращается в сухой пар. Паровоздушная смесь сжимается в компрессоре до давления ~2 МПа (давление ограничено температурой лопаток компрессора) и подается в камеру сгорания, туда же по внутреннему каналу теплообменника 11 подается топливо. Образующаяся топливовоздушная смесь (с примесью пара) сгорает, в результате чего температура газа перед турбиной увеличивается до 1700 K и более. В турбине 6 температура и давление продуктов сгорания понижаются. Давление приближается к атмосферному, а температура сохраняется либо выше, либо близкой к критической для воды. Турбина совершает полезную работу. Из турбины 6 продукты сгорания попадают в теплообменник-нагреватель 7, по внутренним каналам которого под действием насоса 10 движется вода. Вода (в теплообменнике 7) в результате теплообмена с продуктами сгорания превращается в перегретый пар. Температура продуктов сгорания на выходе из теплообменника 7 понижается (~140°C). Продукты сгорания удаляются в атмосферу.

Перегретый пар поступает в паровую турбину 9. В турбине давление и температура пара понижаются. Турбина совершает полезную работу. Давление перед турбиной (за насосом высокого давления) выбирается таким, чтобы на выходе из турбины при давлении ~0,2 МПа пар был сухим (это ~15 МПа). Пар проходит через теплообменник 11 и попадает в теплообменник-конденсатор 3. В теплообменниках 11 и 3 от пара отводится теплота. В результате отвода теплоты пар охлаждается и переходит в жидкое состояние - воду. Вода откачивается насосом 10, что обеспечивает понижение давления в магистрали за турбиной 9, а также перепад давлений на указанной турбине.

Передача теплоты в теплообменнике-конденсаторе 3 происходит вследствие разницы температур рабочих тел внутри (пар, переходящий в воду) и снаружи (смесь воздуха и воды, переходящей в пар) теплообменника 3. Передача теплоты происходит последовательно в три этапа. На первом этапе в результате теплообмена температура пара понижается ~ до 120°C (давление пара ~0,15 МПа), а температура смеси увеличивается ~ до 100°C (давление смеси - атмосферное). При достижении указанных температур (второй этап) происходит конденсация пара с выделением теплоты и испарение воды с поглощением указанной теплоты (энергия парообразования передается от одного рабочего тела другому). На третьем этапе (после завершения процессов конденсации и испарения) происходит (за счет теплообмена) понижение температуры конденсата и увеличение температуры паровоздушной смеси до значений (более 100°C), при которых наступает тепловое равновесие. В результате описанных процессов в теплообменнике-конденсаторе устанавливается стационарный тепловой поток, основу которого составляет энергия парообразования воды, поступающей в ПГУ через коллектор 2.

Полезная работа, совершаемая парогазовой установкой, преобразуется в электрическую энергию в генераторах электрического тока 12.

На фиг.2 и фиг.3 показаны зависимости эффективного к.п.д. и удельной мощности Ne (мощности, приходящейся на килограмм расхода воздуха) ПГУ (фиг.1) от параметров рабочего процесса: относительного расхода воды δ (расход воды, приходящийся на килограмм расхода воздуха) и температуры газа перед турбиной Tг* при степени повышения давления в компрессоре πк=20, которая ограничена прочностью лопаток компрессора. Топливо - керосин. В расчете потери учитывались соответствующими к.п.д. термодинамических процессов: 0,85 - для сжатия; 0,92 - для расширения; 0,98 - для сгорания; 0,99 - механический к.п.д. Расчет выполнен для стандартных условий: tн=15°C и Pн=760 мм рт.ст. Видно, что ηе для δ=0,2 достигает значений 63%, а удельная мощность - 1200 кВт/кг.

На фиг.4 показан термодинамический цикл ПГУ (фиг.1) в T-S координатах. Буквами обозначены состояния рабочего тела в характерных сечениях ПГУ: н - вход во входное устройство; в - вход в компрессор; к - выход из компрессора; г - вход в турбину; т - выход из турбины; с - выход из выходного устройства (сопла). Цикл ПГУ состоит из внешнего L1 и внутреннего L2 циклов. Внутренний цикл - это цикл, который не имеет энергообмена с внешней средой (энергообмен осуществляется только с внешним циклом), что делает внутренний цикл в составе ПГУ абсолютно эффективным (внешние потери отсутствуют). Внутренний цикл преобразует тепловую энергию внешнего цикла Q1-2 в работу L2 и тепловую энергию Q2-1, которая тратится на создание рабочего тела (паровоздушная смесь) внешнего цикла. Паровоздушная смесь имеет большую удельную теплоемкость, чем воздух, что при тех же температурах Tг* позволяет иметь: а) более высокое удельное теплосодержание рабочего тела - меньшую долю затрат энергии на собственные нужды ПГУ, б) более высокую работу цикла L1 - большую удельную мощность ПГУ.

Недостатком ПГУ является то, что энергия парообразования воды, которая тратится на создание рабочего тела внешнего цикла (площадь, закрашенная на фиг.4 серым цветом), после завершения цикла теряется.

На фиг.5 изображена ПГУ, в которой указанные потери тепла (энергия парообразования) преобразуются в полезную работу - потери тепла уменьшаются до размеров площади, закрашенной в черный цвет (фиг.4).

ПГУ (фиг.5) состоит из ПГУ (фиг.1), в выходном канале 8 которой установлен теплообменник-испаритель 13, который закольцован через турбину 14, теплообменник 15 и насос 16: теплообменник-испаритель с одной стороны соединен с входным ресивером турбины, с другой стороны - с выходом из насоса; выходной ресивер турбины соединен с входом в теплообменник, выход из которого соединен с входом в насос. Внутри закольцованной системы циркулирует этиловый спирт, переходящий в пар и обратно. Турбина 14 соединена с электрогенератором 12.

Работа установки осуществляется следующим образом. Продукты сгорания, температура которых более 100°C, по каналу 8 поступают в теплообменник-испаритель 13, внутри которого под давлением ~0,19 МПа при температуре ~50°C циркулирует этиловый спирт. В результате теплообмена спирт нагревается до температуры более 95°C, превращаясь в перегретый пар (температура кипения спирта ~95°C), а продукты сгорания охлаждаются до температуры менее 95°C, при которой водяной пар, находящийся в продуктах сгорания, превращается в воду (между спиртом и водой происходит обмен энергиями парообразования). Продукты сгорания (вместе с водой) удаляются в атмосферу.

Перегретый пар поступает в турбину 14. В турбине давление и температура пара понижаются. Турбина совершает полезную работу. Давление за турбиной ниже атмосферного (выбирается таким, чтобы на выходе из турбины пар был сухим). Из турбины пар поступает в теплообменник 15. За счет теплообмена между паром и холодной водой, циркулирующей внутри теплообменника 15, пар конденсируется (превращается в жидкий спирт) и охлаждается (~50°C). Жидкий спирт откачивается насосом 16, который поддерживает заданный перепад давлений на турбине 14.

Полезная работа, совершаемая турбиной, преобразуется в электрическую энергию в генераторе 12.

На фиг.6 и фиг.7 показаны зависимости эффективного к.п.д. и удельной мощности Neуд ПГУ (фиг.5) от параметров рабочего процесса: относительного расхода воды δ и температуры газа перед турбиной Tг* при степени повышения давления в компрессоре πк=20. Топливо - керосин. В расчете потери учитывались соответствующими к.п.д. термодинамических процессов: 0,85 - для сжатия; 0,92 - для расширения; 0,98 - для сгорания; 0,99 - механический к.п.д. Расчет выполнен для стандартных условий: tн=15°C и Pн=760 мм рт.ст. Видно, что эффективный к.п.д. ПГУ (фиг.5) по отношению к базовой ПГУ (фиг.1) повышается на 3÷4%, а удельная мощность - на 10÷12%.

Предельная (теоретическая) эффективность ПГУ (фиг.5) зависит от применяемого топлива и может быть оценена как

,

где α=1,1÷1,2 - коэффициент избытка воздуха;

Lo - стехиометрический коэффициент;

Hu - теплота сгорания топлива;

δ=0,2÷0,3 - относительный расход воды;

m=0,5÷0,6 - относительный расход спирта;

r=850 кДж/кг - удельная теплота парообразования спирта;

cв=1,004 кДж/(кг·град) - удельная теплоемкость воздуха;

cвод=4,18 кДж/(кг·град) - удельная теплоемкость воды.

На фиг.8 показаны предельные значения эффективных к.п.д., которые можно получить, используя принцип преобразования энергии, заложенный в ПГУ (фиг.5), для топлив: керосин, метан, водород.

Положительным результатом предлагаемых технических решений является расширение возможностей повышения эффективного к.п.д. тепловых машин (газотурбинных установок) до 60÷75% и более, что на 10÷15% выше, чем у лучших аналогов.

1. Парогазовая установка, содержащая входное устройство, компрессор, камеру сгорания, турбину привода компрессора, выходное устройство, теплообменник-нагреватель, расположенный в канале выходного устройства за турбиной привода компрессора, и теплообменник-конденсатор, охлаждаемый водой, которые закольцованы через паровую турбину и насос высокого давления: теплообменник-конденсатор с одной стороны соединен с выходным ресивером турбины, с другой стороны - с входом в насос высокого давления; теплообменник-нагреватель с одной стороны соединен с входным ресивером турбины, с другой стороны - с выходом из насоса высокого давления, внутри которых циркулирует жидкость, переходящая в пар и обратно, отличающаяся тем, что теплообменник-конденсатор расположен в канале входного устройства перед компрессором, а вода подается в канал входного устройства перед теплообменником-конденсатором.

2. Парогазовая установка по п.1, отличающаяся тем, что температура рабочего тела на входе в компрессор более 100°С.

3. Парогазовая установка по п.1, отличающаяся тем, что жидкость - вода.

4. Парогазовая установка по п.1, отличающаяся тем, что давление жидкости на входе в насос высокого давления более 0,15 МПа.

5. Парогазовая установка по п.1, отличающаяся тем, что степень повышения давления в компрессоре более 18.

6. Парогазовая установка по п.1, отличающаяся тем, что температура газа перед турбиной более 1700 K.

5. Парогазовая установка по п.1, отличающаяся тем, что расход воды более 10% от расхода воздуха.

6. Парогазовая установка по п.1, отличающаяся тем, что давление жидкости на выходе из насоса высокого давления более 15 МПа.

7. Парогазовая установка по п.1, отличающаяся тем, что топливо в камеру сгорания подается через теплообменник, расположенный в канале, соединяющем паровую турбину и теплообменник-конденсатор.

8. Парогазовая установка по п.1, отличающаяся тем, что топливо - криогенная жидкость.

9. Парогазовая установка по п.1, отличающаяся тем, что топливо - водород.

10. Парогазовая установка, содержащая входное устройство, компрессор, камеру сгорания, турбину привода компрессора, выходное устройство, теплообменник-конденсатор, расположенный в канале входного устройства перед компрессором, и теплообменник-нагреватель, расположенный в канале выходного устройства за турбиной привода компрессора, которые закольцованы через паровую турбину и насос высокого давления: теплообменник-конденсатор с одной стороны соединен с выходным ресивером турбины, с другой стороны - с входом в насос высокого давления; теплообменник-нагреватель с одной стороны соединен с входным ресивером турбины, с другой стороны - с выходом из насоса высокого давления, внутри которых циркулирует жидкость, переходящая в пар и обратно, в канал входного устройства перед теплообменником-конденсатором подается вода, отличающаяся тем, что в канале выходного устройства за теплообменником-нагревателем установлен теплообменник-испаритель, который закольцован через турбину, теплообменник и насос: теплообменник-испаритель с одной стороны соединен с входным ресивером турбины, с другой стороны - с выходом из насоса; выходной ресивер турбины соединен с входом в теплообменник, выход из которого соединен с входом в насос, внутри которых циркулирует легкоиспаряющаяся жидкость, переходящая в пар и обратно.

11. Парогазовая установка по п.10, отличающаяся тем, что легкоиспаряющаяся жидкость - этиловый спирт.

12. Парогазовая установка по п.10, отличающаяся тем, что давление за турбиной ниже атмосферного.



 

Похожие патенты:

Изобретение относится к энергетике. Энергетическая установка содержит парогазовую турбину, компрессор, камеру сгорания топлива.

Изобретение относится к энергетике. Энергетическая установка содержит парогазовую турбину, компрессор, камеру сгорания топлива.

Изобретение относится к энергетике и может быть использовано для выработки электроэнергии на электростанциях и автономно на различных предприятиях. .

Изобретение относится к теплоэнергетике. .

Изобретение относится к двигателестроению, Камерно-инжекторно-турбинный двигатель содержит сообщенные между собой посредством вала турбину и компрессор с электрогенератором, камеры сгорания, системы управления, охлаждения и зажигания.
Изобретение относится к области производства механической энергии в первичных тепловых двигателях роторного типа с газообразным рабочим телом, в которых повышение КПД осуществляется за счет регенерации тепла отработавших газов с использованием эндотермических процессов водно-парового преобразования углеводородного топлива.

Изобретение относится к теплоэнергетике. .

Изобретение относится к области теплоэнергетики. .

Изобретение относится к области энергетики - к парогазовым энергоустановкам. .

Изобретение относится к теплоэнергетике. .

Парогазотурбинная установка состоит из входного устройства, компрессора, камеры сгорания, камеры смешения, турбины привода компрессора, выходного устройства, теплообменника-испарителя, теплообменника-нагревателя, расположенного за теплообменником-испарителем, паровой турбины, теплообменника-конденсатора. Теплообменник-испаритель расположен в канале выходного устройства за турбиной привода компрессора и соединен с одной стороны с источником воды, а с другой - с камерой смешения. Вода, прежде чем попасть в теплообменник-испаритель, проходит через теплообменник-конденсатор паровой турбины. Паротурбинный контур закольцован: входной ресивер турбины соединен с выходом из теплообменника-нагревателя; выходной ресивер турбины через канал низкого давления теплообменника-конденсатора соединен с входом в насос, выход из которого соединен с входом в теплообменник-нагреватель. В паротурбинном контуре циркулирует легкоиспаряющаяся жидкость, переходящая в пар и обратно (например, этиловый спирт), имеющая температуру кипения менее 100°С. Достигается повышение эффективного кпд парогазотурбинной установки до 70-75%. 6 з.п. ф-лы, 4 ил.

Изобретение относится к энергетике. Парогазовая установка с паротурбинным приводом компрессора и высоконапорным парогенератором, содержащая компрессор, высоконапорный парогенератор, газовую турбину, котел-утилизатор, вакуумный деаэратор, конденсационную паровую турбину, противодавленческую паровую турбину, электрогенератор. Изобретение позволяет увеличить величину отношения расхода пара к расходу газов, повысить паропроизводительность, снизить металлоемкость теплообменных поверхностей, повысить электрическую мощность, снизить температуру газа во внутреннем корпусе двухкорпусной части высоконапорного парогенератора, а также уменьшить образование двуокиси азота в продуктах сгорания. 1 ил.

Изобретение относится к энергетике. Энергетическая установка, включающая парогазовую установку, может применяться для надстройки паротурбинных энергоблоков, причем надстраивают парогазовой установкой с приводом компрессора от конденсационной паровой турбины с суперсверхкритическими начальными параметрами пара. Изобретение позволяет повысить тепловую экономичность и мощность энергетических установок с типовыми паротурбинными энергоблоками. 2 ил.

Изобретение относится к области теплоэнергетики. Парогазовая установка содержит газотурбинную установку, связанную газоходом с котлом-утилизатором, в который встроены связанные между собой поверхности нагрева экономайзера, испарителя и пароперегревателя, который паропроводом связан с паровой турбиной высокого давления. Конденсатор-испаритель водопроводом через первый насос связан с экономайзером котла-утилизатора, который снабжен газоходом для отвода газов в дымовую трубу. Паровая турбина низкого давления паропроводом через рекуператор связана с конденсатором, который через второй насос водопроводом связан с рекуператором. Паровая турбина высокого давления валопроводом связана с паровой турбиной низкого давления, которая связана с электрическим генератором. Паровая турбина высокого давления паропроводом связана с конденсатором-испарителем, который водопроводом связан с первым насосом. Встроенный в котел-утилизатор второй пароперегреватель паропроводами связан с паровой турбиной низкого давления и конденсатором-испарителем, который водопроводом связан с встроенным в котел-утилизатор вторым экономайзером, который водопроводом связан с рекуператором. Изобретение позволяет увеличить КПД производства электроэнергии за счет увеличения температуры пара второго рабочего вещества на входе в турбину низкого давления и снижения температуры уходящих из котла-утилизатора газов. 1 ил.

Способ повышения КПД выработки электрической энергии микротурбинной парогазовой установки заключается в том, что компрессором сжимают воздух и подают в зону горения камеры сгорания. В камеру сгорания одновременно подают горючее, смешивают со сжатым воздухом и полученную топливную смесь сжигают. Полученные продукты сгорания смешивают в смесительной камере с водяным паром, получая парогазовую смесь. Парогазовую смесь направляют в турбину, где её энергию преобразуют в механическую энергию вращения ротора турбины. Отработавшая парогазовая смесь подается в рекуператор, где тепловая энергия передается встречному потоку воды, преобразуя его в пар. Пар, полученный в рекуператоре, подается к наружным стенкам камеры сгорания, обеспечивая дополнительный нагрев пара и охлаждение стенок камеры. Далее пар поступает в смесительную камеру, обеспечивая возврат значительной части тепловой энергии от стенок камеры сгорания в рабочий цикл. Достигаются повышение КПД и снижение температурной нагрузки на элементы установки. 1 ил.

Изобретение относится к способу регулируемой регенерации энергии реакции окисления, при которой образуется газовый поток, каковую реакцию осуществляют в реакторе окисления непрерывного действия, в который подают газообразный окислитель. Способ включает: (a) нагревание газового потока до температуры по меньшей мере 800°C; (b) направление газового потока на ступень турбины внутреннего сгорания с открытым циклом, в которой имеется турбинное колесо, соединенное с компрессором, каковой компрессор сжимает газообразный окислитель, подаваемый в реактор; (c) регулирование давления на ступени турбины; (d) поддержание давления на ступени турбины в диапазоне больше минимальной величины, соответствующей энергетической потребности компрессора на сжатие газообразного окислителя, подаваемого в реактор окисления, и меньше максимальной величины, определяемой пределами газовой турбины по мощности или давлению, путем добавления газа в газовый поток; (e) обеспечение расширительного устройства или вспомогательного компрессора после компрессора газовой турбины по технологическому потоку на входе газообразного окислителя в реактор окисления. Также изобретение относится к способу окисления прекурсора с получением ароматической карбоновой кислоты или ее сложного эфира. Использование настоящего изобретения позволяет турбине эффективно функционировать. 2 н. и 6 з.п. ф-лы, 10 ил.

Изобретение относится к энергетике. Способ работы парогазовой энергетической установки, при котором охлаждение расширенного рабочего тела, после выработки пара, производят в теплофикационном теплообменнике, а конденсацию его паровой составляющей осуществляют в контактном охладителе-конденсаторе за счет впрыска охлаждающей воды; меньшую часть выработанного пара расширяют в паровой турбине до давления, превышающего давление сжатого воздуха в камере сгорания, а его большую часть до давления, превышающего давление в камере дожигания; тепловую энергию сжатого осушенного рабочего тела утилизируют для подогрева части водного конденсата, используемого для генерирования пара. Также представлена парогазовая энергетическая установка для осуществления способа. Изобретение позволяет повысить удельную мощность и термодинамическую эффективность парогазовой энергетической установки. 2 н.п. ф-лы, 1 ил.

Изобретение относится к устройствам, преобразующим тепловую энергию в механическую, а более конкретно к тепловому приводу, обеспечивающему утилизацию тепла отводящих газов котельной и использование их энергии для привода, например конвейера удаления шлама. Тепловой привод содержит последовательно расположенные в парожидкостном тракте испаритель, заполненный кипящей жидкостью, парожидкостный патрубок, тепловую трубу, гидрорукав, гидродвигатель и холодильник. Холодильник совмещен с гидростатическим гидроаккумулятором, где последний расположен над тепловой трубой и парожидкостным патрубком, соосно с ним и отделен от него перегородкой, имеющей сквозное отверстие с клапаном, выполненным в виде подвижного золотника, расположенного на штоке, закрепленном к дну тепловой трубы, и снабженного свободно установленными и охватывающими золотник, поплавком и пружиной, размещенными между клапаном и буртом, которые связаны с золотником, а верхняя часть тепловой трубы сообщена с испарителем наклонно установленным патрубком, сечение которого значительно больше сечения проектируемого потока жидкости, поступающей самотеком от тепловой трубы в испаритель. 1 ил.

Изобретение относится к энергетике. Способ работы парогазовой установки (ПГУ) обеспечивается путем выполнения догревающего теплообменника охлаждения парогазовой смеси на выходе из турбины высокого давления в виде двух последовательно расположенных теплообменников с соответствующим перераспределением потоков нагреваемой воды, из которой генерируется охлаждающий водяной пар. Способ работы ПГУ содержит систему организации парового замкнутого и открытого охлаждения горячих элементов проточной части газовой турбины. Способ работы ПГУ предусматривает также работу в теплофикационном режиме с одновременной выработкой электрической и тепловой энергии. Изобретение позволяет повысить эффективность работы установки. 3 з.п. ф-лы, 4 ил.

Изобретение относится к области теплоэнергетики и предназначено для использования на тепловых электростанциях. Парогазовая установка содержит газотурбинную установку, связанную газоходом с котлом-утилизатором, в который встроены связанные между собой поверхности нагрева первого экономайзера, испарителя и пароперегревателя, который паропроводом связан с паровой турбиной высокого давления. Первый рекуператор паропроводом связан с конденсатором-испарителем, который водопроводом через первый насос связан с первым экономайзером котла-утилизатора, который снабжен газоходом для отвода газов в дымовую трубу. Паровая турбина низкого давления одним паропроводом через первый рекуператор связана с конденсатором-испарителем, а другим через второй рекуператор связана с конденсатором, который через второй насос водопроводом связан со вторым рекуператором. В котел-утилизатор дополнительно встроены поверхности нагрева промежуточного пароперегревателя и второго экономайзера. Паровая турбина высокого давления через промежуточный пароперегреватель паропроводом связана с паровой турбиной среднего давления, которая паропроводом связана с первым рекуператором. Второй экономайзер водопроводами связан с конденсатором-испарителем и через третий насос с регенеративным подогревателем, который паропроводом связан с отбором паровой турбины низкого давления, а водопроводом связан со вторым рекуператором. Паровые турбины высокого, среднего и низкого давления через общий вал связаны с электрическим генератором. Изобретение позволяет обеспечить повышение надежности и безопасности работы парогазовой установки, увеличение кпд производства электроэнергии, снижение затрат в установку. 1 ил.
Наверх