Способ очистки наружной поверхности из алюминия и алюминиевых сплавов аппаратов воздушного охлаждения

Изобретение относится к очистке наружной поверхности из алюминия и алюминиевых сплавов аппаратов воздушного охлаждения (далее - АВО). Способ включает обработку поверхности моющим средством и промывку водой, при этом очистку осуществляют в три этапа, на первом и третьем этапах осуществляют струйную промывку поверхности нагретой водой или смесью воды с водяным паром при давлении струи 20-150 бар, а на втором этапе осуществляют струйную обработку поверхности 0,25-1,5% водным раствором кислотного моющего средства, нагретым до температуры 20-60°C с давлением струи 20-150 бар с выдержкой в течение 10-30 минут. В способе используют моющее средство, содержащее компоненты при следующем соотношении, мас.%: ортофосфорная кислота 20,0-25,0, азотная кислота 8,0-15,0, оксиэтилидендифосфоновая кислота 2,0-4,5, неионогенное поверхностно-активное вещество 0,05-0,11, вода до 100. На первом и третьем этапах проводят струйную промывку поверхности водой, нагретой до температуры 20-100°C, или смесью воды с водяным паром, нагретой до температуры 100-155°C. Изобретение позволяет повысить эффективность очистки проблемных наружных поверхностей теплообменников, в частности поверхностей, расположенных между ребрами теплообменников, особенно для АВО с высоким коэффициентом оребрения труб и 4-, 6- и 8-рядными по расположению теплообменных труб. 2 з.п. ф-лы, 6 пр.

 

Изобретение относится к способам для очистки наружной поверхности из алюминия и алюминиевых сплавов аппаратов воздушного охлаждения (далее - АВО). АВО общего назначения относятся к теплообменному оборудованию и предназначены для охлаждения газов и жидкостей, конденсирования паровых и парожидкостных средств в технологических процессах химической, нефтехимической; нефтеперерабатывающей, нефтяной и газовой отраслей промышленности. В АВО охлаждаемый технологический продукт движется внутри биметаллических оребренных труб; передавая через их стенки теплоту охлаждающему агенту. Наружную поверхность биметаллических оребренных труб изготавливают из алюминия и алюминиевых сплавов. В качестве охлаждающего агента используется атмосферный воздух. АВО изготавливаются с теплообменными секциями рабочим давлением от 0,6 до 10 МПа (от 6 до 100 кгс/см2), от одноходовых до 8-ходовых, 4-, 6- и 8-рядными по расположению теплообменных труб в секциях. С увеличением рядности расположения теплообменных труб увеличивается сложность очистки наружной поверхности АВО. Другим фактором, усложняющим очистку, является коэффициент оребрения труб (отношение полной наружной поверхности, включая и ребра, к поверхности такой же длины гладкой трубы). АВО выпускают с коэффициентами оребрения труб: 9; 14,6; 20. Возрастающие требования потребителей данной продукции к надежности и эффективности АВО могут найти свое решение в предлагаемом способе.

Известен гидродинамический способ очистки теплообменников под давлением смесью, состоящей из моющего кислотного раствора и абразивной примеси в виде кварцевого песка (Патент на изобретение РФ №2366881). Применение этого способа ограничено возможной высокой степенью износа поверхности из алюминия и алюминиевых сплавов, а также возможным забиванием кварцевым песком поверхностей между ребрами.

Известен способ очистки поверхности изделий из алюминия и алюминиевых сплавов, включающий промывку поверхности водой и контактирование поверхности с чистящим составом при достаточной температуре и в течение достаточного периода времени для очистки (Патент на изобретение РФ №2359070). При этом поверхность изделий, в основном контейнеры и емкости из алюминия и алюминиевых сплавов после изготовления путем волочения и формования, подвергают контакту с чистящим составом при температуре от 15,6°C до 82,2°C, наиболее предпочтительно при высокой температуре. Известный способ не обеспечит эффективную очистку изделий с высокой степенью оребренной поверхностью, таких как АВО.

Задачей предлагаемого изобретения является разработка технологии очистки и моющего состава, применяемого в способе, позволяющие в совокупности обеспечить высокое качество очистки изделий с высокой степенью оребренной поверхностью, таких как АВО.

Технический результат заключается в повышении эффективности очистки проблемных наружных поверхностей теплообменников, в частности поверхностей, расположенных между ребрами теплообменников, особенно для АВО с высоким коэффициентом оребрения труб и 4-, 6- и 8-рядными по расположению теплообменных труб.

Технический результат достигается тем, что в способе очистки наружной поверхности из алюминия и алюминиевых сплавов аппаратов воздушного охлаждения, включающем обработку поверхности моющим средством и промывку водой, согласно изобретению очистку осуществляют в три этапа, при этом на первом и третьем этапах осуществляют струйную промывку поверхности нагретой водой или смесью воды с водяным паром при давлении струи 20-150 бар, а на втором этапе осуществляют струйную обработку поверхности 0,25-1,5% водным раствором кислотного моющего средства, нагретым до температуры 20-60°C с давлением струи 20-150 бар с выдержкой в течение 10-30 минут, при следующем соотношении компонентов моющего средства, мас.%: ортофосфорная кислота 20,0-25,0, азотная кислота 8,0-15,0, оксиэтилидендифосфоновая кислота 2,0-4,5, неионогенное поверхностно-активное вещество 0,05-0,11, вода до 100.

В способе на первом и третьем этапах проводят струйную промывку поверхности водой, нагретой до температуры 20-100°C.

В способе на первом и третьем этапах проводят струйную промывку поверхности смесью воды с водяным паром, нагретой до температуры 100-155°C.

Первый этап струйной промывки поверхности водой, нагретой до температуры 20-100°C, или смесью воды с водяным паром, нагретой до температуры 100-155°C с давлением струи 20-150 бар, обеспечивает смывку легко удаляемых отложений, обеспечивает проводимую на втором этапе проходимость между рядами оребрения раствора кислотного моющего средства. Кроме этого струйная промывка поверхности горячей водой или смесью воды с водяным паром обеспечивает последующее эффективное взаимодействие раствора кислотного моющего средства с трудно удаляемыми отложениями. Струйная промывка поверхности на третьем этапе водой, нагретой до температуры 20-100°C, или смесью воды с водяным паром, нагретой до температуры 100-155°C с давлением струи 20-150 бар, обеспечивает полное удаление кислотного моющего средства, тем самым исключает возможность последующего воздействия кислотного моющего средства на поверхность теплообменника.

Для приготовления моющего средства используют концентрированную ортофосфорную и азотную кислоты, выпускаемые промышленностью; оксиэтилированные алкилфенолы в качестве неионогенного поверхностно-активного вещества (эмульгатора) преимущественно марок ОП-7 и ОП-10; оксиэтилидендифосфоновая кислота или ее натриевая соль служит комплексообразователем. Комплексообразователь является ингибитором коррозии для кислой среды, его введение в указанном пределе поддерживает кислотность среды не ниже pH 4,0. Рабочие растворы средства готовят в виде 0,25-1,5%-ных водных растворов средства в зависимости от сложности загрязнения поверхности. Концентрированные составы (1-1,5%) используют для обработки более загрязненных внешних поверхностей, а также в зависимости от коэффициента оребрения труб и рядности их расположения.

Для осуществления предлагаемого способа в приведенных ниже примерах были использованы аппараты высокого давления Karcher HDC 695 М Есо, имеющие следующие характеристики: производительность - 800 л/час; рабочее давление - до 150 бар; подогрев воды до 155°C.

Опробование предлагаемого способа проводили на шести модификациях аппаратов воздушного охлаждения зигзагообразных (общие технические условия по ГОСТ Р 51364-99) с коэффициентами оребрения труб: 9; 14,6; 20 и 4-, 6- и 8-рядными по расположению теплообменных труб. Вначале проводили визуальный осмотр, затем пробовалась струя с наименьшей температурой и давлением с постоянным увеличением этих параметров, и выбирался оптимальный вариант по температуре и давлению. Эффективность очистки определяли по изменению разности температур на входе и выходе из АВО до очистки и после очистки.

Пример 1. Очистке подвергался аппарат АВЗ-9-4 с коэффициентом оребрения труб 9 и 4-рядным по расположению теплообменных труб. Аппарат АВЗ-9-4 был установлен на открытой площадке. Температура окружающего воздуха 24°C, температура на поверхности аппарата 35°C. На первом и третьем этапах проводили струйную промывку поверхности водой, нагретой до температуры 50°C с давлением струи 50 бар. На втором этапе проводили струйную обработку поверхности 1,0% водным раствором моющего средства, нагретым до температуры 30°C с давлением струи 50 бар с выдержкой времени 15 мин, при следующем соотношении компонентов, мас.%: ортофосфорная кислота 20,0; азотная кислота 10,0; оксиэтилидендифосфоновая кислота 2,0; неионогенное поверхностно-активное вещество (ОП-7) 0,05; вода до 100. Визуальный осмотр показал, что на поверхности АВО сохранились незначительные остатки твердых отложений. Остатков кислой среды на поверхности не обнаружено. Разность температур на входе и выходе из АВО до очистки составляла 75°C. Разность температур на входе и выходе из АВО после очистки составляла 91°C.

Пример 2. Очистке подвергался аппарат АВЗ-9-8 с коэффициентом оребрения труб 9 и 8-рядным по расположению теплообменных труб. Аппарат АВЗ-9-8 был установлен на открытой площадке. Температура окружающего воздуха 26°C, температура на поверхности аппарата 39°C. На первом и третьем этапах проводили струйную промывку поверхности водой, нагретой до температуры 70°C с давлением струи 80 бар. На втором этапе проводили струйную обработку поверхности 1,0% водным раствором моющего средства, нагретым до температуры 30°C с давлением струи 80 бар с выдержкой времени 20 мин, при следующем соотношении компонентов, мас.%: ортофосфорная кислота 22,0; азотная кислота 12,0; оксиэтилидендифосфоновая кислота 3,0; неионогенное поверхностно-активное вещество (ОП-7) 0,07; вода до 100. Визуальный осмотр показал, что на поверхности АВО сохранились незначительные остатки твердых отложений. Остатков кислой среды на поверхности не обнаружено. Разность температур на входе и выходе из АВО до очистки составляла 78°C. Разность температур на входе и выходе из АВО после очистки составляла 95°C.

Пример 3. Очистке подвергался аппарат АВЗ-14,6-6 с коэффициентом оребрения труб 14,6 и 6-рядным по расположению теплообменных труб. Аппарат АВЗ-14,6-6 был установлен на открытой площадке. Температура окружающего воздуха 18°C, температура на поверхности аппарата 29°C. На первом и третьем этапах проводили струйную промывку поверхности водой, нагретой до температуры 90°C с давлением струи 100 бар. На втором этапе проводили струйную обработку поверхности 1,2% водным раствором моющего средства, нагретым до температуры 33°C с давлением струи 80 бар с выдержкой времени 23 мин, при следующем соотношении компонентов, мас.%: ортофосфорная кислота 22,0; азотная кислота 12,0; оксиэтилидендифосфоновая кислота 3,0; неионогенное поверхностно-активное вещество (ОП-7) 0,07; вода до 100. Визуальный осмотр показал, что на поверхности АВО сохранились незначительные остатки твердых отложений. Остатков кислой среды на поверхности не обнаружено. Разность температур на входе и выходе из АВО до очистки составляла 74°C. Разность температур на входе и выходе из АВО после очистки составляла 91°C.

Пример 4. Очистке подвергался аппарат АВЗ-14,6-8 с коэффициентом оребрения труб 14,6 и 8-рядным по расположению теплообменных труб. Аппарат АВЗ-14,6-8 был установлен на открытой площадке. Температура окружающего воздуха 28°C, температура на поверхности аппарата 36°C. На первом и третьем этапах проводили струйную промывку поверхности водой, нагретой до температуры 100°C с давлением струи 120 бар. На втором этапе проводили струйную обработку поверхности 1,3% водным раствором моющего средства, нагретым до температуры 40°C с давлением струи 90 бар с выдержкой времени 26 мин, при следующем соотношении компонентов, мас.%: ортофосфорная кислота 23,0; азотная кислота 13,0; оксиэтилидендифосфоновая кислота 3,5; неионогенное поверхностно-активное вещество (ОП-7) 0,09; вода до 100. Визуальный осмотр показал, что на поверхности АВО сохранились незначительные остатки твердых отложений. Остатков кислой среды на поверхности не обнаружено. Разность температур на входе и выходе из АВО до очистки составляла 77°C. Разность температур на входе и выходе из АВО после очистки составляла 92°C.

Пример 5. Очистке подвергался аппарат АВЗ-20-6 с коэффициентом оребрения труб 20 и 6-рядным по расположению теплообменных труб. Аппарат АВЗ-20-6 был установлен на открытой площадке. Температура окружающего воздуха 13°C, температура на поверхности аппарата 22°C. На первом и третьем этапах проводили струйную промывку поверхности смесью воды с водяным паром, нагретой до температуры 115°C с давлением струи 115 бар. На втором этапе проводили струйную обработку поверхности 1,3% водным раствором моющего средства, нагретым до температуры 44°C с давлением струи 90 бар с выдержкой времени 27 мин, при следующем соотношении компонентов, мас.%: ортофосфорная кислота 24,0; азотная кислота 13,0; оксиэтилидендифосфоновая кислота 3,5; неионогенное поверхностно-активное вещество (ОП-7) 0,09; вода до 100. Визуальный осмотр показал, что на поверхности АВО сохранились незначительные остатки твердых отложений. Остатков кислой среды на поверхности не обнаружено. Разность температур на входе и выходе из АВО до очистки составляла 73°C. Разность температур на входе и выходе из АВО после очистки составляла 88°C.

Пример 6. Очистке подвергался аппарат АВЗ-20-8 с коэффициентом оребрения труб 20 и 8-рядным по расположению теплообменных труб. Аппарат АВЗ-20-8 был установлен на открытой площадке. Температура окружающего воздуха 23°C, температура на поверхности аппарата 32°C. На первом и третьем этапах проводили струйную промывку поверхности смесью воды с водяным паром нагретой до температуры 145°C с давлением струи 145 бар. На втором этапе проводили струйную обработку поверхности 1,5% водным раствором моющего средства, нагретым до температуры 47°C с давлением струи 90 бар с выдержкой времени 30 мин, при следующем соотношении компонентов, мас.%: ортофосфорная кислота 25,0; азотная кислота 15,0; оксиэтилидендифосфоновая кислота 4,5; неионогенное поверхностно-активное вещество (ОП-7) 0,11; вода до 100. Визуальный осмотр показал, что на поверхности АВО сохранились незначительные остатки твердых отложений. Остатков кислой среды на поверхности не обнаружено. Разность температур на входе и выходе из АВО до очистки составляла 78°C. Разность температур на входе и выходе из АВО после очистки составляла 98°C.

Вывод. С увеличением коэффициента оребрения труб и рядности по расположению теплообменных труб в секциях выявляется необходимость повышения концентраций компонентов моющего средства, увеличения температуры и давления при струйной обработке поверхности на всех этапах осуществления способа. Показано, что на температуру и давление при струйной обработке поверхности также влияют температура окружающего воздуха и температура на поверхности аппарата. Вместе с тем превышение концентраций при минимальных коэффициентах оребрения труб и рядности по расположению теплообменных труб не способствует значительному улучшению технико-экономических показателей, а лишь ведет к увеличению расхода реагентов.

1. Способ очистки наружной поверхности из алюминия и алюминиевых сплавов аппаратов воздушного охлаждения, включающий обработку поверхности моющим средством и промывку водой, отличающийся тем, что очистку осуществляют в три этапа, при этом на первом и третьем этапах осуществляют струйную промывку поверхности нагретой водой или смесью воды с водяным паром при давлении струи 20-150 бар, а на втором этапе осуществляют струйную обработку поверхности 0,25-1,5% водным раствором кислотного моющего средства, нагретым до температуры 20-60°C с давлением струи 20-150 бар с выдержкой в течение 10-30 минут, при следующем соотношении компонентов моющего средства, мас.%: ортофосфорная кислота 20,0-25,0, азотная кислота 8,0-15,0, оксиэтилидендифосфоновая кислота 2,0-4,5, неионогенное поверхностно-активное вещество 0,05-0,11, вода до 100.

2. Способ по п.1, отличающийся тем, что на первом и третьем этапах проводят струйную промывку поверхности водой, нагретой до температуры 20-100°C.

3. Способ по п.1, отличающийся тем, что на первом и третьем этапах проводят струйную промывку поверхности смесью воды с водяным паром, нагретой до температуры 100-155°C.



 

Похожие патенты:

Устройство для проверки герметичности, промывки и определения теплоотдачи автомобильных радиаторов относится к моечному оборудованию и может быть использовано для очистки радиаторов систем охлаждения двигателей внутреннего сгорания.
Изобретение относится к проблеме удаления продуктов коррозии и солевых отложений в трубопроводах и теплообменной аппаратуре ЖКХ с использованием водооборотных систем и может быть использовано в нефтехимической, химической, металлургической промышленности, а также на предприятиях промышленной энергетики.
Изобретение относится к энергетике, в частности к способам очистки теплообменных аппаратов, паровых и водогрейных котлов, парогенераторов от отложений и их последующей пассивации, и может быть использовано в энергетической, машиностроительной и других областях народного хозяйства.

Изобретение относится к области очистки технологического оборудования и сетей и может быть использовано в различных областях промышленности. .
Изобретение относится к удалению отложений, содержащих магнетит и медь, из контейнеров промышленных и электроэнергетических установок, в частности из парогенератора атомной электростанции.

Изобретение относится к паровым турбинам и к системам очистки дренажа паровых турбин. .

Изобретение относится к теплоэнергетике и может быть использовано при обслуживании в процессе текущей эксплуатации и ремонте промышленного теплообменного оборудования, систем отопления жилых зданий и производственных помещений, котлов и холодильного оборудования различного назначения и другого теплоэнергетического оборудования, где в качестве теплоносителя используется вода.

Изобретение относится к силовым установкам и может быть использовано для промывки систем водяного отопления зданий и сооружений. .

Изобретение относится к энергетике и может быть использовано при обслуживании и ремонте систем отопления жилых зданий и производственных помещений. .
Настоящее изобретение относится к кислотному очищающему средству для очистки поверхностей от минеральных отложений, включающему нитрат мочевины, отличающемуся тем, что содержит ингибиторы коррозии, такие как алкиларилсульфонаты, алкилсульфонаты, алкилсульфаты, алкилфосфаты, алкилфосфонаты, алкилсукцинаты натрия, или соответствующие им кислоты с алкильной группой C6-C14, при следующем соотношении компонентов (мас.%): азотная кислота в перерасчете на 100%-ную - не менее 45%, ингибиторы коррозии - 0,2-5%, вода - 10-15%, мочевина - остальное до 100%.
Изобретение относится к чистящему составу для очистки изделий из алюминия и алюминиевых сплавов и способу очистки. .
Изобретение относится к предварительной подготовке поверхности изделий перед непосредственным нанесением гальванических покрытий, преимущественно перед никелированием.
Изобретение относится к ядерной технике и предназначено для использования при количественном химическом анализе продуктов отложений с поверхности оболочек твэлов из циркониевых сплавов.

Изобретение относится к пивоваренной промышленности, непосредственно к способам удаления пивного камня с металлических поверхностей и средствам для его осуществления.

Изобретение относится к области химической обработки поверхности алюминия и сплавов на его основе. .

Изобретение относится к растворам для обработки дефектных конверсионных пленок, включающих дубильные вещества, преимущественно конверсионньк пленок на цинке. .

Устройство (10) предназначено для очистки прокатных клетей, в частности прокатных клетей прокатного стана. Для смены валков предусмотрено перевалочное устройство, которое может въезжать в прокатную клеть (11) по рельсам поперек линии прокатки, при этом устройство (10) по аналогии с перевалочным устройством для опорных валков может перемещаться на его рельсовом пути (12) и содержит большое число направленных на прокатную клеть (11) струйных сопел для жидкого очищающего средства (16) и дутьевых сопел (22, 22а, 22b, 22c) для сушильного средства (24).
Наверх