Способ определения и оценки эффективности растворителей асфальтосмолопарафиновых отложений



Способ определения и оценки эффективности растворителей асфальтосмолопарафиновых отложений
Способ определения и оценки эффективности растворителей асфальтосмолопарафиновых отложений
Способ определения и оценки эффективности растворителей асфальтосмолопарафиновых отложений

 


Владельцы патента RU 2520954:

Федеральное государственное бюджетное учреждение науки Институт проблем нефти и газа Сибирского отделения Российской академии наук (ИПНГ СО РАН) (RU)

Изобретение относится к нефтяной промышленности и может найти применение при определении и оценке эффективности растворителей для удаления асфальтосмолопарафиновых отложений, образующихся на поверхностях технологического оборудования, используемого при добыче, транспортировке и хранении нефти. Способ определения и оценки эффективности растворителей асфальтосмолопарафиновых отложений включает отбор из нефтяного оборудования образцов асфальтосмолопарафиновых отложений, нанесение отложений на металлическую пластину, определение массы, воздействие растворителем. Также способ включает определение массы в результате воздействия растворителя, фиксирование результатов, подвешивание металлической пластины с нанесенным образцом на крючок весов, непрерывное измерение массы образцов, определение массы металлической пластины с образцом, опускание ее в сосуд с испытуемым растворителем, термостатирование сосуда, фиксирование результатов; аналогичная подготовка других образцов и опускание их в сосуд с другим растворителем, проведение аналогичных измерений, сравнение данных испытаний разных растворителей и учитывающий «стеночный эффект». При этом используется образец с нативной (без наплавления) структурой, металлическую пластину с нанесенным образцом подвешивают на крючок коромысла торсионных весов, а сравнение данных испытаний разных растворителей осуществляют по полученным анаморфозам кинетических кривых их растворения. При этом рассчитывают порядок реакций растворения и лимитирующие стадии, константы скоростей растворения, время, за которое половина количества асфальтосмолопарафиновых отложений перейдет в раствор при условии, что процесс протекает как реакция первого порядка, а также эффективную энергию активации разрушения отложений и по полученным величинам кинетических параметров оценивают эффективность растворителей асфальтосмолопарафиновых отложений при той или иной температуре. Техническим результатом изобретения является повышение точности оценки эффективности реагентов для удаления асфальтосмолопарафиновых отложений, при этом учитываются кинетические аспекты процесса их растворения и температурный режим взаимодействия с растворителями. 3 ил., 1 табл.

 

Область техники, к которой относится изобретение

Изобретение относится к нефтяной промышленности и может найти применение при оценке эффективности растворителей для удаления асфальтосмолопарафиновых отложений (АСПО), образующихся на поверхностях технологического оборудования, используемого при добыче, транспортировке и хранении нефти.

Техническим результатом изобретения является повышение точности оценки эффективности реагентов для удаления АСПО, которое учитывает кинетические аспекты процесса их растворения и температурный режим взаимодействия с растворителями.

Уровень техники

Известно несколько лабораторных способов оценки эффективности растворителей АСПО:

Способ 1. Образец АСПО нагревают до температуры размягчения, тщательно перемешивают и формируют в виде цилиндра размером 12×20 мм. Далее охлаждают и помещают в заранее взвешенную корзиночку из латунной (стальной) сетки с размером ячейки 1.5×1.5 мм. Размер корзиночки 70×15×15 мм. Корзиночку с навеской АСПО взвешивают и помещают в стеклянную герметичную ячейку, в которую наливают изучаемый растворитель объемом 100 мл. Температура эксперимента составляет 30°C. Через 4 часа корзиночку с оставшейся не разрушенной частью АСПО вынимают и высушивают до постоянной массы. Разрушившуюся, но не растворившуюся часть АСПО, выпавшую из корзиночки в ячейку, отфильтровывают, высушивают до постоянной массы и взвешивают. По результатам эксперимента определяется отношение массы остатка АСПО в корзиночке и на фильтре к массе исходного образца АСПО. Погрешность эксперимента составляет 10%. Моющая способность композита оценивается по разнице между АСПО, взятых на анализ, и остатками АСПО в корзиночке. Растворяющая способность определяется по количеству АСПО, создавших с растворителем истинный раствор (1. Нагимов Н.М., Ишкаров Р.К., Шарифуллин А.В., Козин В.Г. Нефтяное хозяйство, 2002. - №2. - С.68).

Способ 2. Время опыта изменяется от 1 до 8 ч в динамическом и статическом режимах. Образцы отложений массой 5, 10 и 15 мг в виде цилиндров и пластин толщиной 8 мм в корзинках (с размером отверстий сетки 1 мм) погружают в растворитель. В статическом режиме образцы помещают в растворители и выдерживают в неподвижном состоянии. Исследования растворимости отложений в статическом режиме в течение 8 ч проводят без смены растворителя и со сменой его через 4 ч. В статическом режиме толщина размягченного слоя на поверхности цилиндрического образца АСПО зависит от времени воздействия растворителя. В динамическом режиме стаканы с подвешенными корзинами укрепляют в кассете и вращают с частотой 150-180 мин-1. Все образцы через 4 часа взвешиваются, причем одни образцы через 4 часа погружаются в тот же растворитель, а другие заливаются таким же объемом свежего растворителя. Учитывая, что на месторождениях температура в зоне интенсивных АСПО составляет 9-12°C, исследования по растворимости (удалению) отложений проводят при температуре 10, 12, 20 и 30°C. Температура опыта поддерживается с помощью термостата (2. Сафин С.Г. Нефтяное хозяйство. - 2004. - №7. - С.106).

Способ 3. Образец АСПО расплавляют, гомогенизируют и формируют в виде цилиндра диаметром 13 мм и высотой 20 мм. Образец взвешивают и помещают в корзиночку из стальной сетки с размером ячейки 1.0×1.0 мм. Диаметр корзиночки 50 мм, высота 20 мм. Корзиночку с навеской АСПО помещают в герметичную ячейку, куда наливают изучаемый растворитель объемом 100 мл. Температура эксперимента 20°C. Продолжительность эксперимента 2 или 3 часа. Корзиночку с оставшейся не разрушенной частью АСПО вынимают и высушивают. Растворитель отфильтровывают от нерастворенного осадка на дне ячейки. Фильтр высушивают. Взвешивают не разрушенную часть АСПО из корзиночки и осадок на фильтре. Определяют моющую, диспергирующую и растворяющую способности растворителя (3. Турукалов М.Б. Критерии выбора эффективных углеводородных растворителей для удаления АСПО: Автореф. дисс. канд. хим. Наук. - Краснодар, 2005).

Способ 4. Отложения помещают в стакан, который опускают в водяную баню с температурой 70-90°C и оставляют до полного расплавления отложений. Металлические пластины отшлифовывают, обезвоживают, высушивают и опускают в стакан с расплавленными отложениями на высоту 45 мм. Слой отложений на пластине должен быть толщиной 1.5-2.0 мм. Затем вынимают пластину и оставляют на открытом воздухе не менее чем на 2 часа. В цилиндр наливают растворитель в количестве 10 см3, опускают туда пластину на высоту 3/4 высоты нанесенного слоя. Через каждые 15-30 мин визуально фиксируют изменения в течение 2 часов - набухание, окрашивание растворителя, отслоение, очищенную поверхность в процентах (4. Рогачев М.К., Стрижнев К.В. Борьба с отложениями при добыче нефти. - М.: ООО «Недра-Бизнесцентр», 2006. - 295 с.: ил.).

Способ 5. Из отложений формируют шарики диаметром 10-15 мм, взвешивают, шарик помещают в сетку из проволоки и опускают в растворитель объемом 25 см3. Испытания проводят 2 часа, при этом каждые 15-30 мин поднимают и опускают сетку с отложениями, имитируя работу скважины. Вынимают сетку с отложением, высушивают ее на открытом воздухе, взвешивают, эффективность растворителя определяют по формуле:

Э=(m-m1)·100/m, %,

где m1 - масса отложений после эксперимента, г; m - масса отложений, взятая для эксперимента, г.

Визуально определяют проникающую и растворяющую способности по интенсивности окраски растворителя и наличия дисперсной фазы (5. СТП03-153-2001. Методика лабораторная по определению растворяющей и удаляющей способности растворителей АСПО. // Стандарт предприятия АНК Башнефть. - 2001.).

Способ 6. Навеску АСПО расплавляют на водяной бане с температурой (80±0,5)°C, гомогенизируют перемешиванием, далее содержимое стакана заливают в форму. Для проверки прочности налипания АСПО форму с отложением переворачивают. Форму с АСПО оставляют на сутки для высыхания до постоянной массы на открытом воздухе. Толщина отложения изменяется от 0 до 4 мм. Перед проведением испытания определяют массу формы с АСПО. Форму с АСПО опускают в стакан с растворителем объемом 50 см3, установленный на платформе перемешивающего устройства. По истечении 1 часа формы извлекали, высушивали и взвешивали. Для каждого образца проводят не менее двух параллельных определений. Для обеспечения динамического режима используется перемешивающее устройство. Частота вращения при проведении эксперимента равна (165±5) мин-1. Время опыта составляет 1 час.

В случае, если отложение осталось в форме после испытания, определяют эффективность Э по формуле:

Э=(m1-m2)·100/m1, %.

За результат анализа Эср принимают среднее арифметическое значение результатов двух параллельных определений Э1 и Э2 (6. Герасимова Е.В. Разработка методики оценки эффективности и подбор растворителей асфальтосмолистых и парафиновых отложений на нефтепромысловом оборудовании: Автореф. дисс. канд. хим. н. - Уфа, 2009).

Способ 7. Из скважины или из скважинного оборудования проводят отбор образцов органических отложений, например АСПО. Отбирают образец с ненарушенной структурой. На нагретую выше температуры плавления образца металлическую пластину наплавляют образец так, что расплавляется только малая толщина образца, контактирующего с пластиной. Остальная и большая часть образца остаются в неизменном состоянии. Охлаждают металлическую пластину с наплавленным образцом. Металлическую пластину с наплавленным образцом АСПО подвешивают на поддонный крюк аналитических весов GR-200 и опускают в сосуд с растворителем объемом 100 см3, термостатируемый с использованием циркуляционного термостата серии LOIP LT-200, установленный на столе или на платформе перемешивающего устройства (при необходимости проведения исследований растворимости в динамическом режиме). Температуру растворителя поддерживают с точностью ±0,1°C, градиент температуры по объему ванны составляет не более ±0,1°C. При нанесении АСПО на нагретую до температуры плавления металлическую поверхность происходит сцепление отложений с поверхностью за счет разницы температур отложения и металла. Таким образом, обеспечивается прочность сцепления образцов с поверхностью и исключается погрешность определения, связанная с уплотнением структуры АСПО в процессе формирования образца. Для поддержания постоянной температуры использован термостат LT-200. Аналитические весы GR-200 обеспечивают автоматическую регулировку отклика для адаптации к вибрациям и изменениям внешних условий с точностью ±0,0001 г, имеют крюк для подвешивания образцов. Термостат также оборудован специальным подводящим контуром с термоизолирующим воздействием. Для исключения влияния окружающей среды установка снабжена защитным кожухом (7. Ибрагимов Н.Г., Гуськова И.А., Шафигуллин Р.И., Гильманова Д.Р., Павлова А.И., Емельянычева С.Е., Захарова Е.Ф., Швецов М.В. Патент. РФ №2429344 РФ, МПК E21B 43/22 «Способ оценки эффективности растворителей органических отложений» по заявке №2010142778/03; Заявлено 20.10.2010; Опубл. 20.09.2011 Бюл. №26. - прототип).

К недостаткам перечисленных методик следует отнести:

1. Формирование образца АСПО «лепкой» вручную, в результате чего происходит уплотнение структуры АСПО. Величина уплотнения зависит от силы надавливания, что является субъективным фактором.

2. Нагревание или расплавление исходного АСПО перед формированием или нанесением образца приводит к изменению структуры отложений, их переуплотнению и, как следствие, изменению растворимости.

3. «Визуальный» анализ растворяющей способности растворителя. Такой способ оценки не может дать действительной характеристики испытуемого растворителя.

4. В «методе корзинок» не учитывается то, что растворитель действует на АСПО со всех сторон, тогда как на практике всестороннего контакта АСПО и растворителя не происходит.

Таким образом, перечисленные недостатки снижают достоверность оценки эффективности растворителей АСПО.

Задачей изобретения является повышение достоверности оценки эффективности растворителей АСПО за счет того, что отсутствует пробоподготовка, а следовательно, исключены неточности, связанные с изменением растворимости при уплотнении и плавлении, исключен человеческий фактор, определяющий степень уплотнения пробы, возможен непрерывный замер изменения массы образца отложений, исключаются погрешности, возникающие при движении корзинки в процессе подъема-опускания, возможно исследование закономерностей растворения во времени в различных температурных режимах.

Осуществляется поставленная задача за счет того, что в способе определения и оценки эффективности растворителей АСПО, включающем отбор из нефтяного оборудования образцов АСПО, нанесение на металлическую поверхность, определение массы, воздействие растворителем, определение массы в течение воздействия, фиксирование результатов, согласно изобретению используют образец с ненарушенной структурой, в качестве металлической поверхности используют металлическую пластину, на которую без наплавления наносится образец, пружину с металлической пластиной с нанесенным образцом подвешивают на крючок коромысла торсионных весов, затем определяют массу металлической пластины с образцом и опускают в сосуд с испытуемым растворителем, сосуд термостатируют, измерение массы проводят непрерывно, результаты фиксируют. Аналогичным образом готовят образцы и опускают в сосуд с другим растворителем, проводят аналогичные измерения, сравнивают данные испытаний разных растворителей и по полученным анаморфозам кинетических кривых их растворения рассчитывают порядок реакций растворения и лимитирующие стадии (n); константы скоростей растворения (К, мин-1); время, за которое половина количества АСПО перейдет в раствор (τ1/2, мин) при условии, что процесс протекает как реакция первого порядка; эффективную энергию активации разрушения отложений (Ea, кДж/моль). По полученным величинам кинетических параметров оценивают эффективность растворителей АСПО.

Сущность изобретения

Достоверная лабораторная оценка эффективности растворителей АСПО необходима для правильного выбора растворителя и повышения эффективности промывки нефтепромыслового оборудования от высокомолекулярных отложений. Существующие способы оценки эффективности растворителей не достоверны, т.к. при их проведении используются образцы отложений с искаженной в результате нагрева или расплава структурой. В предложенном изобретении решается задача повышения достоверности оценки эффективности растворителей АСПО. Задача решается следующим образом.

Из нефтепромыслового оборудования проводят отбор проб АСПО. На металлическую пластину наносится образец нативного АСПО, пластину на пружине подвешивают на крючок коромысла торсионных весов ВТ-500, которые обладают рядом преимуществ перед равноплечими весами (типа аналитических): при достаточной точности процесс взвешивания значительно сокращен и упрощен, весы портативны и просты в употреблении. Затем металлическую пластину опускают в сосуд с растворителем объемом 70 см3, термостатируемый с использованием циркуляционного термостата серии JULABO F25 - МС, установленного на столе. Температуру растворителя поддерживают с точностью ±0,1°C, градиент температуры по объему ванны составляет не более ±0,1°C. Поскольку образец АСПО наносится на пластину без наплавления, погрешность определения, связанная с уплотнением структуры АСПО в процессе формирования образца, исключается.

Общий вид установки для определения эффективности растворения АСПО представлен на фиг.1. Установка состоит из весов торсионных ВТ-500; 1 - арретира; 2 - рычага натяжения; 3 - указателя массы; 4 -пружины; 5 - металлической пластины; 6 - сосуда с растворителем; 7 - термостата Julabo F25 - MC.

Особенностью предложенного способа является использование образцов с ненарушенной в результате плавления структурой, а также возможность непрерывного замера изменения массы отложений. В результате этого исключается действие субъективного фактора и влияние движения образца в растворителе.

Таким образом, при проведении оценки растворимости по данной методике исключается человеческий фактор, воздействие на отложения, в результате обеспечивается сохранность структуры АСПО, что предопределяет точное определение и оценку эффективности применения растворителей.

Пример конкретного выполнения

По предложенному способу проводят определение и оценку эффективности газового конденсата, применяющегося на Иреляхском месторождении для удаления АСПО (образцы отобраны с поверхности насосно-компрессорных труб (НКТ) на Иреляхском месторождении PC (Я)) и модельного алифатико-ароматического растворителя, состоящего из гексана и бензола в соотношении 1:1 (ГБС). Из нефтепромыслового оборудования отбирают образцы АСПО и наносят на металлическую пластину. Металлическую пластину с нанесенным образцом АСПО подвешивают на пружине на крюк торсионных весов ВТ-500 и опускают в сосуд с растворителем. Непрерывно фиксируют показания весов. Учитывая, что на месторождениях температура в зоне интенсивных АСПО составляет 9-12°C, исследования по растворимости отложений проводят при температуре 10 и 25°C. Температура опыта поддерживается с помощью термостата. Степень растворения (α) рассчитывают как отношение растворившегося АСПО к его первоначально взятой общей массе в образце.

На фиг.2 в координатах степень растворения (α) - время (τ) представлены полученные кинетические кривые растворения АСПО в УВ растворителях. Видно, что скорость растворения АСПО в газовом конденсате, по сравнению с ГБС, существенно зависит от температуры. Геометрия полученных кривых показывает, что растворение АСПО в исследуемых реагентах протекает с максимальной начальной скоростью. В случае ГБС это можно объяснить достаточно высокой химической активностью растворителя, а в случае газового конденсата - влиянием температуры. Однако, с повышением степени растворения скорость процесса плавно снижается, наблюдается насыщение фиксированного объема жидкости растворяемым материалом. При помощи выражения (1) строятся логарифмические анаморфозы кинетических кривых растворения АСПО в исследуемых растворителях, которые приведены на фиг.3. Параметр n определяется как тангенс угла наклона линий тренда, позволяет установить лимитирующую стадию растворения АСПО.

Кинетические параметры растворения определяют из следующих выражений:

α = 1 e k t n ( 1 )

где α - степень растворения АСПО; k - постоянная, определяющая константу скорости растворения; n - постоянная, определяющая характер процесса: при n<1 - диффузионный процесс; n>1 - кинетический процесс; n=1 - реакция первого порядка, скорость химического взаимодействия сопоставима со скоростью диффузии. Константы скорости растворения находят по формуле: K = n k 1 n , ( 2 )

Формула (3) дает возможность рассчитать время, за которое в раствор перейдет половина количества АСПО в газовом конденсате и ГБС, при условии, что растворение АСПО в этих УВ протекает как реакция первого порядка:

τ 1 2 = I n 2 k , ( 3 )

Результаты представлены в таблице. Из таблицы следует, что процесс разрушения АСПО в газовом конденсате при 10°C является диффузионно контролируемым (значение порядка реакции n=0,5), при нагреве конденсата до 25°C, процесс переходит из диффузионного режима в кинетический (n=1,25). Показано, что в бинарной системе процесс растворения АСПО при разных температурах протекает как реакция первого порядка (n=1), т.е. скорость растворения АСПО в ГБС не ограничивается ни скоростью физико-химического взаимодействия на поверхности раздела фаз, ни диффузией. Константы скоростей растворения (К) и периоды полупревращения (τ1/2) АСПО в бинарной смеси при 10°C и в конденсате при 25°C практически совпадают, что говорит об одинаковой растворяющей способности холодного композита и нагретого конденсата. Видно, что энергия активации разрушения АСПО в ГБС почти в 10 раз меньше по сравнению с конденсатом, что свидетельствует о высокой активности алифатико-ароматических растворителей. Следовательно, если процесс растворения АСПО в исследуемом реагенте при определенной температуре имеет следующие кинетические характеристики: порядок реакции растворения равен единице; невысокие значения τ1/2 и энергии активации, то применение такого растворителя для удаления АСПО будет наиболее эффективно.

В таблицу также включены результаты испытаний, проведенных по прототипу. Видно, что наплавление образцов приводит к существенному искажению результатов, по сравнению с тем, когда образцы наносятся на поверхность без наплавления. Константы скоростей растворения отличаются на порядок, а энергия активации увеличивается в 4 раза.

Таким образом, опираясь на проведенные испытания, можно заключить, что техническим результатом изобретения является повышение точности определения и оценки эффективности растворителей, которая учитывает кинетические аспекты процесса растворения АСПО, приведет к понижению эксплуатационных затрат и повышению эффективности растворителей, используемых для удаления АСПО при добыче, транспортировке и хранении нефти.

Способ определения и оценки эффективности растворителей асфальтосмолопарафиновых отложений

Кинетические параметры растворения АСПО в газовом конденсате и ГБС
Модель системы Лимитирующие стадии, n Константа скоростей растворения, К, мин-1 Время, τ 1 / 2 τ 1 2 , мин Энергия активации разрушения отложений, Ea, кДж/моль
Образец t,°C
АСПО + Газовый конденсат 10 0,50±0,04 8,45*10-5 - 292,60
25 1,25±0,08 4,42*10-2 15,68
АСПО + ГБС 1:1 10 1,00±0,07 3,10*10-2 22,36 31,64
25 1,05±0,13 6,10*10-2 11,36
АСПО + ГБС 1:1 (испытания по прототипу) 10 0,83±0,06 2,91*10-3 - 118,6
25 0,91±0,09 3,б8*10-2 18,84

Способ определения и оценки эффективности растворителей асфальтосмолопарафиновых отложений, включающий отбор из нефтяного оборудования образцов асфальтосмолопарафиновых отложений, нанесение отложений на металлическую пластину, определение массы, воздействие растворителем, определение массы в результате воздействия растворителя, фиксирование результатов, подвешивание металлической пластины с нанесенным образцом на крючок весов, непрерывное измерение массы образцов, определение массы металлической пластины с образцом, опускание ее в сосуд с испытуемым растворителем, термостатирование сосуда, фиксирование результатов; аналогичная подготовка других образцов и опускание их в сосуд с другим растворителем, проведение аналогичных измерений, сравнение данных испытаний разных растворителей и учитывающий «стеночный эффект», отличающийся тем, что используется образец с нативной (без наплавления) структурой, металлическую пластину с нанесенным образцом подвешивают на крючок коромысла торсионных весов, а сравнение данных испытаний разных растворителей осуществляют по полученным анаморфозам кинетических кривых их растворения: при этом рассчитывают порядок реакций растворения и лимитирующие стадии; константы скоростей растворения; время, за которое половина количества асфальтосмолопарафиновых отложений перейдет в раствор при условии, что процесс протекает как реакция первого порядка; эффективную энергию активации разрушения отложений и по полученным величинам кинетических параметров оценивают эффективность растворителей асфальтосмолопарафиновых отложений при той или иной температуре.



 

Похожие патенты:
Изобретение относится к нефтедобывающей промышленности. Способ включает стадию вибросейсмического воздействия на пласт с помощью генератора упругих волн.

Предложение относится к нефтедобывающей промышленности, в частности к повышению нефтеотдачи пластов на поздней стадии разработки нефтяной залежи. Технический результат - увеличение нефтеотдачи пластов и снижение обводненности добывающих скважин, повышение эффективности охвата пласта воздействием, расширение технологических возможностей способа.

Изобретение относится к бурению нефтяных скважин. Способ обеспечения по существу постоянного реологического профиля бурового раствора в температурном диапазоне от примерно 120°F (49°С) до примерно 40°F (4°С) включает в себя добавление в буровой раствор добавки к буровому раствору, в котором добавка к буровому раствору включает в себя продукт реакции карбоновой кислоты, имеющей не менее двух карбоксильных фрагментов, и полиамина, имеющего не менее двух функциональных аминогрупп, при условии, что добавка не включает алкоксилированных алкиламидов и/или амидов жирных кислот.
Изобретение относится к нефтяной промышленности. Технический результат - повышение эффективности обработки призабойной зоны пласта.

Изобретение относится к консолидации жидкостных стадий и применимо в жидкостной системе, используемой для закачивания в скважину. Способ поддержания консолидации жидкостных стадий в жидкостной системе, используемой для закачивания в скважину, содержащей контактирующую жидкость иного характера, прилегающую к жидкостной стадии, включает подмешивание твердых частиц по меньшей мере к жидкостной стадии или к соседней контактирующей жидкости в количестве, при котором между стадией и соседней контактирующей жидкостью образуются дискретные границы контактирующей жидкости, и закачивание жидкостной системы в ствол скважины.

Изобретение относится к нефтяной промышленности. Технический результат - повышение эффективности обработки пласта за счет предварительной очистки и промывки призабойной зоны скважины углеводородным растворителем с последующей обработкой раствором соляной кислоты в пульсирующем режиме с короткими по времени импульсами с увеличением объема, что при последующей разработке пласта позволит повысить продуктивность пласта, упрощение технологического процесса, снижение стоимости и продолжительности обработки пласта.

Изобретение относится к способам обработки подземной формации с использованием сшитых полимеров. Способ обработки подземной формации, пронизанной буровой скважиной, включает введение обрабатывающей текучей среды в буровую скважину, сшивание гидратируемого полимера для повышения вязкости обрабатывающей текучей среды по меньшей мере для части вводимой таковой и сверхсшивание сшитого полимера для замедленного разрушения структуры обрабатывающей текучей среды.

Изобретение относится к способам и композициям полимеров для модифицирования вязкости нефтепромысловых сервисных текучих сред. Способ обработки подземного пласта флюидом включает получение флюида, содержащего сшивающий агент приведенной структурной формулы, который образуется в результате реакции 1,4-бензолдибороновой кислоты с 2-гидрокси-4-аминобензойной кислотой, и полисахарид или материал на основе целлюлозы, включающий окисленные функциональные группы, и введение флюида в ствол скважины, проходящей через пласт, и обеспечение контакта флюида с пластом.
Изобретение относится к нефтегазодобывающей промышленности, в частности к способам добычи нефти из неоднородных обводненных пластов на поздней стадии разработки нефтяных месторождений.

Изобретение относится к добыче углеводородов или воды из скважин. Технический результат - эффективная одностадийная обработка с ликвидацией углеводородных, эмульсионных или водяных барьеров и растворением кислоторастворимых материалов с контролируемой скоростью.

Изобретение относится к нефтяной промышленности и может найти применение при обработке призабойной зоны в горизонтальных стволах скважин, пробуренных в залежи битумов и разрабатываемых термическим методом. Технический результат - эффективная обработка призабойной зоны горизонтальной скважины за счет расширения зоны обработки пласта, исключение засорения фильтра, а также сокращение продолжительности технологического процесса осуществления способа. Способ обработки призабойной зоны горизонтальной скважины включает спуск в обрабатываемый интервал скважины гидроперфоратора с колонной труб одностороннего действия с направлением сопел вверх, струйное воздействие через него углеводородным растворителем, затем раствором кислоты, проведение технологической выдержки на реагирование кислоты, извлечение оборудования из скважины, свабирование и пуск скважины в эксплуатацию. На устье горизонтальной скважины до спуска в скважину нижний конец колонны труб оснащают снизу вверх: центратором-патрубком, гидроперфоратором одностороннего действия с направлением сопел вверх, импульсным пульсатором жидкости, клапаном, состоящим из седла и корпуса с отверстиями, герметично перекрытыми седлом, зафиксированным срезным штифтом относительно корпуса, спускают колонну труб до упора центратора-патрубка в забой горизонтальной скважины. Далее в два этапа в импульсном режиме через гидроперфоратор производят струйное воздействие на призабойную зону пласта сначала углеводородным растворителем, а затем соляной кислотой. При реализации двух этапов с одновременной закачкой углеводородного растворителя или соляной кислоты перемещают колонну труб от забоя к устью с постоянной скоростью на длину фильтра горизонтальной скважины. По окончании закачки соляной кислоты размещают гидроперфоратор в конце фильтра со стороны устья скважины, далее на устье скважины в колонну труб устанавливают пробку и продавливают ее по колонне труб технологической жидкостью до посадки пробки на седло клапана и разрушения срезного штифта под действием избыточного давления в колонне труб. Далее проводят технологическую выдержку в течение 1 ч, при этом в процессе технологической выдержки доспускают колонну труб до упора гидроперфоратора в забой горизонтальной скважины. Затем в три цикла поочередно то в колонну труб, то в межколонное пространство скважины закачивают по 0,5 м3 технологической жидкости. По окончании времени выдержки вымывают продукты реакции обратной круговой циркуляцией в полуторакратном объеме скважины. 2 ил.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для определения параметров мелкодисперсной водогазовой смеси перед закачкой в пласт. Техническим результатом является обеспечение проведения измерения дисперсности водогазовой смеси как для прозрачной, так и для непрозрачной дисперсионной среды. Способ включает получение водогазовой смеси под повышенным давлением, отбор пробы водогазовой смеси и перевод ее в измерительную емкость при том же давлении. Перед проведением измерения определяется объем измерительной емкости, а в процессе измерения непрерывно регистрируется изменение давления свободного газа внутри измерительной емкости и объем свободного газа, соответствующее ему приращение объема свободного газа, определятся общее количество газа, содержащегося в отобранной пробе, затем определяется зависимость ΔР от объема свободного газа в емкости, которая затем пересчитывается в зависимость изменения давления (ΔР) от относительной доли текущего значения массы свободного газа miг/mг, где mг - общее количество газа mг, содержащегося в отобранной пробе, miг - текущее значение массы свободного газа, далее определятся радиус газовых пузырьков, содержащихся в доле текущего значения массы свободного газа по формуле: r i = 2 σ Δ P i ,  где σ - межфазное натяжение, и вычисляется функция распределения радиуса пузырьков. 3 з.п. ф-лы, 1 пр., 1 табл.
Изобретение относится к нефтедобывающей промышленности. Технический результат - повышение эффективности добычи высоковязкой нефти. В способе добычи вязкой нефти предварительно в призабойную зону пласта для формирования на забое катализаторной подушки с проницаемостью не ниже проницаемости призабойной зоны пласта закачивают водную суспензию глинистого бурового шлама, содержащего глинистые частицы - катализатор разложения пероксида водорода и частицы песка, обеспечивающие проницаемость катализаторной подушки, или водную суспензию смеси катализатора разложения пероксида водорода - порошка оксида двух- или трех-, или четырехвалентного металла и песка или пропанта. Затем последовательно производят закачку в пласт 10-40%-ного по массе раствора пероксида водорода, буфера воды и раствора неионогенного поверхностно-активного вещества - деэмульгатора. Затем осуществляют подачу воды из системы поддержания пластового давления и откачку нефти. 2 табл., 4 пр.

Изобретение относится к доставке зернистого материала на участок, расположенный под землей. Скважинный флюид является жидкостью-носителем на водной основе, содержащим первый и второй гидрофобные зернистые материалы - частицы, суспендированные в нем, где первые частицы имеют больший удельный вес, чем вторые, и флюид содержит газ для смачивания поверхности частиц и связывания их вместе в агломераты. Способ доставки зернистого материала под землю, включающий подачу указанного выше флюида так, что агломераты из частиц, удерживаемых газом, находятся ниже грунта. Способ гидравлического разрыва подземного газонефтеносного пласта включает доставку указанного выше флюида к трещине и подачу его в трещину так, что агломераты из частиц, удерживаемые газом, находятся в трещине. Изобретение развито в зависимых пунктах формулы. Технический результат - облегчение транспортирования и размещения зернистых материалов в трещине гидравлического разрыва или гравийной набивке. 3 н. и 12 з.п. ф-лы, 5 табл., 8 пр., 6 ил.

Изобретение относится к доставке зернистого материала на участок, расположенный под землей. Скважинный флюид включает жидкость-носитель на водной основе и гидрофобный зернистый материал, суспендированный в нем, где гидрофобный зернистый материал имеет объемный медианный размер частиц d50 не больше чем 200 микрон, определяемый как медианный диаметр сфер эквивалентного объема, при этом флюид дополнительно включает газ для смачивания поверхности частиц и связывания их вместе в агломераты. Скважинный флюид включает жидкость-носитель на водной основе и гидрофобный зернистый материал, суспендированный в нем, где гидрофобный зернистый материал имеет площадь поверхности, по меньшей мере, 30 м2 на литр (30000 м2/м3 или 0,03 м2/мл), определяемую как площадь поверхности ровных сфер эквивалентного объема, при этом флюид также включает газ, чтобы смачивать поверхность частиц и связывать их вместе в агломераты. Способ доставки зернистого материала под землю включает подачу под землю композиции флюида, включающего жидкость-носитель на водной основе, в которой суспендирован гидрофобный зернистый материал, имеющий объемный медианный размер частиц d50 не больше чем 200 микрон, определяемый как медианный диаметр сфер эквивалентного объема, при этом также включающей газ, смачивающий поверхность частиц и связывающий частицы вместе так, что агломераты зернистого материала, удерживаемые вместе газом, находятся ниже грунта. Технический результат - повышение эффективности доставки под землю. 3 н. и 12 з.п. ф-лы, 8 пр., 5 ил.

Изобретение относится к горнодобывающей промышленности. Технический результат - повышение добычи углеводородов и обеспечение бесперебойной работы скважин без остановок добычи на время ремонтов. В способе в скважины закачивают рабочие жидкости для обработки призабойных зон и вытеснения нефтей из пластов, производят ремонт скважин и антикоррозийную обработку труб и оборудования в них, очищают трубы в верхних частях добывающих скважин от асфальтеновых и смолопарафиновых отложений АСПО. В качестве рабочей жидкости используют комплексный органический растворитель, состоящий из производных ароматических углеводородов, сложных эфиров карбоновых и органических кислот, у которого изменяют плотность и вязкость в зависимости от изменяющихся условий конкретных месторождений. Процесс обработки пластов указанным растворителем из всех добывающих скважин на месторождениях повторяют многократно через заданные промежутки времени и поддерживают требуемый уровень добычи нефтей и газов на месторождениях. Для очистки от АСПО многократно прокачивают указанный растворитель с введенными в него антикоррозийными добавками в виде фосфатов по трубам из забоев скважин на поверхность и обратно по замкнутому циклу. Для добычи газа из месторождений с высокой обводненностью пластов и низким пластовым давлением плотность комплексного органического растворителя изменяют для вытеснения пластовых вод вглубь пластов. Для увеличения объемов добычи нефтей одновременно с обработкой комплексным органическим растворителем призабойных зон всех добывающих скважин осуществляют глушение им всех нагнетательных скважин и вытесняют нефти в сторону добывающих скважин, при этом чередуют объемы закачки в нагнетательные скважины комплексного органического растворителя с объемами закачиваемых вслед за ним пластовых вод в соотношениях от 1:1 в начале закачки в пласты и до не менее 1:20 в конце по мере увеличения общего объема закачки в пласты этого состава. 2 ил.

Изобретение относится к нефтедобывающей промышленности, в частности к составам для повышения нефтеотдачи нефтяных месторождений путем регулирования разработки неоднородных пластов. Состав для регулирования разработки неоднородного нефтяного пласта включает стабилизированный латекс, производное кремниевой кислоты и воду. В качестве производного кремниевой кислоты он содержит кремнезоль, представляющий собой высокодисперсную систему на основе двуокиси кремня с силикатным модулем 100. В качестве воды он содержит электрохимически активированную воду с pH 5,4 при электропроводности 3,7 мСм. Состав содержит компоненты в следующем соотношении, мас.%: стабилизированный латекс (в пересчете на сухое вещество) 2-5, кремнезоль с силикатным модулем 100 в количестве 2-5, указанная электрохимически активированная вода - остальное. Технический результат: увеличение коэффициента нефтевытеснения до 4,8%. 2 ил., 1 табл.

Изобретение относится к жидкостям для технического обслуживания ствола скважин. Способ включает: введение в ствол скважины жидкости для технического обслуживания ствола скважины, содержащей катионный полимер, минерализованный раствор и твердое вещество, причем указанный катионный полимер имеет молекулярную массу от 300000 дальтон до 10000000 дальтон, минерализованный раствор присутствует в указанной жидкости в количестве от 95 об.% до 99,8 об.% относительно ее общего объема, а твердое вещество представляет собой утяжелитель, выбранный из карбоната железа, карбоната магния, карбоната кальция или комбинаций барита, гематита, ильменита и карбоната железа, карбоната магния и карбоната кальция, причем указанная жидкость демонстрирует снижение вязкости при сдвиге при скорости сдвига от 3 сек-1 до 300 сек-1 и температуре от 24°С (75°F) до 260°С (500°F). Состав жидкости для технического обслуживания ствола скважины содержит катионный полимер, минерализованный раствор и твердое вещество, причем указанный катионный полимер имеет молекулярную массу от примерно 300000 дальтон до примерно 10000000 дальтон, минерализованный раствор присутствует в указанной жидкости в количестве от 95 об.% до 99,8 об.% относительно общего ее объема, а твердое вещество представляет собой утяжелитель, выбранный из карбоната железа, карбоната магния, карбоната кальция или комбинаций барита, гематита, ильменита, карбоната железа, карбоната магния и карбоната кальция, причем указанная жидкость демонстрирует снижение вязкости при сдвиге при скорости сдвига от 3 сек-1 до 300 сек-1 и температуре от 24°С (75°F) до 260°С (500°F). Изобретение развито в зависимых пунктах формулы. Технический результат - улучшение жидкости технического обслуживания скважин. 2 н. и 18 з. п. ф-лы, 9 пр., 9 табл., 10 ил.

Изобретение относится к нефтегазодобывающей промышленности. Технический результат - повышение эффективности освоения нефтяных и газовых скважин и увеличение их продуктивности. В способе освоения нефтяных и газовых скважин, включающем обработку призабойной зоны скважины путем закачки в скважину кислотной эмульсии и проведения технологической выдержки, последовательно закачивают в скважину, оборудованную колонной лифтовых труб, продавочную жидкость, высоковязкую разделительную жидкость и кислотную эмульсию, в качестве кислотной эмульсии используют кислотную пену, которую приготавливают путем газирования расчетного объема пенообразующей эмульсии, равного объему скважины в интервале вскрытия продуктивного пласта. Пенообразующая эмульсия содержит, мас.%: дизельное топливо 25,0; соль КСl 10,0; поверхностно-активное вещество неонол АФ 9-12 1,0-1,5; соляную кислоту НСl 10,0, воду остальное. Степень газирования пенообразующей эмульсии регулируют, исходя из максимально допустимой депрессии на глубине кровли продуктивного пласта. Закачку кислотной пены осуществляют через межтрубное пространство скважины в интервал вскрытия продуктивного пласта, затем кислотную пену продавливают в продуктивный пласт продавочной жидкостью, причем между продавочной жидкостью и кислотной пеной вводят высоковязкую разделительную жидкость с условной вязкостью не менее 120 с, после чего в межтрубном пространстве скважины и лифтовых трубах создают посредством продавочной жидкости избыточное давление на призабойную зону пласта с периодичностью, обеспечивающей создание чередующихся, по меньшей мере, трех циклов депрессии и репрессии на пласт, при этом проводят технологическую выдержку скважины не менее трех часов в каждом из циклов депрессии и репрессии до получения притока пластового флюида в цикле депрессии. 4 табл., 1 ил.
Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке неоднородной обводненной нефтяной залежи. Обеспечивает повышение нефтеотдачи залежи за счет эффективного использования полимердисперсной системы. Сущность изобретения: способ включает отбор продукции через добывающие скважины, закачку через нагнетательные скважины рабочего агента - воды и полимердисперсной системы с модифицирующими химреагентами. Согласно изобретению анализируют состояние разработки месторождения по текущему коэффициенту нефтеотдачи и обводненности продукции и при обводненности продукции в среднем по участку до 90% и приемистости нагнетательных скважин до 250 м3/сут совместно с полимердисперсной системой в качестве модифицирующих химреагентов закачивают водные растворы поверхностно-активных веществ - ПАВ или композиций ПАВ. При обводненности продукции в среднем по участку от 70% до 95% и приемистости нагнетательных скважин от 250 м3/сут до 350 м3/сут совместно с полимердисперсной системой закачивают в качестве модифицирующих химреагентов водные растворы солей многовалентных металлов. При обводненности продукции в среднем по участку от 70% до 99% и приемистости нагнетательных скважин более 350 м3/сут совместно с полимердисперсной системой в качестве модифицирующих химреагентов закачивают водные растворы сшивающих агентов. При этом водные растворы химреагентов закачивают с плотностью не менее чем на 10% выше плотности закачиваемой воды и в виде их отдельных оторочек, в виде их смеси с компонентами полимердисперсной системы и с буферным объемом воды между компонентами полимердисперсной системы. 8 пр.
Наверх