Способ снижения погрешности оценок собственных координат автономного необитаемого подводного аппарата с инерциальной навигационной системой



 


Владельцы патента RU 2520960:

Федеральный научно-производственный центр Открытое акционерное общество "Научно-производственное объединеие "Марс" (RU)

Изобретение относится к области навигации и может быть использовано для определения местоположения и управления движением автономных необитаемых подводных аппаратов с инерциальной навигационной системой и средствами технического зрения. Технический результат - повышение точности. Для достижения данного результата при движении автономного необитаемого подводного аппарата по заданной траектории выделяют один или несколько заранее неизвестных неподвижных подводных объектов, обнаруженных средствами технического зрения, оценивают их координаты и на основе полученных данных уточняют свое собственное положение при дальнейшем движении.

 

Изобретение относится к области навигации и может быть использовано для определения местоположения и управления движением автономных необитаемых подводных аппаратов с инерциальной навигационной системой и средствами технического зрения.

Известны способы навигации подвижных объектов (патенты России 2284544, 2338158, 2340874, 2385468), которые обеспечивают определение местоположения подвижных объектов.

Недостатком указанных способов навигации подвижных объектов является то, что управление движением объекта происходит по изначально известным системе навигации эталонным картам местности. Кроме того, местоположение подвижных объектов определяется только с использованием комплекса средств уточнения координат относительно априорно известных объектов.

В настоящее время отсутствует удовлетворительное решение задачи навигации автономных необитаемых подводных аппаратов, в том числе в связи с отсутствием точных карт подводной обстановки из-за постоянно изменяющейся донной поверхности и отсутствием возможности использования глобальных навигационных систем.

Целью изобретения является коррекция собственных координат автономного необитаемого подводного аппарата, позволяющая снизить погрешность при его движении.

Техническим результатом предлагаемого изобретения является снижение погрешности оценок собственных координат автономного необитаемого подводного аппарата с инерциальной навигационной системой, используя средства технического зрения.

Предлагается способ снижения погрешности оценок собственных координат автономного необитаемого подводного аппарата с инерциальной навигационной системой и средствами технического зрения, заключающийся в том, что при движении автономного необитаемого подводного аппарата по заданной траектории выделяют один или несколько заранее неизвестных неподвижных подводных объектов, обнаруженных средствами технического зрения, оценивают их координаты, и на основе полученных данных уточняют свое собственное положение при дальнейшем движении.

Принцип действия заключается в использовании данных о заранее неизвестных неподвижных подводных объектах, оказавшихся в поле видимости средств технического зрения движущегося автономного необитаемого подводного аппарата, определении оценок координат этих объектов и на их основе снижении погрешности оценок собственных координат.

Пусть известна оценка одной координаты одного движущегося автономного необитаемого подводного аппарата x ^ i с дисперсией σ i 2 , причем: σ i 2 = i γ 2 , где γ 2 - приращение дисперсии за 1 шаг при использовании доплеровских систем.

Эту оценку определяют как: x ^ i = x i + ς i , где ς i = l = 1 i δ l ; δ l - независимые случайные величины с дисперсиями γ 2 [Лукомский Ю.А., Пешехонов В.Г., Скороходов Д.А. Навигация и управление движением. - СПб.: «Элмор», 2002. - 360 с.].

На i-м шаге после обнаружения, средствами технического зрения, заранее неизвестного неподвижного подводного объекта получают наблюдение с помощью технического зрения, которое имеет вид: z i = x i x 0 + ξ i , где ξ i - ошибка технического зрения с дисперсией σ ξ 2 . Усредняя несколько наблюдений, определяют оценку координаты заранее неизвестного неподвижного обнаруженного подводного объекта: x ^ 0 = x ^ i z i , с дисперсией σ 0 2 = σ ξ 2 + σ i 2 .

Теперь на (i+1) шаге, когда автономный необитаемый подводный аппарат переместился по траектории за время Δt, получают две оценки для его собственной координаты положения. Первую оценку получают по его модели движения: x ^ i + 1 = x ^ i + v ^ i Δ t с дисперсией σ i + 1 2 = σ i 2 + σ v i 2 . Вторую оценку получают за счет использования технического зрения на (i+1) шаге: zi+1=xi+1-x0i, x ^ ^ i + 1 = z i + 1 + x ^ 0 c дисперсией: σ T i + 1 2 = σ ξ 2 + σ 0 2 = σ i 2 + 2 σ ξ 2 . После объединения этих двух оценок при условии, что погрешность технического зрения очень мала, по отношению к погрешности инерциальной системы σ ξ 2 < < σ v i 2 получают оценку координаты положения подводного аппарата x ^ i + 1 c дисперсией ошибки меньшей, чем в случае, без использования технического зрения на величину σ v i 2 , тогда σ i + 1 2 σ i 2 , т.е. при достаточно низкой погрешности технического зрения, ошибка определения собственных координат подводного аппарата практически не будет возрастать.

В случае обнаружения одновременно нескольких заранее неизвестных неподвижных подводных объектов получают наблюдения z k = x k x 0 + ξ k , с использованием которых определяют дополнительные оценки собственных координат движущегося автономного необитаемого подводного аппарата.

Объединив все оценки, корректируют собственные координаты автономного необитаемого подводного аппарата, что позволяет снизить погрешность управления его движением.

Способ снижения погрешности оценок собственных координат автономного необитаемого подводного аппарата с инерциальной навигационной системой и средствами технического зрения, заключающийся в том, что при движении автономного необитаемого подводного аппарата по заданной траектории выделяют один или несколько заранее неизвестных неподвижных подводных объектов, обнаруженных средствами технического зрения, далее с помощью итерационного процесса корректируют собственные координаты подводного аппарата с дисперсией , где - приращение дисперсии за 1 шаг, на основе формирования модели его относительного движения по отношению к наблюдаемым подводным объектам с заранее неопределенными координатами, а именно на i-м шаге после обнаружения, средствами технического зрения, заранее неизвестного неподвижного подводного объекта получают наблюдение с помощью технического зрения, которое формируют в виде: , где - ошибка технического зрения с дисперсией , затем усредняют несколько наблюдений, определяют оценку координаты заранее неизвестного неподвижного обнаруженного подводного объекта: , с дисперсией , на (i+1) шаге, когда автономный необитаемый подводный аппарат переместился по траектории за время Δt, получают две оценки для его собственной координаты положения, первую оценку получают по его модели движения: с дисперсией , вторую оценку получают за счет использования технического зрения на (i+1) шаге: zi+1=xi+1-x0i, c дисперсией: , после объединения этих двух оценок при условии, что погрешность технического зрения очень мала, по отношению к погрешности инерциальной системы , получают оценку координаты положения подводного аппарата c дисперсией ошибки меньшей, чем в случае без использования технического зрения на величину , в случае обнаружения одновременно нескольких заранее неизвестных неподвижных подводных объектов получают наблюдения для каждого из них, с использованием которых определяют дополнительные оценки собственных координат движущегося автономного необитаемого подводного аппарата.



 

Похожие патенты:

Изобретение относится к военной технике, а именно к способам функционирования мобильных комплексов навигации и топопривязки в условиях взаимодействия в автоматизированной системе управления войсками (АСУВ), и может быть использовано для решения задач топогеодезической подготовки боевых действий Сухопутных войск.

Изобретение относится к области радиотехники, а именно к навигации летательных аппаратов (ЛА), и может быть использовано при осуществлении навигации ЛА, включая посадку на взлетно-посадочную полосу (ВПП).

Изобретение относится к измерительной технике и может быть использовано в системах спутниковой навигации подвижных объектов. Технический результат - расширение функциональных возможностей.

Изобретение относится к области навигации воздушного судна (ВС) и может быть использовано для коррекции навигационных систем BC по скорости, координатам и курсу. Технический результат - повышение точности коррекции навигационной системы ВС по курсу, координатам и скорости.

Изобретение относится к измерительной технике, а именно к технике коррекции позиционных и угловых относительных уходов навигационных систем (ОУНС) выносных подвижных носителей (ВН), повышения точности определения координат ВН, а также точности координат объектов, обнаруженных измерительными средствами (ИС) ВН.

Изобретение относится к средствам для обеспечения жизнедеятельности инвалидов по зрению, а именно предназначено для получения информации и облегчения ориентации незрячих людей в пространстве.

Изобретение относится к области комплексного контроля инерциальных навигационных систем управления подвижными объектами и, в частности, к средствам аппаратурно-безызбыточного контроля систем ориентации и навигации беспилотных и дистанционно пилотируемых летательных аппаратов, минимального веса, габаритов, энергопотребления, сложности и стоимости.

Изобретение относится к области картографии и может быть использовано в качестве информационной базы при управлении движением различных транспортных средств и пеших групп, использовании автоматизированной системы управления войсками, планировании и проведении полевых исследований и туристических маршрутов.

Изобретение относится к геодезии, в частности к способам топогеодезической подготовки боевых действий ракетных войск и артиллерии сухопутных войск. Способ автоматизированного формирования локальных геодезических сетей высокого класса точности, включает в себя определение с помощью навигационной системы (НС) координат, дирекционных углов на ориентирные направления пунктов локальных геодезических сетей, закрепление полученных данных на местности постоянными или временными центрами, составление списков координат на каждый позиционный район с дальнейшей топогеодезической привязкой позиций, пунктов, постов, При создании локальных геодезических сетей (ЛГС) на первоначальном этапе выполняется в автономном режиме начальное ориентирование и определение начальных координат НТС комплектом бортового оборудования с дальнейшим вводом в бортовой вычислитель НТС значений начальных данных как вручную, так и автоматически, на втором этапе формируется район работ, где должна быть создана ЛГС, для чего в бортовой вычислитель с внешнего устройства производится загрузка пакета цифровых карт местности (ЦКМ) и выбираются необходимые файлы с ЦКМ, на третьем этапе производится прокладка маршрута на ЦКМ в соответствии с предполагаемой конфигурацией ЛГС, на четвертом этапе производится движение НТС в соответствии с проложенным маршрутом, во время которого происходит автоматическое определение координат пунктов создаваемой ЛГС, точки ЛГС при необходимости закрепляются на местности центрами с наружными знаками и для них определяются дополнительные ориентиры и особые условия состояния маршрута, для повышения точности производится коррекция НС по данным аппаратуры спутниковой навигации (АСН), либо при кратковременных остановках НТС при помощи ориентиров с известными координатами, на пятом этапе для сгущения пунктов ЛГС автоматически определяются геодезические данные точек на ЦКМ, отмеченных курсором оператора, на шестом этапе производится представление данных по сформированной ЛГС в печатном виде или электронном с возможностью их автоматизированной передачи по каналам связи объектам автоматизированной системы управления войсками (АСУВ).
Изобретение относится к навигационной технике и может быть использовано для зрительной навигации на акваториях. Сущность: на устройстве для навигации программируют временную диаграмму проблесков.

Изобретение относится к системам привязки местоположения. Технический результат заключается в повышении точности кодирования местоположения. Система содержит кодер, базу данных для сохранения предварительно кодированных местоположений и результатов предыдущих попыток при кодировании этих местоположений, система при приеме местоположения, которое должно быть кодировано, сначала запрашивает базу данных, чтобы установить то, формирует ли его часть или является ли идентичным местоположение или его часть местоположению, ранее сохраненным в рамках упомянутой базы данных, причем система возвращает или ранее кодированное местоположение или его часть в случае, если кодирование уже осуществлено, либо, альтернативно, передает местоположение непрерывного пути в кодер, вывод которого в любом случае сохраняется в упомянутой базе данных вместе с этим местоположением непрерывного пути. 3 н. и 9 з.п. ф-лы, 21 ил., 55 табл.

Изобретение относится к области приборостроения, в частности к способам персональной навигации (пешеходной, автомобильной и пр.), и может быть использовано при решении задач локальной навигации (мининавигации). Технический результат - получение наиболее полной и достоверной информации о географических координатах объекта. Для этого на основании полученной инерциальной информации вычисляют по алгоритмам аналитического гиро-горизонт-широт-компасирования географической широты и параметров ориентации основания объекта: курс, тангаж и крен. При этом в дополнение к двум каналам инерциальных измерений формируют третий канал на основе идентификации магнитных свойств основания объекта, измерения вектора напряженности магнитного поля Земли (МПЗ), его коррекции и сравнения оценок векторов напряженностей МПЗ. 3 ил.

Изобретение относится к навигационным системам. Технический результат заключается в повышении защиты обновляемых картографических данных. Система содержит навигационный блок, работающий с использованием картографических данных, и носитель записи, подсоединяемый к и отсоединяемый от навигационного блока, в которой носитель записи имеет перезаписываемую область данных, в которой записываются картографические данные, и неперезаписываемую область управления, в которой записывается идентификационная информация носителя. Информация права обновления включает в себя информацию, относящуюся к праву обновления картографических данных, записанных на носителе записи, и необходимую для обновления картографических данных, записывается в области данных. Информация права обновления считывается из области данных и удаляется из этой области данных при первом доступе к данным упомянутого носителя записи посредством навигационного блока, и должный срок обновления карты, созданный на основе считанной информации права обновления, записывается в память навигационного блока вместе с идентификационной информацией упомянутого носителя, считанной из области управления. 6 з.п. ф-лы, 8 ил.

Изобретение относится к контрольно-измерительной технике и может использоваться для определения планово-высотного положения подземного магистрального трубопровода. Способ включает пропуск внутритрубного инспектирующего прибора с навигационной системой внутри трубопровода, регистрацию и запись параметров движения, вычисление координат оси трубопровода в наземном пункте обработки. На трассе стационарно размещают устройства для определения планово-высотного положения, выполняют их геодезическую привязку с помощью спутниковых систем GPS/ГЛОНАСС базовыми и подвижной станциями относительно реперов. На устройствах для определения планово-высотного положения устанавливают блоки связи с внутритрубным инспектирующим прибором, вводят в них координаты геодезической привязки, передают блоками связи корректирующие сигналы внутритрубному инспектирующему прибору. Затем накопленные данные внутритрубного прибора и геодезические координаты деформационных марок устройств для определения планово-высотного положения передают в наземный пункт обработки. Технический результат: повышение точности определения координат оси магистрального подземного трубопровода. 4 ил.

Изобретение относится к области навигации летательных аппаратов (ЛА) с использованием комплексного способа навигации, функционально объединяющего инерциальный способ навигации и спутниковый способ навигации, и может быть использовано при осуществлении навигации ЛА, в том числе навигации высокодинамичных ЛА в сложных навигационных условиях, характеризующихся повышенным уровнем изменчивости состава рабочего созвездия навигационных спутников. Способ состоит в том, что между входной и выходной обработками данных инерциальных датчиков и спутникового приемника с использованием для комплексной обработки фильтра Калмана производят промежуточную обработку, учитывающую ориентацию ЛА в пространстве. Она включает: формирование данных рабочего созвездия на основе уточненного положения ЛА и информации об ориентации ЛА, альманахе спутников, диаграмме направленности антенны спутникового приемника, а также формирование корреляционной матрицы ошибок измерений спутникового приемника на основе данных рабочего созвездия спутников. Предложен вариант способа, в котором в промежуточной обработке проводят выбор рабочего созвездия спутников, формирование векторов направления на спутники, определяют весовые коэффициенты спутников, сопоставляя направления на спутники и диаграмму направленности антенны спутникового приемника, и формируют корреляционную матрицу ошибок спутникового способа с учетом весовых коэффициентов и отношений сигнал/шум для спутников рабочего созвездия. Предложен вариант способа с целевым управлением поиском рабочего созвездия спутников. Результатом использования способа является оценивание координат ЛА с большей точностью и непрерывностью. 2 з.п. ф-лы, 3 ил.

Изобретение относится к авиационной технике, в частности к блокам ориентации. Устройство содержит вращающийся трансформатор, блок датчиков первичной информации, АЦП, вычислительную машину, формирователь внешнего интерфейса, микроконтроллер с АЦП, нуль-орган, узел гальванической развязки, синхронизатор и два канала преобразования, каждый из которых содержит переключатель и последовательно соединенные буфер, подключенный ко входу нуль-органа, инвертор, компаратор, выход которого подключен к микроконтроллеру и входу управления переключателя, выход которого подключен ко входу АЦП, встроенного в микроконтроллер, а входы подключены ко входу и выходу инвертора. При этом вход буфера одного канала подключен к синусной обмотке вращающегося трансформатора. Вход буфера другого канала подключен к косинусной обмотке вращающегося трансформатора. Вход узла гальванической развязки подключен к источнику внешнего опорного напряжения, питающего обмотку возбуждения вращающегося трансформатора, входящего в состав пилотажно-навигационного комплекса. Технический результат заключается в расширении функциональных возможностей блока ориентации интегрированной системы резервных приборов. 1 ил.

Изобретение относится к области приборостроения и может использоваться в системах индикации состояния полета летательного аппарата (ЛА). Технический результат - повышение точности. Для этого сначала устанавливают резервный блок ориентации на приборную панель согласно точкам крепления, затем с помощью коммутирующего устройства выводят на ЖК экран, через технологический кадр в меню, режим «установка резервного блока ориентации», в процессе которого вычислитель автоматически сравнивает значения углов по крену и тангажу, формируемые резервным блоком ориентации со значениями углов основной системы, полученными по внешнему интерфейсу, а их разности вводит в ПЗУ резервного блока ориентации, а при отсутствии информации о значении углов по внешнему интерфейсу резервный блок ориентации устанавливают по креноскопу с минимальными отклонениями от нулевого положения на приборную панель ЛА, расположенного на горизонтальной плоскости, с помощью коммутирующего устройства выводят на ЖК экран, через технологический кадр в меню, режим «автономная выставка», инициируя автономную выставку, в процессе которой углы крена и тангажа, вычисленные резервным блоком ориентации, вводят в ПЗУ и используют впоследствии для вычисления вертикали в процессе работы. 1 ил.

Изобретения относятся к системам навигации в физической среде промышленных транспортных средств и, более конкретно, к улучшенным способам и системам для обработки информации карт для навигации промышленных транспортных средств. Техническим результатом является повышение эффективности формирования маршрута для промышленных транспортных средств. В способе разбиения информации карты для навигации промышленных транспортных средств осуществляют разбиение информации карты, связанной с физической средой, содержащей статические детали, представляющие объекты, которые не изменяются в физической среде, и динамические детали, представляющие объекты, которые изменяются в физической среде, на множество сегментов карты, нахождение сегмента, который соответствует текущему местонахождению транспортного средства, и навигацию промышленного транспортного средства с использованием найденного сегмента карты. 2 н. и 12 з.п. ф-лы, 9 ил.

Изобретение относится к области картографии и может быть использовано в качестве информационной базы при принятии управленческих решений при ликвидации последствий чрезвычайных ситуаций, использовании автоматизированной системы управления войсками, планировании и проведении полевых исследований и туристических маршрутов. Сущность: выбирают участки неотектонических блоков по карте новейшей блоковой делимости. Группируют выделенные участки в классы, близкие по морфометрическим характеристикам, характеру грунтов и растительному покрову. Калибруют выделенные классы по стандартному типу тактических свойств. Объединяют области с одинаковыми тактическими свойствами. Формируют итоговые карты для каждого вида тактических свойств. Технический результат: увеличение адекватности принимаемых управленческих решений за счет повышения полноты учета информации, снижение времени принятия решений за счет использования необходимой информации в заранее подготовленном визуализированном и обобщенном виде. 1 з.п. ф-лы, 7 ил.

Изобретение относится к гироскопии и может быть использовано для улучшения точностных и эксплуатационных характеристик твердотельных волновых гироскопов в составе бескарданных инерциально-навигационных систем. Устройство подвеса блока чувствительных элементов инерциально-навигационной системы на базе твердотельных волновых гироскопов содержит основание, на котором расположены четыре пары направляющих стоек, закрепленных таким образом, что каждые две стойки, закрепленные в основании противоположно друг другу, расположены на одной и той же оси; на направляющие стойки своим внутренним диаметром крепятся резиновые втулки, на наружном диаметре резиновых втулок закреплен блок чувствительных элементов, содержащий три твердотельных волновых гироскопа, герметичный кожух, накрывающий всю конструкцию. 4 ил.
Наверх