Способ получения гетероэпитаксиальных пленок карбида кремния на кремниевой подложке



Способ получения гетероэпитаксиальных пленок карбида кремния на кремниевой подложке
Способ получения гетероэпитаксиальных пленок карбида кремния на кремниевой подложке
Способ получения гетероэпитаксиальных пленок карбида кремния на кремниевой подложке

 


Владельцы патента RU 2521142:

Общество с ограниченной ответственностью "СИКЛАБ" (RU)

Изобретение относится к технологии получения полупроводниковых материалов и может быть использовано при создании полупроводниковых приборов. Изобретение позволяет упростить технологию получения применением одной поликристаллической мишени, улучшить качество пленок за счет высокой адгезии. Способ получения гетероэпитаксиальных пленок карбида кремния на кремниевой подложке включает получение пленки на поверхности подложки ионно-плазменным магнетронным распылением одной поликристаллической мишени карбида кремния при нагреве подложки до температуры 950-1400°C в атмосфере Ar. 3 ил.

 

Изобретение относится к технологии получения полупроводниковых материалов и может быть использовано при создании полупроводниковых приборов. Точнее изобретение относится к технологии производства гетероэпитаксиальных структур карбида кремния (SiC) на кремнии (Si), которые могут быть использованы в качестве подложек при изготовлении элементов полупроводниковой электроники, получаемых на основе широкозонного материала SiC.

Известен способ химического осаждения из газовой фазы, который в зарубежной литературе именуется как метод CVD (Chemical Vapor Deposition). Существуют различающиеся по конструкции реакционные камеры и способы синтеза монокристаллических пленок, описанные в публикациях US 4123571 (31.10.1978), WO 9623912 (08.08.1996), US 5670414 (23.09.1997), US 6299683 (09.10.2001), JP 2005109408 (21.04.2005), RU 2394117 (24.03.2008), которые позволяют методом CVD осуществлять осаждение карбида кремния в диапазоне температур подложек от 800°С до 2500°С.

Сущность способа RU 2394117 (24.03.2008) заключается в том, что в результате химических реакций, протекающих в газовой фазе и на поверхности подложки с участием источников компонентов пленки и промежуточных соединений, происходит синтез материала пленки. В качестве источников компонентов пленки карбида кремния обычно используют силан и пропан, растворенные в водороде. Кроме того, в качестве источников используют и другие вещества: SiCl4, SiCl2H2, CH3SiH3, CH3SiCl3, (CH3)2SiH2, (CH3)2SiCl2, CH4, C2H2, C2H6. Скорость осаждения карбида кремния зависит от температуры синтеза и от концентрации источников компонентов в парогазовой смеси.

Недостатками этого способа являются сложность технологии получения, а именно необходимость использования гидридов и галогенидов кремния (сложных с точки зрения экологии и безопасности реагентов). Недостаток заключается в необходимости поддержания оптимального состава компонентов в газовой смеси и сложности реализации требуемых условий процесса в больших реакторах, где сказывается неравномерность концентрации реагентов по объему за счет выработки реагентов и выделения продуктов реакции.

Известен способ по патенту RU 2363067 (22.01.2008), заключающийся в изготовлении изделия, содержащего кремниевую подложку с пленкой карбида кремния на ее поверхности, включающий нагрев подложки и синтез пленки на поверхности подложки в газовой среде, содержащей соединения углерода, в качестве газовой среды используют оксид или диоксид углерода либо смесь оксида или диоксида углерода с инертным газом и/или азотом при давлении 20-600 Па, а нагрев кремниевой подложки осуществляют до температуры 950-1400°С. Возможно использование только оксида углерода СО или только диоксида углерода СО2. Возможно использование в качестве газовой среды смеси газов, состоящей из 45 мас.% оксида углерода СО, 50 мас.% аргона и 5 мас.% азота.

Данный способ малоэффективен, то есть трудность заключается во множестве предварительных этапов подготовки подложек. Недостаток заключается в использовании оксидных соединений, которые могут образовать в ходе химической реакции в составе получаемой пленки остаточные кислородные связи в виде примесей. Еще одним недостатком является малые толщины получаемых пленок (до 50 нм).

Также известны способы, использующие комбинированный подход. В этих способах компоненты, участвующие в химической реакции на поверхности подложки, доставляются из твердой фазы и в виде газообразных соединений.

Авторами Joung et. al. (SiC formation for a solar cell passivation layer using an RF magnetron co-sputtering system. Nanoscale Research Letters 2012, 7:22) на поверхности 4-дюймовой подложки кремния p-типа (100), используя высокочастотное (ВЧ) (100, 150, 170, и 200 Вт) магнетронное распыление совместной системы из двух источников-мишеней, из кремния и графита с дополнительным напуском C2H2 и Ar получены пленки карбида кремния.

Недостатком данного способа выращивания является применение двух магнетронных систем для независимого распыления двух мишеней - из твердой фазы кремния и графита, что усложняет конструкцию технологической установки, увеличивает энергетические затраты. Кроме того, способ не позволяет получить пленку равномерной толщины и плотности из-за невозможности контроля диффузии углеводорода в образующихся слоях карбида кремния. В результате реализации способа получается пленка относительно низкого качества, имеющая аморфную структуру.

В способе авторов Qamar A. et al. (Synthesis and characterization of porous crystalline SiC thin films prepared by radio frequency reactive magnetron sputtering technique, Applied Surface Science 257, 2011, 6923-6927) использовалась система реактивного магнетронного распыления кремниевой мишени диаметром 4 дюйма (99,999% чистоты) в ВЧ-разряде (13,56 МГц), мощностью 200 Вт, в атмосфере газов Ar (99,999% чистоты) и CH4 (99,999% чистоты) в соотношении Ar/CH4=80/20 (ат.%). В качестве подложек использовались полированные пластины Si (100). Температура подложки составляла 850-950°C. Предварительно, подложки очищались с помощью ацетона и спирта и промывались в ультразвуковой ванне в течение 15 минут каждый. Камера откачивалась до 9,3×10-6 Па. Процесс проводился в течение 30 минут. Расстояние между мишенью и подложкой составляла 5 см.

Недостатками данного способа являются:

1. Трудоемкая аппаратура для согласования высокочастотного сигнала с нагрузкой и нестабильности разряда, возникающие в прикатодной области, трудность в регулировании соотношения в получаемой пленке углерода из газообразного составляющего и кремния из твердой фазы.

2. Скорости распыления на переменном токе на половину меньше, чем на постоянном токе, так как распыление атомов мишени происходит в один полупериод.

3. Использование с точки зрения безопасности газа СН4 в качестве источника углерода для получения пленок карбида кремния.

В способе WO 2009/011816 A1 (22.01.2009) получают гетероэпитаксиальные пленки SiC на Si путем нагрева до 1000°C в атмосфере аргона ионно-плазменным магнетронным распылением на постоянном токе. Использованные мишени при магнетронном распылении на постоянном токе в способе не описаны, хотя это является определяющим технологическим звеном магнетронного распыления. В самом тексте способа идет напоминание процесса с двумя мишенями Si и C, мишени из монокристаллических пластин SiC (p- и n-типа) при ВЧ магнетронном распылении, а на постоянном токе приоритет отдается процессу реактивного магнетронного распыления в среде метана (CH4). Данный способ наиболее близко подходит заявленному и поэтому принят за прототип.

Недостатки данного способа очевидны из недостатков вышеприведенных методик получения пленок карбида кремния на кремниевой подожке. Эти недостатки сказываются на совершенстве получаемой эпитаксиальной пленки.

Задачей настоящего изобретения является разработка нового способа получения монокристаллических гетероэпитаксиальных пленок карбида кремния на кремниевой подложке, который обеспечит безопасность и упрощение технологии, а также снизит производственные затраты при сохранении качества, достаточного для их последующего использования в изготовлении элементов электронной техники.

Технический результат заключается в упрощении способа получения, в улучшении совершенства получаемых пленок карбида кремния на кремниевой подложке.

Технический результат достигается ионно-плазменным магнетронным распылением поликристаллической мишени SiC в атмосфере аргона на постоянном токе. Формирование на подложке из кремния эпитаксиальной пленки карбида кремния кубического политипа осуществляется на поверхности предварительно нагретой от 950 до 1400°C кремниевой подложки. Температура 950°C - это кристаллизация пленки карбида кремния в кубический политип на поверхности кремниевой подложки. Температура 1400°C - это температура плавления кремния, то есть максимальное значение, при котором были получены качественные пленки карбида кремния на кремниевой подложке.

Сущность изобретения

Способ получения гетероэпитаксиальных пленок карбида кремния на кремниевой подложке, включающий нагрев подложки до температуры 950-1400°C в атмосфере Ar и получение пленки на поверхности подложки ионно-плазменным магнетронным распылением, отличается тем, что распыление осуществляют на постоянном токе из одной поликристаллической мишени карбида кремния.

Пример конкретного выполнения

Способ получения гетероэпитаксиальных пленок карбида кремния на кремниевой подложке состоит из следующих операций, выполняемых последовательно:

1. Загрузка рабочей камеры:

а) подготовка подложки, в качестве подложки используют пластину монокристаллического кремния марки КДБ-3 (кремний полупроводниковой квалификации, легированный бором), площадью 25 мм2 толщиной 300 мкм с ориентацией поверхности, отклоненной от плоскости (111) (травление в HF в течение 2 часов, кипячение в дистиллированной воде 2 раза, промывка в спирте);

б) установка подложки (13) на расстоянии 5 см от магнетрона в вольфрамовый нагреватель (11);

в) установка мишени (12) - диска из поликристаллического карбида кремния диаметром 6 см и толщиной 0.5 см, изготовленного из порошка карбида кремния путем прессования и последующего спекания в аргоне при температуре 2400°C, на охлаждаемый проточной водой магнетрон.

2. Откачка воздуха из рабочей камеры вакуумной системой до 10-6 мм рт.ст.

3. Включение питания нагревателя подложки (11), установление температуры подложки 950°C.

4. Включение системы дозированного напуска аргона и доведение давления в камере от 0,6·10-3 до 1·10-3 мм рт.ст.

5. Включение охлаждения и электропитания магнетрона и получение разрядного тока плотностью 2-5 мА/см2 при напряжении между анодом и катодом ~400 В.

6. Через 10 минут после начала процесса распыления мишени открывают заслонку (10) и осуществляется осаждение на подложку в течение 30-60 минут.

7. При достижении требуемой толщины эпитаксиального слоя разрядный ток магнетрона выключают, а подложку охлаждают до комнатной температуры в течение 20 минут.

На фигуре 1 приведена структурная схема магнетронной распылительной системы для получения тонких пленок SiC на подложках Si, где 1 - плита установки, 2 - магнитопровод, 3 - кольцевые NdFeB магниты, 4 - крышка из латуни, 5 - уплотнение из фторопласта, 6 - изолирующая шайба, 7 - металлическая шайба, 8 - гайка, 9 - трубки ввода и вывода воды для охлаждения магнетрона, 10 - заслонка, 11 - нагреватель для подложки, 12 - мишень, 13 - подложка, 14 - магнитные силовые линии, 15 - поток распыляемого вещества.

На фигуре 2 представлены рентгеновские дифрактограммы от подложки Si и от пленки SiC. Об образовании монокристаллической фазы пленки карбида кремния можно судить по проявлению пика в области 2θ=35.68°.

На фигуре 3 изображена кривая качания от эпитаксиальной пленки SiC, полученная на поверхности кремниевой подложки.

Таким образом, разработана технология для формирования на кремниевых подложках монокристаллических пленок карбида кремния с необходимыми толщинами и допустимыми механическими напряжениями. Предлагаемый способ позволяет упростить технологию получения, улучшить качество пленок и уменьшить энергетические затраты.

Способ получения гетероэпитаксиальных пленок карбида кремния на кремниевой подложке, включающий нагрев подложки до температуры 950-1400°C в атмосфере Ar и получение пленки на поверхности подложки ионно-плазменным магнетронным распылением, отличающийся тем, что распыление осуществляют из одной поликристаллической мишени карбида кремния.



 

Похожие патенты:

Группа изобретений относится к полупроводниковым материалам. Способ (вариант 1) включает обеспечение реакционной камеры, обеспечение полупроводниковой подложки, обеспечение прекурсорного газа или газов, выполнение эпитаксиального CVD выращивания легированного полупроводникового материала на подложке в реакционной камере для формирования первого слоя, продувку реакционной камеры газовой смесью, включающей водород и газ, содержащий галоген, с обеспечением уменьшения эффекта памяти легирующей примеси без удаления сопутствующего осажденного слоя из зоны реакции и выполнение эпитаксиального CVD выращивания легированного полупроводникового материала на указанной подложке в реакционной камере для формирования второго слоя.

Изобретение относится к сфере производства гетероэпитаксиальных структур, которые могут быть использованы в технологии изготовления элементов полупроводниковой электроники, способных работать в условиях повышенных уровней радиации и высоких температур.

Изобретение относится к устройству для каталитического химического осаждения из паровой фазы и может быть использовано для формирования пленки на подложке. .

Изобретение относится к технологическому оборудованию для нанесения полупроводниковых материалов на подложку эпитаксиальным наращиванием и может быть использовано при изготовлении различных полупроводниковых приборов микро- и оптоэлектроники.
Изобретение относится к солнечным элементам и к новому использованию тетрахлорида кремния. .

Изобретение относится к устройству и способу управления температурой поверхности, по меньшей мере, одной подложки, лежащей в технологической камере реактора CVD. .

Изобретение относится к технологии получения пленок нитрида алюминия. .

Изобретение относится в технологии производства пленок карбида кремния на кремнии, которые могут быть использованы в качестве подложек или функциональных слоев при изготовлении приборов полупроводниковой электроники, работающих в экстремальных условиях - повышенных уровнях радиации и температур. Техническим результатом изобретения является превращение технологического процесса в одну технологическую операцию с изменением технологической среды ее проведения, а также возможность получения толстых слоев 3C-SiC. В способе плазменного формирования пленок кубического карбида кремния на кремнии очистку поверхности кремниевой пластины, формирование слоя нанопористого кремния и осаждение слоя 3C-SiC проводят в одной технологической операции в несколько стадий - очистку поверхности и формирование слоя нанопористого кремния проводят с помощью СВЧ плазменной очистки и травления поверхности кремниевой пластины с использованием газов CF4 и O2, а осаждение слоя 3C-SiC проводят с помощью СВЧ плазменного синтеза с использованием газов SiF4 (SiH4), CF4 и Н2, все технологические операции проводят в СВЧ плазме пониженного давления 1·10-4÷10 Торр, температуре предметного столика 600÷250°C и его электрическом смещении от минус 10 В до минус 300 В.

Изобретение относится к области микроэлектроники и может быть использовано в производстве эпитаксиальных структур полупроводниковых соединений А3В5 и соединений А2В6 методом химического газофазного осаждения из металлоорганических соединений и гидридов. В способе получения эпитаксиального слоя бинарного полупроводникового материала на монокристаллической подложке посредством металлоорганического химического осаждения из газовой фазы используют реактор с круглой, относительно центральной вертикальной оси реакционной камерой, горизонтально расположенный подложкодержатель, установленный в реакционной камере с возможностью вращения относительно упомянутой оси, круглый экран, установленный в упомянутой реакционной камере на расстоянии приблизительно 15÷40 миллиметров над упомянутым подложкодержателем и имеющий больший диаметр, нежели упомянутый подложкодержатель, в котором поддерживают предварительно заданную температуру равномерно вращающегося подложкодержателя, по меньшей мере, два реакционных газа раздельно подают в различные радиальные секторы реакционной камеры, при этом, реакционные газы и транспортный газ подают таким образом, чтобы обеспечить течение их в радиальном направлении внутри реакционной камеры с равной скоростью на одном диаметре во всех ее секторах. Технический результат - улучшение качества гетероэпитаксиальных структур. 6 з.п. ф-лы, 4 ил.

Изобретение относится к электронной технике. Способ изготовления полупроводниковой гетероструктуры для мощного полевого транзистора СВЧ включает расположение предварительно обработанной монокристаллической полуизолирующей подложки арсенида галлия на подложкодержатель в реакторе газофазной эпитаксии, запуск газа-носителя - водорода, нагрев подложкодержателя до рабочей температуры, запуск ростовых технологических газов и последующее наращивание в едином технологическом цикле последовательности слоев заданной полупроводниковой гетероструктуры. Каждый из последовательности слоев заданной полупроводниковой гетероструктуры - буферный слой GaAs, донорный слой n+-GaAs, спейсерный слой GaAs, канальный слой InyGa1-yAs, спейсерный слой AlxGa1-xAs, донорный слой n+-AlxGa1-xAs, барьерный слой AlxGa1-xAs, стоп-слой InzGa1-zP, барьерный слой AlxGa1-xAs, градиентный слой n+-AlxGa1-xAs, контактный слой n+-GaAs - наращивают при определенных технологических режимах, причем содержание химических элементов x, y, z определяются неравенствами 0,20≤x≤0,24, 0,21≤y≤0,28, 0,48≤z≤0,51 соответственно. Изобретение обеспечивает снижение плотности дефектов и повышение выхода годных полупроводниковых гетероструктур, повышение выходной мощности и выхода годных полевого транзистора СВЧ. 5 табл.

Изобретение относится к технологии получения монокристаллического, полученного химическим осаждением из газовой фазы (ХОГФ), синтетического алмазного материала, который может быть использован в качестве квантовых датчиков, оптических фильтров, частей инструментов для механической обработки и исходного материала для формирования окрашенных драгоценных камней. Алмазный материал имеет общую концентрацию азота непосредственно после выращивания, равную или превышающую 5 ч./млн, и однородное распределение дефектов, которое определяется одной или более из следующих характеристик: (i) общая концентрация азота, когда она отображается масс-спектрометрией вторичных ионов (МСВИ) по площади, равной или превышающей 50×50 мкм, используя область анализа 10 мкм или менее, обладает поточечной вариацией менее чем 30% от среднего значения общей концентрации азота, или когда она отображается посредством МСВИ по площади, равной или превышающей 200×200 мкм, используя область анализа 60 мкм или менее, обладает поточечной вариацией менее чем 30% от среднего значения общей концентрации азота; (ii) концентрация азотно-вакансионных дефектов (NV) непосредственно после выращивания равна или превышает 50 ч./млрд при измерении с использованием замеров УФ-видимого поглощения при 77 К, где азотно-вакансионные дефекты однородно распределены по алмазному материалу так, что при возбуждении с использованием источника лазерного излучения с длиной волны 514 нм с размером пятна равным или меньше чем 10 мкм при комнатной температуре с использованием 50 мВт лазера, работающего в непрерывном режиме, и отображаемая по площади, равной или превышающей 50×50 мкм, с интервалом данных менее 10 мкм, имеется низкая поточечная вариация, где отношение площадей интенсивностей азотно-вакансионных пиков фотолюминесценции между областями высокой интенсивности фотолюминесценции и областями низкой интенсивности фотолюминесценции составляет менее 2 для либо пика фотолюминесценции (NV0) при 575 нм, либо пика фотолюминесценции (NV-) при 637 нм; (iii) вариация в рамановской интенсивности такова, что при возбуждении с использованием источника лазерного излучения с длиной волны 514 нм (приводящему к рамановскому пику при 552,4 нм) с размером пятна, равным или меньше чем 10 мкм, при комнатной температуре с использованием 50 мВт лазера, работающего в непрерывном режиме, и отображаемая по площади, равной или превышающей 50×50 мкм, с интервалом данных менее 10 мкм, имеется низкая поточечная вариация, где отношение площадей рамановских пиков между областями низкой рамановской интенсивности и высокой рамановской интенсивности составляет меньше 1,25; (iv) концентрация азотно-вакансионных дефектов (NV) непосредственно после выращивания равна или превышает 50 ч./млрд при измерении с использованием замеров УФ-видимого поглощения при 77 К, где при возбуждении с использованием источника лазерного излучения с длиной волны 514 нм с размером пятна, равным или меньше чем 10 мкм, при 77 К с использованием 50 мВт лазера, работающего в непрерывном режиме, интенсивность при 575 нм, соответствующая NV0, превышает более чем в 120 раз рамановскую интенсивность при 552,4 нм, и/или интенсивность при 637 нм, соответствующая NV-, превышает более чем в 200 раз рамановскую интенсивность при 552,4 нм; (v) концентрация одиночных азотных дефектов замещения (Ns) равна или превышает 5 ч./млн, где одиночные азотные дефекты замещения однородно распределены по монокристаллическому, полученному ХОГФ, синтетическому алмазному материалу, так что используя характерное инфракрасное поглощение при 1344 см-1 и делая выборку площади больше чем площадь 0,5 мм2, вариация, выведенная делением стандартного отклонения на среднее значение, составляет менее 80%; (vi) вариация в интенсивности красной люминесценции, определенная посредством стандартного отклонения, разделенного на среднее значение, составляет менее 15%; (vii) среднее стандартное отклонение в концентрации нейтрального одиночного азота замещения составляет менее 80%; и (viii) интенсивность окраски, измеренная с использованием гистограммы изображения, полученного микроскопией, со средним уровнем яркости больше чем 50, где интенсивность окраски является однородной по монокристаллическому синтетическому алмазному материалу, так что вариация в сером цвете, характеризующаяся стандартным отклонением уровня яркости, разделенным на среднее значение уровня яркости, составляет менее 40%. Алмазный материал имеет высокое и однородное распределение общих азотных дефектов, одиночных азотных дефектов замещения Ns, азотно-вакансионных дефектов NV, не имеет полосчатости в условиях фотолюминесценции. Однородность достигается по всему алмазному материалу, выращенному в ходе одного цикла и от цикла к циклу выращивания. 19 з.п. ф-лы, 8 ил., 5 табл.

Изобретение относится к способу выращивания пленки нитрида галлия путем автосегрегации на поверхности подложки-полупроводника из арсенида галлия и может быть использовано при изготовлении светоизлучающих диодов, лазерных светодиодов, а также сверхвысокочастотных транзисторных приборов высокой мощности. Подложку помещают в атмосферу прокачиваемого со скоростью 5-10 л/ч газа в виде газообразного азота или аргона с добавками азота и водорода, при этом осуществляют нагрев подложки до температуры 600-1100°С, выдержку при указанной температуре в течение 1-3 ч и охлаждение в печи. В частных случаях осуществления изобретения аргон с добавками азота и водорода содержит до 15% азота и до 4% водорода. Перед прокачкой газа подложку размещают в трубчатом алундовом тигеле, который помещают в кварцевую ампулу, при этом прокачку упомянутого газа осуществляют с одновременным нагревом подложки, выдержкой и охлаждением. Нагрев подложки осуществляют до 1050°С. Обеспечивается упрощение процесса выращивания пленок и снижение его длительности, а также получение ориентированных монокристаллических слоев разнообразных видов (иглы, нити, пластины). 3 з.п. ф-лы, 3 ил., 3 пр., 4 табл.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полупроводниковых структур с низкой плотностью дефектов. В способе изготовления полупроводниковой структуры выращивание эпитаксиального слоя Si1-xGex производят со скоростью 10 нм/мин, при давлении 0,133 Па, температуре 750°C, расходе SiH4 - 10 см3/мин и соотношении концентраций смеси GeH4:SiH4=3-6%. Техническим результатом изобретения является снижение плотности дефектов, обеспечивающее технологичность, улучшение параметров, повышение надежности и увеличение процента выхода годных. 1 табл.
Наверх