Способ дистанционного тестирования приборов акустического каротажа в полевых условиях

Изобретение относится к нефтепромысловой геофизике и может быть использовано в процессе акустического каротажа. Согласно заявленному изобретению обеспечивается моделирование реального акустического волнового сигнала и полное дистанционное тестирование прибора акустического каротажа в полевых условиях путем разложения входного акустического волнового сигнала на спектральные составляющие и сравнение полученной спектральной характеристики с эталонной спектральной характеристикой. Технический результат: повышение точности данных каротажа посредством обеспечения дистанционного тестирования для приборов акустического каротажа в полевых условиях. 2 ил.

 

Изобретение относится к нефтепромысловой геофизике, а именно к аппаратуре акустического каротажа.

Известен имитатор сигналов скважинного прибора акустического каротажа [патент США №3191142, кл. 340-17, 1965 г.], который предназначен для формирования акустических и электрических импульсов с целью проверки, настройки и калибровки приемного тракта скважинных приборов и регистрирующей части наземной аппаратуры акустического каротажа на продольных волнах. Сигнал с задающего генератора, имитирующий частоту излучения и частоту следования радиоимпульсов, а также мощность сигнала, подается на акустический излучатель (или излучатели, в зависимости от структуры скважинного прибора), с выхода которого по акустическому тракту упругий импульс поступает на акустический приемник (приемники) и далее в регистрирующую часть наземной аппаратуры акустического каротажа. Указанное устройство осуществляет проверку, настройку и калибровку аппаратуры акустического каротажа на продольных волнах, поскольку для этого необходимы лишь такие параметры, как время распространения и амплитуда первого волнового пакета продольной волны из полного сигнала, регистрируемого приемником скважинного прибора.

В связи с появлением аппаратуры волнового акустического каротажа появилась необходимость имитировать параметры полного сигнала с акустического приемника - оптимальное число волновых пакетов, время их поступления, частоту, амплитуду, огибающую пакета и его длительность.

Часть этой задачи решается электронным имитатором сигналов скважинного прибора для акустического каротажа [АС СССР №295870, кл. Е01В 47/00, 1972], который содержит задающий генератор, два генератора ударного возбуждения, генератор шума, смеситель, генератор цикла и измеритель интервального времени. Сигнал с выхода имитатора представляет собой приближенную копию электрического сигнала с акустического приемника скважинного прибора.

Недостатком такого имитатора является то, что имитированный сигнал по каждому каналу содержит лишь один волновой пакет (синтезированная продольная волна), частота сигнала в пакете постоянна, длительность его фиксирована, поэтому он не соответствует полному реальному сигналу от скважинного прибора акустического каротажа - волновой картине.

Наиболее близким к предлагаемому способу является способ электронного имитатора сигналов скважинного прибора акустического каротажа, посредством которого осуществляют моделирование реального акустического волнового сигнала [АС СССР №557339, кл. G01V 1/40, 1977], реализуемый устройством, содержащим смеситель волновых картин и несколько формирователей волновых картин.

Недостатком этого способа является недостаточная надежность устройства, невысокая точность измерения и необходимость постоянного контроля параметров излучения акустических сигналов путем непосредственной ручной настройки.

Задача изобретения - повышение надежности и точности способа измерения.

Технический результат - обеспечение дистанционного тестирования для приборов акустического каротажа в полевых условиях.

Поставленная задача решается, а технический результат достигается тем, что способ тестирования приборов акустического каротажа, по которому осуществляют моделирование реального акустического волнового сигнала, согласно изобретению реализуют его в полевых условиях, и перед моделированием акустического волнового сигнала производят измерения акустических сигналов, воспроизводимых излучающими зондами тестируемого прибора, которым обеспечивают необходимые преобразования и направляют к измерительным зондам тестируемого прибора в виде реальных акустических сигналов, далее посредством тестируемого прибора эти сигналы отправляют на компьютер по геофизическому кабелю, а сигналы, полученные с излучающих зондов тестируемого прибора, передают по беспроводному каналу данных на тот же компьютер, после чего эти сигналы раскладывают на спектральные составляющие и выполняют сравнение спектральных составляющих измерительных сигналов со спектральными составляющими эталонных сигналов, и по расхождению спектральных характеристик судят о работоспособности тестируемого прибора.

Существо изобретения поясняется чертежами. На фиг.1 изображена структурная схема устройства, на фиг,2 - диаграмма работы устройства с прибором акустического каротажа.

Устройство тестирования приборов акустического каротажа содержит последовательно соединенную цепь, состоящую из первого приемника УЗ волн 1, первого полосового фильтра 2, первого входного усилителя 3 и такую же последовательно соединенную цепь из второго приемника УЗ волн 4, второго полосового фильтра 5, второго входного усилителя 6. Обе цепи подключены к двум входам блока аналого-цифрового преобразователя (АЦП) 7, который в свою очередь соединен последовательно с микроконтроллером (МК) 8, к которому подключены модуль Wi-Fi 9 и блок цифро-аналогового преобразователя (ЦАП) 10. К двум выходам ЦАП подключены последовательно включенные цепи, первая из которых содержит первый выходной усилитель 11 и первый источник УЗ волн 12, а вторая содержит второй выходной усилитель 13 и второй источник УЗ волн 14.

Устройство дистанционного тестирования приборов акустического каротажа работает следующим образом: излучаемый зондом тестируемого прибора акустический сигнал, поступая к первому приемнику УЗ волн 1, проходит через первый полосовой фильтр 2 и первый входной усилитель 3 к блоку АЦП 7. Затем полученный сигнал преобразуется в цифровой сигнал и поступает на микроконтроллер (МК) 8. С микроконтроллера 8 оцифрованный сигнал по модулю беспроводной связи Wi-Fi 9 передается на компьютер для дальнейшего анализа. А тем временем этот же сигнал после временной задержки, зависящей от параметров прибора и количества приемников, с микроконтроллера 8 приходит к блоку ЦАП 10, где преобразуется в аналоговый сигнал и усиливается первым выходным усилителем 11. Далее с выхода первого источника УЗ волн 12 воспроизводится акустический сигнал, который в итоге приходит к измерительным зондам тестируемого прибора и с выхода тестируемого прибора через геофизический кабель передается на компьютер. В базе данных компьютера хранятся протоколы более ранних тестирований прибора. И по полученным данным на компьютере производятся сравнения спектральных характеристик прибора с протоколами спектральных характеристик, хранящихся в базе данных.

Исходя из результатов сравнения и анализа полученных спектральных характеристик с протоколами базы данных компьютера делается вывод о возможных неполадках в работе зондов прибора.

Для организации беспроводной связи с компьютером используется модуль ХВее, который дает возможность использования стандарта беспроводной передачи данных ZigBee.

Пример конкретной реализации способа.

Подают акустический сигнал на приемник УЗ волн, затем через блок АЦП сигнал приходит на компьютер, где производят обработку акустического сигнала в среде разработки и выполнения программ Lab View.

В качестве приемника акустических колебаний используют виртуальный прибор (ВП) Formula Waveform, позволяющий задавать форму выходного сигнала при помощи математических выражений. На выходе имеем затухающие гармонические колебания:

x ( t ) = e w 0 t ( α 1 cos ( w t ) + α 2 sin ( w t ) )                                                                (1) ,

где x(t) - входной сигнал,

α1, α2 - амплитуды составляющих входного сигнала,

w - частота входного сигнала (должна находиться, как правило, в пределах от 10 до 30 кГц).

Для имитации действия шумовой составляющей сигнала применяют ВП White Noise Waveform.

Для сложения информационного сигнала с помехой используют ВП Formula:

x y ( t ) = e w 0 t ( α 1 cos ( w t ) + α 2 sin ( w t ) )   + ч ( t )                                                     (2) ,

где xy (t) - сумма входного сигнала и его шумовой составляющей.

При помощи ВП Filter осуществляют фильтрацию сигнала в диапазоне частот от 10 кГц до 30 кГц.

В результате данного преобразования удаляют составляющие помехи, не входящие в полосу пропускания фильтра:

x F ( t ) = e w 0 t ( α 1 cos ( w t ) + α 2 sin ( w t ) )   + ч(t)                                                      (3) ,

где xF(t) - отфильтрованный сигнал.

После этого преобразуют сигнал из аналогового вида в цифровой при помощи ВП Analog to Digital, в котором задают разрядность используемого АЦП, равную 10. Такая разрядность позволяет получить погрешность преобразования сигнала не более 3%.

Цифровой сигнал при помощи виртуального инструмента Get Waveform Components раскладывают на спектральные составляющие, после чего информацию записывают в файл Write to Binary File, где непосредственно сохраняют входную волновую картину.

Цифровой сигнал с АЦП поступает на ЦАП, представленный в виде ВП Digital to Analog. После преобразования сигнал поступает на излучатели.

Работа устройства с прибором акустического каротажа показана на диаграмме (фиг.2).

Из полученной диаграммы мы видим, что сигнал RESULT, являющийся отфильтрованным вариантом сигнала SUM, практически полностью совпадает с диаграммой SIGNAL. Погрешность преобразования сигнала по амплитуде не превысила 2%, по частоте равна 2,5%. Тем самым, устройство дистанционного тестирования приборов акустического каротажа полностью выполняет поставленную перед ним задачу, а тестируемый прибор акустического каротажа прошел тестирование с положительным результатом.

Итак, заявляемое изобретение позволяет повысить точность и надежность способа, а также расширить функциональные возможности за счет использования дистанционного тестирования в полевых условиях.

Способ тестирования приборов акустического каротажа, по которому осуществляют моделирование реального акустического волнового сигнала, отличающийся тем, что реализуют его в полевых условиях, и перед моделированием акустического волнового сигнала производят измерения акустических сигналов, воспроизводимых излучающими зондами тестируемого прибора, которым обеспечивают необходимые преобразования и направляют к измерительным зондам тестируемого прибора в виде реальных акустических сигналов, далее посредством тестируемого прибора эти сигналы отправляют на компьютер по геофизическому кабелю, а сигналы, полученные с излучающих зондов тестируемого прибора, передают по беспроводному каналу данных на тот же компьютер, после чего эти сигналы раскладывают на спектральные составляющие и выполняют сравнение спектральных составляющих измерительных сигналов со спектральными составляющими эталонных сигналов и по расхождению спектральных характеристик судят о работоспособности тестируемого прибора.



 

Похожие патенты:

Изобретение относится к области геофизики и может быть использовано при геофизических исследованиях в скважинах. Скважинная геофизическая аппаратура содержит геофизический кабель с кабельным наконечником и герметичный корпус с находящимися внутри него датчиками для регистрации параметров геофизического поля, например сейсмоприемниками.

Настоящее изобретение в целом относится к формированию изображения буровой скважины. Более конкретно, настоящее изобретение относится к передаче в режиме реального времени видеоданных о буровой скважине из некоторого места внутри скважины в некоторое место на поверхности.

Изобретение относится к области геофизики и может быть использовано при проведении скважинных сейсморазведочных работ. В скважинном сейсмическом приборе, содержащем герметичный корпус и управляемое прижимное устройство, выполненное в виде прижимного рычага, к корпусу прибора со стороны, противоположной рычагу, соосно с корпусом жестко прикреплен по меньшей мере один съемный башмак, выполненный в виде тонкой пластины с возможностью ее изгибания под действием прижимного усилия, оказываемого на пластину прижимным рычагом.

Изобретение относится к области геофизики и может быть использовано при поиске и разведке полезных ископаемых методами сейсморазведки. Согласно заявленному способу линии наблюдений при наземной сейсморазведке следует задавать на прямолинейных участках проекции ствола криволинейной скважины на дневную поверхность.

Изобретение относится к области геофизики и может быть использовано при проведении скважинной сейсморазведки. .

Изобретение относится к области геофизики и может быть использовано при проведении акустического каротажа скважин. .

Изобретение относится к области геофизики и может быть использовано в процессе мониторинга подземных хранилищ углеводородов. .

Изобретение относится к нефтегазодобывающей отрасли и может быть использовано для контроля целостности скважин. .

Изобретение относится к области изготовления, градуировки и обслуживания приборов и устройств для геофизических измерений и может быть использовано в оборудовании для каротажа, содержащем систему охлаждения с использованием криогенных жидкостей.

Изобретение относится к области геофизики и может быть использовано для проверки и подготовки к работе в полевых условиях аппаратуры импульсной электроразведки. .

Изобретение относится к способам определения технических параметров приборов, выполняющих дистанционные исследования геологической среды. .

Изобретение относится к области нефтегазодобывающей промышленности и предназначено для обеспечения измерений плотности преимущественно буровых и тампонажных растворов, используемых в процессе строительства скважин.

Изобретение относится к области метрологического обеспечения скважинной геофизической аппаратуры, а именно к калибровке аппаратуры по контролю технического состояния нефтяных и газовых скважин гамма-гамма методом.

Изобретение относится к области метрологического обеспечения скважинной геофизической аппаратуры, а именно к созданию стандартных образцов для калибровки скважинной аппаратуры нейтронного каротажа, работающей на газовых месторождениях и подземных хранилищах газа (ПХГ).

Изобретение относится к области метрологического обеспечения скважинной геофизической аппаратуры (СГА), а именно к созданию стандартных образцов для калибровки СГА нейтронного каротажа, работающей на газовых месторождениях и подземных хранилищах газа.

Изобретение относится к области сейсморазведки, а именно к средствам для определения параметров сейсмоприемников. .

Изобретение относится к измерительной технике и может быть использовано для определения параметров кварцевых маятниковых акселерометров. Согласно заявленному способу в одну из точек замкнутого контура акселерометра подают синусоидальные, калиброванные сигналы Uг. Для всего требуемого диапазона частот и амплитуд сигналов Uг измеряют выходной сигнал смещения Uсм и выходной сигнал Uвых устройства обратной связи и по отношению их амплитуд к амплитуде сигнала Uг определяют динамические характеристики акселерометра. По первому варианту подают сигнал Uг в датчик силы либо через эталонную нагрузку, либо через дополнительный вход усилителя мощности цифрового устройства обратной связи, соединяя свободный вывод эталонной нагрузки с общей шиной, а сигналы Uсм и Uвых измеряют соответственно со стороны выходов следующих элементов цифрового устройства обратной связи: усилителя-преобразователя и интегро-дифференциирующего усилителя. По второму варианту подают сигнал Uг в датчик силы через эталонную нагрузку, а сигнал Uвых измеряют со стороны выхода интегро-дифференциирующего усилителя устройства обратной связи и подают на активный фильтр, с выхода которого измеряют выходной сигнал U в ы х * . Сигнал Uсм измеряют со стороны выхода усилителя-преобразователя устройства обратной связи. Технический результат - повышение точности измерения динамических характеристик акселерометра. 2 н.п. ф-лы, 3 ил.
Наверх