Композиция керамического волокна, растворимая в соли



 


Владельцы патента RU 2521205:

КейСиСи КОРПОРЭЙШН (KR)

Изобретение относится к композиции биоразлагаемого керамического волокна для высокотемпературной теплоизоляции. Техническим результатом изобретения является повышение теплостойкости изделий. Композиция биоразлагаемого керамического волокна для высокотемпературной теплоизоляции содержит следующие компоненты в вес.%: SiO2 - 58-67; CaO - 26-34; MgO - 2-8; Al2O3 - 0-1; В2О3 - 0,2-1,1; B2O3+Na2O - 0,3-1,1; примеси, выбранные из TiO2 и Fe2O3 - меньше или равно 1. 5 н. и 3 з.п. ф-лы, 2 пр., 3 табл.

 

Перекрестная ссылка на родственные заявки

Настоящая заявка притязает на приоритет по отношению к предварительной заявке на патент Кореи № 2009-0115682, поданной 27 ноября 2009 г., содержание которой во всей полноте включается в настоящий документ путем ссылки.

Область техники, к которой относится изобретение

Настоящее изобретение относится к солерастворимой композиции керамического волокна, предназначенной для высокотемпературной теплоизоляции, и, более конкретно, к композиции керамического волокна, предназначенной для высокотемпературной теплоизоляции, обладающей очень хорошей солерастворимостью, при этом композиция волокна включает SiO2 в качестве структурообразующего оксида, СаО в качестве модифицирующего структуру оксида, MgO, Al2O3 в качестве промежуточного оксида, В2О3, выполняющий в композиции функцию и флюса, и структурообразующего оксида, Na2O в качестве флюса и К2О в надлежащем соотношении, с точки зрения получения композиции, обладающей улучшенной растворимостью волокна в искусственной солевой жидкости организма. Кроме того, настоящее изобретение относится к композиции, в которой суммарное содержание В2О3 и Na2O+К2О, присутствующих в качестве флюса, регулируют так, чтобы получить постоянную теплостойкость при высоких температурах и повышенную растворимость (способностью к биоразложению) в солевой жидкости организма по сравнению с обычными солерастворимыми композициями керамических волокон и обеспечить увеличение выхода продукции в ходе высокотемпературного технологического процесса.

Уровень техники

Керамические волокна используют в качестве теплоизоляционных материалов, холодоизоляционных материалов, термоизоляционных материалов, звукоизоляционных материалов, звукопоглощающих материалов и фильтрующих материалов благодаря их низкой теплопроводности и форме, сочетающей большую длину и малую толщину.

Термин «волокно для огнеупорной теплоизоляции», используемый в отношении теплоизоляции, вообще, означает огнеупорное волокно, которое может быть использовано при температуре 600°С или выше, при которой используют обычную минеральную вату. Волокнистая обертывающая теплоизоляция, которую используют при высокой температуре, подразделяется на 5 типов: от типа 1 (732°С) до типа 5 (1649°С) в соответствии со стандартом ASTM С982, на основании коэффициентов теплового сжатия, измеряемых при высокой температуре. «Температура безопасного применения» обычного волокна определяется как температура, при которой волокно обладает коэффициентом линейного теплового сжатия 5% или менее при выдерживании при соответствующей температуре в течение 24 часов.

В последние годы наиболее широко используемым для огнеупорной теплоизоляции волокном является волокно на основе Al2O3-SiO2 (RCF-AS), температура безопасного применения которого лежит в диапазоне от 1100 до 1260°С. Обычные известные способы, относящиеся к волокну на основе Al2O3-SiO2, следующие. В патентах США № 2873197 и 4555492 описано волокно на основе Al2O3-SiO2-ZrO2 (RCF-ASZ), получаемое путем добавления определенного количества компонента ZrO2 к композиции на основе Al2O3-SiO2, при этом температура безопасного применения волокна увеличивается до 1430°С.

В патенте США № 4055434 описана композиция волокна, полученная путем добавления в композицию на основе Al2O3-SiO2 до 16% обожженного доломита в качестве источника СаО и MgO, при этом волокно обладает теплостойкостью при температуре от 760 до 1100°С. В патенте США № 3687850 указано, что кремнеземное волокно, содержащее от 76 до 90% SiO2 и от 4 до 8% Al2O3, обладает теплостойкостью при 1093°С без выделения кристаллов, при этом это кремнеземное волокно получено путем добавления кислоты к композиции волокна, состоящей из SiO2, Al2O3, R2O, RO и B2O3, и растворения компонентов R2O, RO и B2O3. Однако, хотя теплостойкость и параметры растворения в кислоте рассматриваются с точки зрения получения обычного волокна для огнеупорной теплоизоляции, параметры растворения в солевом растворе, таком как искусственная жидкость организма, не рассмотрены. Кроме того, из-за высокого содержания Al2O3 (то есть 4% или более), растворимость в физиологической среде может быть низкой.

Недавно опубликованные данные показывают, что волокна с низкой растворимостью в физиологической среде, вдыхаемые в форме тонкоизмельченных волокон, накапливаются в легких, что приносит вред здоровью. Поэтому проводились активные исследования, направленные на разработку композиции неорганического волокна, обладающей повышенной растворимостью в физиологической среде, чтобы свести к минимуму возможность нанесения вреда здоровью людей и одновременно обладающей удовлетворительными физическими свойствами при высокой температуре.

Также известна композиция стеклянного волокна, легко растворимая в физиологической среде. Например, существуют следующие обладающие способностью к биоразложению композиции: композиция стеклянного волокна, содержащая CaF2, ZnO, SrO, Na2O, K2O и Li2O, помимо CaO и P2O5 (патент США № 4604097), композиция волокна, получаемая путем добавления Р2О5 к обычной композиции известково-натриевого боросиликатного стекла (международный патент WO92/0781), композиция волокна, получаемая путем добавления увеличенного количества В2О3 и Na2O к композиции известково-натриевого боросиликатного стекла (патент США № 5055428) и т.д. Однако этим композициям свойственен недостаток, заключающийся в низкой теплостойкости из-за того, что они образованы компонентами в количественных диапазонах, каждый из которых включает относительно много компонента R2O, при этом не упоминается температура безопасного применения, либо эти композиции используются на практике в качестве теплоизоляции при 350°С или меньше в зданиях и ограничены в использовании в качестве материала, обладающего способностью к биоразложению, который может быть использован при высокой температуре.

Кроме того, далее приведены примеры композиций стекла, обладающих превосходной растворимостью в искусственных жидкостях организма, которые могут быть использованы в качестве огнеупорного волокна при высокой температуре. Например, имеется композиция модифицированного волокна, обладающая улучшенной растворимостью в искусственных жидкостях организма и повышенной огнеупорностью вследствие снижения содержания Al2O3 и увеличения содержания MgO в обычной минеральной вате, содержащей такие компоненты, как CaO, MgO, SiO2 и Al2O3 (международный патент WO87/05007), композиция волокна, полученная путем селективного добавления таких компонентов, как MgO, оксид щелочного металла, Al2O3, ZrO2, B2O3 и Fe2O3, к SiO2 и CaO (международный патент WO89/12032), композиция волокна с температурой применения от 800°С до 1000°С благодаря уменьшенному количеству Al2O3 при сохранении содержания SiO2, CaO и MgO (международный патент 93/15028) и т.д. Однако эти композиции могут быть использованы только там, где максимальная температура безопасного применения составляет от 815°С до 1000°С (коэффициент линейного теплового сжатия 5% или менее при выдерживании в течение 24 часов). Кроме того, поскольку описанные выше композиции стекла не содержат компонента, выполняющего роль флюса, трудно исключить снижение таких характеристик, как выход продукции и способность к биоразложению.

Кроме того, имеются следующие примеры композиций с максимальной температурой безопасного применения 1260°С, обладающие отличной растворимостью в искусственных жидкостях организма. В WO94/15883 описан количественный диапазон композиции стекла, в котором остаточное содержание SiO2 составляет 21,8% мол. или более вследствие добавления к SiO2 Al2O3 и ZrO2, CaO и MgO, однако трудно или невозможно получить волокно с количественным диапазоном композиции, где содержание SiO2 составляет 70,04 % мол., 73,09 % мол. и 78,07% мол. (высокое содержание неволокнистых материалов). В WO97/16386 описана композиция обладающего способностью к биоразложению волокна, характеризующаяся коэффициентом 4,5% линейного теплового сжатия при 1260°С, легко образующая волокна, в которой количественный диапазон с высоким содержанием SiO2 характеризуется наличием в качестве основных компонентов MgO и SiO2, содержанием СаО 1% или менее, и от 0 до 2% Al2O3, ZrO2 и В2О3, которые добавлены в качестве других модификаторов вязкости. Однако волокно с таким количественным диапазоном состава обладает высокой теплопроводностью вследствие большого среднего размера волокна и относительно высокого коэффициента линейного теплового сжатия при температуре безопасного применения (3% или более). Из-за избыточного содержания SiO2, необходимого для увеличения температуры безопасного применения, эта композиция волокна обладает намного меньшей способностью к биоразложению, чем композиция волокна, полученная в соответствии с настоящим изобретением, характеризуется сниженным выходом продукции, образованием большого количества пыли в ходе производства волокна, кроме того, качества продукта, такие как прочность на растяжение, могут быть ухудшены.

Выше описаны типичные примеры современных композиций керамических волокон. Далее требуемые физические свойства композиций керамических волокон перечислены на основании указанных, известных в данной области способов.

Способ выработки волокна из композиции керамического волокна включает процесс выдувания с использованием сжатого воздуха или сжатого пара и процесс прядения путем опускания расплавленного материала на цилиндр, вращающийся с высокой скоростью. Идеальной вязкостью для композиции волокна с точки зрения выработки волокна с использованием процессов прядения или выдувания является низкая вязкость, например, в диапазоне от 20 до 100 П (пуаз), либо такая же или немногим отличающаяся от вязкости обычных композиций на основе Al2O3-SiO2. Если вязкость при температуре выработки волокна слишком высока, увеличивается диаметр волокна, что ведет к получению большого количества утолщенного неволокнистого материала (дроби). С другой стороны, когда вязкость слишком мала, волокно становится коротким и тонким, что приводит к образованию большого количества тонкого неволокнистого материала (мелкой дроби). Вообще, поскольку вязкость раствора стекломассы зависит от композиции стекла и температуры, композиции должны иметь надлежащий состав, обеспечивающий вязкость, необходимую для выработки волокна. Кроме того, поскольку из композиций с высокой вязкостью волокно приходится вырабатывать при более высокой температуре, вязкость нужно регулировать в сочетании с температурой выработки волокна.

Кроме того, керамические волокна, используемые для высокотемпературной теплоизоляции, должны обладать высокой теплостойкостью, а также отличной выносливостью даже при многократном приложении теплового напряжения к нагреваемому материалу. Следовательно, даже когда на керамические волокна воздействует тепло, соответствующее температуре использования, его физические свойства почти не должны изменяться. Температура использования керамических волокон соотносится со сжатием при температуре использования.

На сжатие волоконного продукта неблагоприятное влияние оказывает вязкость стеклообразной композиции волокна при высокой температуре, тип и количество кристаллов, образующихся и растущих под воздействием тепла в ходе использования продукта, температура выделения кристаллов и высокотемпературная вязкость стеклообразной фазы, оставшейся после выделения кристаллов. Поскольку кристаллы, выделившиеся при высокой температуре, обладают более высоким удельным весом, чем обычные стеклообразные волокна, на поверхности раздела кристаллов вследствие выделения и роста кристаллов возникает напряжение, из-за которого волокна разламываются или деформируются, что ведет к укорачиванию волокна. Когда волокно находится в стеклообразной фазе без выделения кристаллов при высокой температуре, вязкость стеклообразного волокна также постепенно уменьшается при относительно низкой температуре, что приводит к увеличению сжатия волокна. Кроме того, даже когда оставшаяся после выделения кристаллов стеклообразная фаза обладает низкой высокотемпературной вязкостью, сжатие волокна увеличивается из-за спекания жидкой фазы и деформации, вызванной вязким течением. Волокна, выработанные из композиции, характеризующейся низкой скоростью сжатия при высокой температуре, должны обладать приемлемыми величинами количества выделяющихся кристаллов и скорости выделения и надлежащей температурой выделения. Кроме того, растворимость керамических волокон в искусственной жидкости организма почти не должна изменяться даже тогда, когда керамические волокна находятся в высокотемпературных условиях. Следовательно, очень важно выбрать композицию, обладающую высокой растворимостью в искусственной жидкости организма, легко плавящуюся и образующую волокна и характеризующуюся малым коэффициентом линейного теплового сжатия при высокой температуре.

Кроме того, стеклянная вата, минеральная вата и керамические волокна обладают хорошей растворимостью в искусственной жидкости организма по сравнению с асбестовыми волокнами, известными как канцерогенный материал, однако их вредное воздействие на человеческий организм не подтверждено. Результаты токсикологических испытаний с использованием животных показали, что растворимость волокна в искусственной жидкости организма находится в тесной связи с его вредностью для животного. Однако сообщалось, что волокно, характеризующееся константой скорости растворения (Kdis) 100 нг/см2·ч или более, не вызывает развития фиброза или опухоли при вдыхании животными в ходе испытаний (Inhalation Toxicology, 12:26-280, 2000, Estimating in vitro glass fiber dissolution rate from composition (Оценка in vitro скорости растворения стеклянного волокна из композиции, Walter Eastes). Константа скорости растворения (Kdis) современных, обладающих способностью к биоразложению волокон лежит в диапазоне от 300 до 600 нг/см2·ч. Однако настоящее изобретение направлено на обеспечение композиции волокна, способного свести к минимуму вредное воздействие на организм человека по сравнению с обычными, обладающими способностью к биоразложению керамическими волокнами, путем установления заданного значения растворимости композиции керамического волокна в искусственной жидкости организма равным 700 нг/см2·ч или более.

Техническая задача

Настоящее изобретение направлено на обеспечение композиции биоразлагаемого керамического волокна, характеризующегося минимальной вредностью для человеческого организма даже при вдыхании человеком керамического волокна, используемой при высокой температуре, поскольку она обладает великолепными теплотехническими свойствами, такими как теплостойкость, используется для выработки волокна простым способом с использованием обычного производственного оборудования и обеспечивает экономический эффект благодаря повышенному выходу продукции.

Техническое решение

В одном из аспектов настоящим изобретением обеспечивается керамическое волокно с великолепными высокотемпературными физическими свойствами и повышенной способностью к биоразложению, достигаемыми путем регулирования количества структурообразующего оксида (SiO2), который используется в качестве основного компонента неорганических волокон, применяемых в качестве высокотемпературной изоляции, модифицирующих структуру оксидов (СаО и MgO), промежуточного оксида (Al2O3), В2О3, выполняющего функцию и флюса, и структурообразующего оксида, и флюсов (Na2O и K2O) в надлежащем соотношении для получения композиции волокна. В частности, в одном из аспектов настоящим изобретением обеспечивается керамическое волокно, характеризующееся значительно увеличенной константой скорости растворения в условиях регулирования содержания В2О3 и Na2O, по сравнению с обычным биоразлагаемым керамическим волокном, и являющееся экономически эффективным благодаря увеличенному выходу продукции.

Эффект изобретения

Растворимость высокотемпературного теплоизоляционного биоразлагаемого керамического волокна (выработанного из композиции настоящего изобретения) в искусственной жидкости организма значительно увеличена по сравнению с тем же параметром керамического волокна и биоразлагаемого керамического волокна. Таким образом, оно легко растворяется и выводится в случае вдыхания в легкие, вследствие чего снижается вред для организма. Кроме того, поскольку оно характеризуется коэффициентом теплопроводности (при выдерживании при 1100°С в течение 24 часов) менее 3% одновременно с отличной способностью к биоразложению, то обладает теплотехническими свойствами, эквивалентными тепловым и механическим свойствам обычной высокотемпературной изоляции. Кроме того, благодаря наличию адекватного количества флюса, содержание неволокнистых материалов, которые могут образовываться в ходе выработки керамического волокна, может быть уменьшено, а выход продукции существенно увеличен.

Лучший вариант осуществления изобретения

Далее в этом документе подробно описаны примерные варианты осуществления настоящего изобретения. Однако настоящее изобретение не ограничивается вариантами его осуществления, описанными ниже, напротив, может быть воплощено в различных формах. Следующие далее варианты осуществления изобретения описаны с целью предоставления специалистам в данной области возможности претворить в жизнь и реализовать на практике настоящее изобретение.

Хотя для описания различных элементов могут быть использованы термины первый, второй и т.д., элементы этими терминами не ограничиваются. Данные термины использованы только для отличия одного элемента от другого. Например, первый элемент может быть назван вторым элементам, и точно так же второй элемент может быть назван первым элементом, не отступая от объема примерных вариантов осуществления изобретения. Термин «и/или» охватывает любое сочетание и все сочетания одной или нескольких соответствующих перечисленных позиций.

Следует понимать, что когда элемент описан как «соединенный» или «связанный» с другим элементом, он может быть непосредственно связан или соединен, либо могут присутствовать промежуточные элементы. Напротив, когда элемент описан как «непосредственно соединенный» или «непосредственно связанный» с другим элементом, промежуточные элементы отсутствуют.

Используемая терминология предназначена только для описания конкретных вариантов осуществления изобретения и не подразумевает ограничения примерных вариантов осуществления изобретения. Также следует понимать, что термины «содержать», «содержащий», «включать» и/или «включающий», используемые в данном документе, означают наличие указанных отличительных особенностей, целых чисел, стадий, операций, элементов, компонентов и/или их групп, но не исключают дополнительного присутствия одного или нескольких других отличительных особенностей, целых чисел, стадий, операций, элементов, компонентов и/или их групп.

Далее, со ссылкой на прилагаемые чертежи, подробно описаны примерные варианты осуществления настоящего изобретения.

Настоящее изобретение направлено на обеспечение композиции биоразлагаемого керамического волокна для высокотемпературной теплоизоляции, содержащей от 58 до 67% вес. SiO2, от 26 до 34% вес. CaO, от 2 до 8% вес. MgO, от 0 до 1% вес. Al2O3, от 0 до 5% вес. В2О3, от 0 до 3% вес. Na2O+K2O и от 0 до 1% вес. примесей, подобранных из TiO2 и Fe2O3. Данная композиция биоразлагаемого керамического волокна отличается тем, что ее коэффициент линейного теплового сжатия при 1100°С составляет 3% или менее, а константа скорости растворения в искусственной жидкости организма составляет 700 нг/см2·ч или более.

Далее подробно описана композиция биоразлагаемого керамического волокна для высокотемпературной теплоизоляции, соответствующая настоящему изобретению.

Основным компонентом керамического волокна, в соответствии с настоящим изобретением, является SiO2, предпочтительно, присутствующий в количестве от 58 до 67% вес. относительно всей композиции волокна. Если содержание SiO2 меньше 58% вес., теплостойкость, являющаяся одним из основополагающих физических свойств керамического волокна, предназначенного для высокотемпературной теплоизоляции, быстро снижается, а скорость образования неволокнистых материалов увеличивается вследствие снижения высокотемпературной вязкости, что ведет к снижению производительности. С другой стороны, когда содержание SiO2 больше 67% вес., увеличивается волокнообразующая вязкость композиции с соответствующим увеличением диаметра волокна в ходе его выработки, в то же время увеличивается количество образующихся неволокнистых материалов (дроби), тем самым вызывая ухудшение таких физических свойств, как структура продукта и прочность на растяжение.

Кроме того, композиция биоразлагаемого керамического волокна для высокотемпературной теплоизоляции, соответствующая настоящему изобретению, содержит некоторое количество CaO и MgO, выполняющих функцию модифицирующих структуру оксидов, с целью повышения растворимости готового волокна в искусственной жидкости организма. СаО, предпочтительно, присутствует в количестве от 26 до 34% вес. относительно всей композиции волокна. Если содержание СаО менее 26% вес., может снижаться растворимость волокна в искусственной жидкости организма, тогда как при содержании СаО более 34% вес., может увеличиваться количество кристаллов, выделяющихся в ходе выработки волокна. Следовательно, относительно более низкое содержание SiO2 в готовом волокне может стать причиной снижения теплостойкости и повышения коэффициента линейного теплового сжатия. Еще один модифицирующий структуру оксид, добавляемый для повышения способности волокна к биоразложению, MgO, предпочтительно, присутствует в количестве от 2 до 8% вес., более предпочтительно, от 4 до 7% вес. относительно всей композиции волокна. Когда содержание MgO меньше 2% вес., способность волокна к биоразложению в искусственной жидкости организма падает, или же может быть ослаблено ингибирующее действие на рост кристаллов, вызываемый полищелочным эффектом, в ходе выработки волокна. С другой стороны, когда содержание MgO больше 8% вес., может возрасти волокнообразующая вязкость и уменьшиться температура плавления волокна, так как точка эвтектики композиции волокна приближается к точкам эвтектики диопсида и волластонита. Кроме того, при изготовлении композиции волокна, соответствующей настоящему изобретению, исходный материал, который может быть приобретен по относительно небольшой цене, такой как доломит или известняк, можно избирательно использовать в качестве содержащего MgO компонента вместо чистых соединений, чтобы достичь желаемых эффектов настоящего изобретения.

В соответствии с настоящим изобретением, композиция волокна содержит Al2O3 в качестве промежуточного оксида. Al2O3, предпочтительно, присутствует в количестве от 0 до 1% вес., более предпочтительно, от 0,1 до 0,7% вес. относительно всей композиции волокна. Если содержание Al2O3 превышает 1% вес., может снизиться растворимость волокна в искусственной жидкости организма и теплостойкость.

Кроме того, композиция волокна, соответствующая настоящему изобретению, может дополнительно включать стеклообразующий оксид с низкой температурой плавления, такой как В2О3, Na2O или K2O, или включать все эти стеклообразующие оксиды с целью дальнейшего повышения растворимости вырабатываемого волокна в искусственной жидкости организма. В2О3 и Na2O+K2O могут быть добавлены в количестве от 0 до 5% вес. и от 0 до 3% вес., соответственно, и могут быть введены, предпочтительно, в таком количестве, чтобы сумма В2О3 и Na2O+K2O составляла от 0,1 до 5% вес., более предпочтительно, от 0,1 до 2,0% вес. вес. В частности, когда указанные выше компоненты, В2О3 и Na2O+K2O, добавляют, они выполняют функцию повышения производительности и снижения скорости образования неволокнистых материалов за счет снижения волокнообразующей вязкости в ходе выработки керамического волокна. Когда из композиции волокна вырабатывают продукт, они выполняют функцию улучшения способности к биоразложению в искусственной жидкости организма. Кроме того, В2О3 играет роль флюса в процессе высокотемпературного плавления, снижая долю побочных продуктов в процессе выработки волокна, и структурного оксида в композиции керамического волокна, поддерживая стабильность структуры.

Кроме того, с целью повышения способности композиции волокна к биоразложению, композиция волокна, соответствующая настоящему изобретению, должна удовлетворять требованиям нижеследующей формулы 1.

Формула 1

1≤(весовой процент MgO)/(весовой процент суммы В2О3 и Na2O)≤23

Если весовое соотношение этих компонентов меньше 1 (формула 1), композицию волокна нельзя использовать для огнеупорной теплоизоляции из-за уменьшения теплостойкости волокна, тогда как, если весовое соотношение этих компонентов больше 23, может увеличиться волокнообразующая вязкость, тогда уменьшится выход продукции из-за увеличения диаметра волокна.

Кроме того, композиция биоразлагаемого волокна для высокотемпературной теплоизоляции, соответствующая настоящему изобретению, может содержать примеси, такие как TiO2 и Fe2O3, в количестве 1% вес. или менее относительно всей композиции волокна. Эти примеси могут вноситься вследствие недостаточной чистоты исходного материала, используемого для изготовления композиции волокна. Следовательно, когда примеси присутствуют в количестве более 1% вес., может ингибироваться взаимодействие компонентов волокна, и физические свойства выработанного волокна будут хуже.

Керамическое волокно, соответствующее настоящему изобретению, изготовленное с использованием композиции волокна, содержащей указанные выше компоненты в указанном количестве, характеризуется содержанием неволокнистого материала (дроби) менее 40%, средним размером волокнистых частиц 6 мкм или менее, коэффициентом линейного теплового сжатия 3% или менее (при выдерживании при 1100°С в течение 24 часов) и константой скорости растворения в искусственной жидкости организма 700 нг/см2·ч или более. Кроме того, керамическое волокно, соответствующее настоящему изобретению, является экономически эффективным, поскольку обладает отличными техническими характеристиками, описанными выше, к тому же может быть изготовлено при помощи обычного способа выработки керамического волокна.

При этом в качестве указанного способа выработки керамического волокна из композиции настоящего изобретения может быть применен обычный способ, такой как выдувание или прядение. Диапазон вязкости композиции волокна, необходимый для применения указанных способов выработки волокна, составляет от 20 до 100 П. Вязкость расплавленного материала может быть выражена как функция температуры и соответствующего состава. Следовательно, вязкость расплавленного материала при одном и том же составе зависит от температуры. Когда температура расплавленного раствора в ходе выработки волокна высокая, вязкость может уменьшаться. С другой стороны, если температура выработки волокна низкая, вязкость может увеличиваться, что отрицательно сказывается на выработке волокна. Если вязкость композиции волокна при температуре выработки волокна слишком мала, изготавливаемое волокно становится коротким и тонким, количество тонкого неволокнистого материала (мелкой дроби) может увеличиваться, тем самым снижая выход процесса выработки волокна. Когда же вязкость композиции волокна слишком большая, может образовываться волокно большого диаметра, что ведет к образованию большого количества утолщенного неволокнистого материала (дроби). Следовательно, для определения надлежащих параметров процесса выработки волокна технические характеристики (диаметр волокна и содержание неволокнистого материала) выработанного волокна могут быть соотнесены с характеристиками обычных огнеупорных керамических волокон (Al2O3-SiO2).

Один из вариантов осуществления изобретения

Примеры

Далее подробно описаны примерные варианты осуществления настоящего изобретения. Однако настоящее изобретение не ограничивается описанными ниже вариантами его осуществления, напротив, может быть реализовано в различных формах. Дальнейшие варианты осуществления изобретения описаны с целью предоставления специалистам в данной области возможности претворить в жизнь и реализовать на практике настоящее изобретение.

Методы измерения

1. Средний размер частиц волокна: средний размер частиц волокна многократно, 500 раз или более, измеряли при помощи электронного микроскопа при большом увеличении (х1000).

2. Содержание неволокнистого материала: содержание неволокнистого материала измеряли в соответствии с ASTM С892. То есть керамическое волокно подвергали тепловой обработке при 1260°С в течение 5 часов, затем отвешивали образец приблизительно 10 г с точностью 0,0001 г (W0). После этого образец помещали в сито 30 меш и пропускали через него путем надавливания резиновым стержнем. Пропущенный через сито образец последовательно пропускали через сита 50 меш и 70 меш, частицы образца, оставшиеся на соответствующем сите, взвешивали (W1). Содержание (Ws) неволокнистого материала рассчитывали по следующему уравнению 1.

Уравнение 1

Ws= W 1 W 0 ×100

В уравнении 1 Ws означает содержание неволокнистого материала, W0 означает начальный вес частиц, W1 означает вес оставшихся частиц.

3. Выход продукции: отношение общего количества расплавленного материала, преобразованного в волокна, к общему количеству расплавленного материала, экструдированного за определенный период времени, рассчитывали по следующему уравнению 2.

Уравнение 2

Выход продукции(%)=[Общее количество выработанного волокна/время]/[Общее количество экструдированного расплавленного материала/время]

4. Коэффициент линейного теплового сжатия: физические свойства полученного высокотемпературного огнеупорного теплоизоляционного волокна при высокой температуре измеряли как коэффициент линейного теплового сжатия, отражающий изменение длины выработанного продукта при высокой температуре. Для этого обычным образом изготовили волоконный продукт. Для измерения коэффициента линейного теплового сжатия керамического волокна подготовили образец волокон в форме подушечки, которую использовали в данном испытании. Сначала 220 г волокна перевели в гель в 0,2% растворе крахмала и налили в форму со стороной 300×200 мм. Затем, огеленное волокно выровняли с целью удаления шероховатостей поверхности и осушили через дно формы, получив подушечку. Подушечку в достаточной степени высушили в сушильном шкафу при 50°С в течение 24 часов и нарезали на образцы для испытаний размером 150×100×25 мм. Затем, материал с достаточной теплостойкостью, такой как платина или керамика, использовали для того, чтобы отметить точки измерения, расстояние между точками измерения точно измерили при помощи штангенциркуля с нониусом. После этого подушечку поместили в печь и нагрели до 1100°С на 24 часа и 168 часов, после завершения цикла нагревания медленно охладили. Расстояния между точками измерения охлажденных образцов для испытаний измерили и сравнили с результатами измерения до тепловой обработки образцов для испытаний. Затем, рассчитали коэффициент линейного теплового сжатия, используя следующее уравнение 3.

Уравнение 3

Коэффициент линейного теплового сжатия(%)= l 0 l 1 l 0 ×100

В уравнении 3 l 0 означает минимальное расстояние (мм) между метками на образцах для испытаний, l 1 означает расстояние (мм) между метками на образцах для испытаний после тепловой обработки этих образцов.

5. Константа скорости растворения в искусственной жидкости организма: для оценки растворимости выработанного волокна в искусственной жидкости организма растворимость в искусственной жидкости организма измерили следующим образом. Конкретный метод, использованный в этом эксперименте, полностью описан в Law et al. (1990). Способность к биоразложению керамического волокна в жидкости человеческого организма оценивали на основе растворимости волокна в искусственной жидкости. То есть сравнили величины времени пребывания в человеческом организме на основании растворимости и вычислили константу скорости растворения (Kdis) по следующему уравнению 4.

Уравнение 4

K d i s = d 0 ρ 1 M M 0 2 t

В уравнении 4 d0 означает начальный средний размер волокна, ρ означает начальную плотность волокна, М0 означает начальную массу волокна, М означает массу волокна, оставшегося после плавления, t означает время испытания. Величину начальной массы волокна определили на основании его удельной площади поверхности, измеренной при помощи измерителя удельной площади поверхности (по ВЕТ).

Величины содержания (г) компонентов в 1 л искусственной жидкости организма (то есть растворе Gamble), использованной для определения скорости растворения волокна, приведены в таблице 1.

Таблица 1
Компоненты в искусственной жидкости организма Содержание, г/л
NaCl 7,120
MgCl2·6H2o 0,212
CaCl2·2H2O 0,029
Na2SO4 0,079
Na2HPO4 0,148
NaHCO3 1,950
Тартрат натрия·2H2O 0,180
Цитрат натрия·2H2O 0,152
90% молочная кислота 0,156
Глицин 0,118
Пируват натрия 0,172

Каждый из образцов керамического волокна, соответствующего настоящему изобретению, и обычного неорганического волокна поместили между тонкими слоями, которые расположили между мембранными фильтрами из поликарбоната толщиной 0,2 мкм, зафиксированными на пластиковом держателе, и профильтровали через эти фильтры искусственную жидкость организма с целью измерения скорости растворения. В ходе этих экспериментов поддерживали температуру искусственной жидкости организма равной 37°С и расход равным 135 мл/день, величину рН поддерживали в диапазоне 7,4±0,1 при помощи газообразной смеси СО2/N2 (5/95%). Для точного измерения растворимости волокна за длительный период времени анализ ионов, перешедших при растворении в искусственную жидкость организма, которую фильтровали через определенные промежутки времени (1, 4, 7, 11, 14 и 21 день) в ходе высолаживания волокна в течение 21 дня, проводили при помощи спектрометра с индуктивно связанной плазмой. Затем, на основании результатов измерений, используя уравнение 4, определяли константу скорости растворения (Kdis).

Экспериментальный пример 1: неволокнистый материал и выход продукции

В нижеследующей таблице 2 перечислены компоненты и величины их содержания, использованные при изготовлении композиции керамического волокна в соответствии с обычным способом. Затем, обычным способом выработки неорганических волокон на основе RCF (огнеупорные керамические волокна) изготовили керамическое волокно. Измерили средний размер волокнистых частиц, содержание неволокнистого материала и выход продукции - керамического волокна. Результаты измерений перечислены в нижеследующей таблице 2. В таблице 2 волокно на основе Al2O3-SiO2 (сравнительный пример 1) и волокно на основе Al2O3-SiO2-ZrO2 (сравнительный пример 4) являются примерами обычных широко распространенных керамических волокон, волокно на основе Al2O3-SiO2-CaO-MgO-ZrO2 (сравнительный пример 5) содержит те же типичные композиции, что и биоразлагаемые керамические волокна, вообще, разработанные в данной области.

Таблица 2
Компоненты, % вес. Примеры Сравнительные примеры
1 2 3 4 5 1 2 3 4 5
SiO2 66,3 62,1 62,5 66,5 59,8 49,5 62,8 67,2 64,9 77,5
CaO 26,5 31,2 30,7 29,3 33,5 31,3 20,1 14,9
MgO 6,5 5,6 5 2,9 6 5,2 12,5 4,9
Al2O3 0,1 0,6 0,6 0,5 0,2 49,9 0,5 19,8 0,2
В2О3 0,5 0,2 1,1 0,6 0,2 0,3
Na2O 0,2
ZrO2 0,1 14,9 1,8
Примеси 0,1 0,2 0,1 0,2 0,1 0,6 0,2 0,2 0,4 0,4
Сумма 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0
Средний размер частиц, мкм 3,7 3,8 3,7 3,9 3,8 3,7 3,9 3,4 3,8 4,5
Неволокнистый материал, % 32 30 28 33 31 30 36 40 32 40
Выход продукции, % 72 73 77 75 76 80 63 67 52 60

Когда волокно характеризуется большим размером частиц и неровным поперечным сечением, теплоизолирующий эффект, вообще, может быть снижен, и можно поранить кожу во время операций с ним. Однако волокно, выработанное из композиции, соответствующей настоящему изобретению, вообще, характеризуется средним размером частиц от 3,7 до 3,9 мкм. Следовательно, волокно по настоящему изобретению можно рассматривать как обладающее надлежащими качествами, поскольку средний размер частиц этого волокна меньше, чем аналогичная величина обычного, повсеместно используемого керамического волокна, характеризующегося средним размером частиц 6 мкм. Кроме того, благодаря малому среднему размеру частиц этого волокна ожидается, что волокно, изготовленное из данной композиции волокна, может обеспечивать великолепную теплоизоляцию.

При сравнении величин содержания неволокнистого материала видно, что композиция волокна, соответствующая настоящему изобретению, включает от 28 до 33% вес. неволокнистого материала, что является снижением по сравнению с 30-40% вес. неволокнистого материала в каждом из обычных керамических волокон (сравнительные примеры 1, 4 и 5). Выход продукции для керамического волокна, соответствующего настоящему изобретению, лежит в диапазоне от 72 до 80%, что соответствует аналогичным величинам для обычных керамических волокон, характеризующихся выходом продукции от 52 до 80%.

Керамическое волокно (сравнительный пример 2) изготовили с использованием композиции волокна, полученной путем смешивания SiO2, CaO и MgO в тех же количествах, что и в композиции настоящего изобретения, за исключением того, что флюсы, В2О3 и Na2O в эту композицию не включили. В результате, было подтверждено, что содержание неволокнистого материала увеличилось до 36%, выход продукции составил 63%. Когда флюсы не используют, как описано выше, подтверждается, что процесс выработки волокна нарушается из-за увеличения волокнообразующей вязкости при высокой температуре, а следовательно, образуется большое количество неволокнистого материала, и снижается выход продукции.

Экспериментальный пример 2: коэффициент линейного теплового сжатия и способность к биоразложению

Для композиций примеров и сравнительных примеров, перечисленных в таблице 2, провели измерение коэффициента линейного теплового сжатия и константы скорости растворения (Kdis) в искусственной жидкости организма. Результаты измерений приведены в нижеследующей таблице 3.

Таблица 3
Компоненты, (% вес.) Примеры Сравнительные примеры
1 2 3 4 5 1 2 3 4 5
SiO2 66,3 62,1 62,5 66,5 59,8 49,5 62,8 67,2 64,9 77,5
CaO 26,5 31,2 30,7 29,3 33,5 31,3 20,1 14,9
MgO 6,5 5,6 5 2,9 6 5,2 12,5 4,9
Al2O3 0,1 0,6 0,6 0,5 0,2 49,9 0,5 19,8 0,2
В2О3 0,5 0,2 1,1 0,6 0,2 0,3
Na2O 0,1 0,2
ZrO2 14,9 1,8
Примеси 0,1 0,2 0,1 0,2 0,1 0,6 0,2 0,2 0,4 0,4
Сумма 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0
Коэффициент линейного теплового сжатия,(%) 24 ч 1,2 1,4 1,3 1,2 1,5 1,2 1,2 3,2 1,1 1,3
168 ч 1,5 1,7 1,6 1,4 1,8 1,4 1,5 3,5 1,7 2,1
Константа скорости растворения, (нг/см2·ч) 720 850 920 840 880 10 650 600 15 355

Когда керамические волокна, изготовленные с использованием композиций волокна примеров 1-5, перечисленных в таблице 3, подвергли тепловой обработке при 1100°С в течение 24 часов, величины коэффициента их линейного теплового сжатия лежали в диапазоне от 1,2 до 1,5%, эти величины меньше 3%, соответствующих стандартному уровню теплостойкости. Даже когда эти керамические волокна подвергли тепловой обработке в течение 168 часов, величины коэффициента их линейного теплового сжатия слегка увеличились, например, получен относительно низкий коэффициент линейного теплового сжатия от 1,4 до 1,8%. Когда тепловой обработке при 1100°С в течение 24 часов подвергли обычные керамические волокна сравнительных примеров 1, 4 и 5, величины коэффициента их линейного теплового сжатия составили от 1,2 до 2,1%, что аналогично параметрам волоконных продуктов настоящего изобретения.

Кроме того, сообщалось, что теплостойкость при высокой температуре, вообще, снижается при добавлении флюсов, В2О3 и Na2O. Однако было подтверждено, что волоконный продукт, который не содержит флюса, как в сравнительном примере 2, также имеет коэффициент линейного теплового сжатия от 1,2 до 1,5%, но что ухудшение теплостойкости сводится к минимуму при подборе надлежащей доли флюса в соответствии с настоящим изобретением.

Композиции волокна сравнительных примеров 1 и 4, приведенные в таблице 3, представляли собой композиции обычных огнеупорных керамических волокон с константой скорости растворения менее 20 нг/см2·ч; ожидалось, что их способность к биоразложению при вдыхании пыли волокон человеком очень мала. В отличие от этих композиций волокна было показано, что композиции волокна, соответствующие настоящему изобретению, характеризуются константой скорости растворения от 720 до 920 нг/см2·ч, и их растворимость в жидкости организма значительно увеличена. Композиция сравнительного примера 5, созданная для производства обычного биоразлагаемого волокна, характеризуется константой скорости растворения 355 нг/см2·ч, что удовлетворяет общим требованиям в отношении способности к биоразложению, однако ее растворимость составляет от 1/2 до 1/3 соответствующей величины для композиций волокна по настоящему изобретению.

Кроме того, композиция сравнительного примера 2 не содержала флюсов (например, В2О3 и Na2O), которые были введены в композиции волокна по настоящему изобретению. Таким образом, было подтверждено, что композиции волокна по настоящему изобретению характеризуются константой скорости растворения 650 нг/см2·ч, что представляет собой снижение по сравнению с группой обычных композиций волокна с константой скорости растворения от 720 до 920 нг/см2·ч. Как таковые флюсы, В2О3 и Na2O, эффективным образом увеличивают способность керамического волокна к биоразложению.

Как описано выше, было показано, что керамические волокна, соответствующие настоящему изобретению и выработанные из композиций, изготовленных в примерах, обладают отличной способностью к биоразложению в искусственной жидкости организма и волокнообразующими свойствами и благодаря высокому выходу волокна обеспечивают более высокую производительность. Кроме того, было показано, что керамические волокна, соответствующие настоящему изобретению, могут быть эффективным образом использованы в качестве высокотемпературной теплоизоляции, поскольку они обладают некоторым коэффициентом линейного теплового сжатия даже после тепловой обработки при высокой температуре, 1100°С, в течение 24 часов.

Биоразлагаемое керамическое волокно для высокотемпературной теплоизоляции, выработанное из композиций, соответствующих настоящему изобретению, обладает значительно более высокой растворимостью в искусственной жидкости организма, чем известные керамические волокна и биоразлагаемые керамические волокна, то есть оно легко растворяется и выводится при попадании в легкие человека, тем самым уменьшается вредное воздействие на организм человека. Кроме того, биоразлагаемое керамическое волокно, соответствующее настоящему изобретению, характеризуется отличной способностью к биоразложению и низким коэффициентом линейного теплового сжатия (при выдерживании в течение 24 часов при 1100°С) - менее 3%, таким образом, оно обладает такими же теплотехническими и механическими свойствами, что и традиционные высокотемпературные теплоизоляционные материалы. Кроме того, поскольку биоразлагаемое керамическое волокно, соответствующее настоящему изобретению, содержит надлежащее количество флюса, возможно уменьшить количество неволокнистого материала, образующегося в ходе выработки керамического волокна, и значительно повысить выход продукции.

Хотя изобретение показано и описано со ссылкой на определенные примерные варианты его осуществления, специалистам в данной области понятно, что возможны различные изменения его формы и частных особенностей, не выходящие за пределы существа и объема изобретения, определяемые прилагаемой формулой изобретения.

1. Композиция биоразлагаемого керамического волокна для высокотемпературной теплоизоляции, содержащая:
от 58 до 67 вес.% SiO2,
от 26 до 34 вес.% CaO,
от 2 до 8 вес.% MgO,
от 0 до 1 вес.% Al2O3,
от 0,2 до 1,1 вес.% В2О3,
от 0,3 до 1,1 вес.% B2O3+Na2O и
1 вес.% или менее примесей, выбранных из TiO2 и Fe2O3.

2. Композиция биоразлагаемого керамического волокна по п.1, в которой суммарное содержание В2О3 и Na2O+K2O составляет от 0,1 до 5 вес.%.

3. Композиция биоразлагаемого керамического волокна по п.2, в которой суммарное содержание В2О3 и Na2O+K2O составляет от 0,1 до 2,0 вес.%.

4. Композиция биоразлагаемого керамического волокна по п.1, удовлетворяющая формуле 1
Формула 1
1≤(весовой процент MgO)/(весовой процент суммы В2О3 и Na2O)≤23.

5. Биоразлагаемое керамическое волокно для высокотемпературной теплоизоляции, полученное с использованием композиции волокна по любому из пп.1-4,
при этом биоразлагаемое керамическое волокно содержит неволокнистый материал (дробь) в количестве менее 40 вес.% и характеризуется средним размером волокнистых частиц 6 мкм или менее.

6. Биоразлагаемое керамическое волокно для высокотемпературной теплоизоляции, полученное с использованием композиции волокна по любому из пп.1-4,
при этом биоразлагаемое керамическое волокно характеризуется коэффициентом линейного теплового сжатия 3% (при выдерживании в течение 24 часов при 1100°С) и константой скорости растворения 700 нг/см2·ч или более в искусственной жидкости организма.

7. Теплоизоляция, содержащая керамическое волокно по п.5.

8. Теплоизоляция, содержащая керамическое волокно по п.6.



 

Похожие патенты:

Изобретение относится к деталям из композиционного материала с керамической матрицей и может быть использовано в авиационных моторах, в особенности, в газовых турбинах или турбомашинах этих моторов.

Изобретение относится к области керамики и, в частности, к композиционному материалу и способу его получения. Керамический композиционный материал включает матрицу из оксида алюминия, легированного оксидом магния, и многослойные углеродные нанотрубки при следующем соотношении компонентов, об.%: оксид магния - 0,1-0,4; многослойные углеродные нанотрубки - 0,1-20; оксид алюминия - остальное.
Изобретение относится к области высокотемпературных радиотехнических материалов для спецтехники и электротехнической промышленности. Технический результат изобретения заключается в повышении температуры эксплуатации радиотехнического материала до 1800-2000°C с максимальным сохранением диэлектрических свойств материала.
Изобретение относится к нанотехнологиям и предназначено для получения высокопрочной трубчатой или комбинированной нити, пленки или ленты (разница только в ширине) нанотолщины из тройной структуры бор-углерод-кремний B-C-Si (насколько мне известно, оно не имеет названия, поэтому далее будем называть его, а точнее - наноизделия из него - «старброн»).
Изобретение относится к строительству, а именно к производству огнеупорных изделий. .

Изобретение относится к волокнистым керамическим материалам, которые способны выдерживать вибрационные нагрузки и градиент температур как по толщине материала, так и по его поверхности и которые предназначены для теплоизоляции металлических корпусов камер сгорания газотурбинных двигателей.

Изобретение относится к области конструкционных материалов, работающих в условиях высокого теплового нагружения и окислительной среды, и может быть использовано в химико-металлургической промышленности, а также в авиатехнике.

Изобретение относится к области машиностроительной керамики и может быть использовано для изготовления конструкционных деталей, работающих в условиях высоких механических нагрузок.

Изобретение относится к керамическим композиционным материалам и может быть использовано при изготовлении теплонагруженных узлов и деталей перспективных газотурбинных установок и двигателей газо-, нефтеперекачивающих, транспортных и энергетических систем, работающих в условиях высоких термоциклических нагрузок при температурах до 1650°С на воздухе и в продуктах сгорания топлива.

Изобретение относится к области производства объемносилицированных изделий. .
Изобретения могут быть использованы в области нанотехнологий и неорганической химии. Способ получения боридной наноплёнки или нанонити включает осаждение на корундовую нанонить или на стекловолокно из легкоплавкого стекла в вакууме несколько чередующихся слоев титана и бора, после чего полученную композицию постепенно нагревают до температуры 1500°С. По другому варианту способ получения боридной наноплёнки включает осаждение слоя борида титана нанотолщины на корундовую нанопленку из газовой фазы, содержащей галогенид титана и бор. Изобретения позволяют получить боридные наноструктуры, 4 н.п. ф-лы, 2 пр.
Изобретение относится к области нанотехнологий, в частности к производству высокопрочного и высокотермостойкого керамического композиционного материала на основе алюмокислородной керамики, структурированной в объеме наноструктурами (нанонитями) TiN, и может быть использовано в машиностроении, в изделиях авиационно-космической техники, двигателестроении, металлообрабатывающей промышленности, в наиболее важных и подверженных экстремальным термоциклическим нагрузкам узлах и деталях. Новый керамический композиционный материал включает алюмокислородную матрицу и дисперсную фазу TiN при соотношении, мас.%: Al2O3 - 84,1% и TiN - 15,9% с диаметром нанонитей TiN 5 нм и имеет высокие прочностные характеристики: предел прочности при 3-точечном изгибе 1262±20 МПа и вязкость разрушения 9 МПа/м1/2, за счет чего он может успешно использоваться в экстремальных условиях высоких термоциклических нагрузок при температурах до 1500°C на воздухе. 2 пр., 2 табл.

Изобретение относится к деталям из термоструктурного композиционного материала, имеющим по меньшей мере в одной части малую толщину, и может быть использовано в авиационной и космической областях, например в корпусах газотурбинных двигателей или диффузорах сопел. Деталь изготовлена из материала, содержащего волокнистый каркас из углеродных или керамических волокон, уплотненный матрицей, причём толщина детали составляет меньше 2 мм и даже меньше 1 мм; волокнистый каркас образован единственной толщиной многослойной ткани, сформированной из рассредоточенных нитей, имеющих весовой номер, равный, по меньшей мере, 200 текс, объемная доля волокон составляет от 25% до 45% и отношение между числом слоев многослойной ткани и толщиной детали в миллиметрах равно по меньшей мере 4. Технический результат изобретения - придание композиционному материалу желаемых механических свойств при получении детали малой толщины. 2 н. и 8 з.п. ф-лы, 3 пр., 6 ил.

Изобретение относится к производству конструктивных деталей, подвергающихся при эксплуатации воздействию высоких температур, и касается детали из композиционного материала с керамической матрицей и способа ее изготовления. Содержит волокнистый каркас, уплотненный матрицей, образованной из множества слоев из керамики с включением матричного межфазного слоя, отклоняющего трещины между двумя смежными керамическими слоями матрицы. Межфазный слой включает первую фазу из материала, способного содействовать отклонению трещины, которая достигла межфазного слоя согласно первому виду распространения в поперечном направлении через один из двух керамических слоев матрицы, смежных с межфазным слоем, таким образом, что распространение трещины продолжается согласно второму виду распространения вдоль межфазного слоя, и вторую фазу, образованную дискретными контактными участками, распределенными в межфазном слое и способными содействовать отклонению трещины, которая распространяется вдоль межфазного слоя согласно второму виду распространения, таким образом, что распространение трещины отклоняется и продолжается согласно первому виду распространения поперечно через другой керамический слой матрицы, смежный с межфазным слоем. Изобретение обеспечивает создание детали из композиционного материала с керамической матрицей, имеющей увеличенный срок службы при высоких температурах в коррозионной среде. 2 н. и 13 з.п. ф-лы, 19 ил., 2 пр.
Изобретение относится к нанотехнологиям и предназначено для получения нитридных структур нанотолщины. Согласно первому варианту нитридную наноплёнку или нанонить получают осаждением слоя кремния на фторопластовое волокно или на фторопластовую пленку с последующей выдержкой при температуре 800-1200оC в атмосфере азота или аммиака. Согласно второму варианту нитридную наноплёнку или нанонить получают выдержкой корундового волокна или пленки при температуре 800-1200оC в атмосфере азота или аммиака в присутствии восстановителя. Согласно третьему варианту нитридную наноплёнку или нанонить получают осаждением слоя бора на корундовое волокно или пленку с последующей выдержкой при температуре 1360оC в атмосфере азота или аммиака при давлении 60-70 т/см2 с получением боразона. Изобретения позволяют расширить арсенал средств получения нитридных наноплёнок или нанонитей. 3 н.п. ф-лы, 4 пр.

Изобретение относится к производству изделий из композиционных материалов с карбидно-металлической матрицей, получаемых методом объемного металлирования. Способ изготовления изделий из композиционных материалов на основе матрицы из карбидов металлов включает изготовление заготовки из пористого углеродсодержащего материала с низкой плотностью и высокой открытой пористостью и ее металлирование паро-жидкофазным методом. Введение в поры материала заготовки металла осуществляют порционно за 2 или более приема, чередуя его с порционным введением углерода путем пропитки коксообразующим связующим с последующим его отверждением и карбонизацией. Для введения ограниченного количества металла в поры углеродсодержащего материала на промежуточных стадиях металлирования размещают заготовку и тигли с металлом в замкнутом объеме реторты, нагревают в вакууме в парах металла, выдерживают при максимальной температуре карбидизации металла и охлаждают. Нагрев заготовки и изотермическую выдержку при температуре выше температуры испарения, но ниже максимальной температуры карбидизации металла проводят при перепаде температур между парами металла и металлируемой заготовкой с меньшей температурой на последней, последующий за ней нагрев и изотермическую выдержку при максимальной температуре карбидизации металла - в отсутствии перепада температур, а охлаждение - с обратным перепадом температур или в отсутствии паров металла, при этом чем меньше требуется ввести в поры материала заготовки металла, тем меньшую температуру устанавливают на заготовке и/или тем меньший перепад температур создают между заготовкой и парами металла и/или тем меньшее время задают на изотермической выдержке, и наоборот. Технический результат изобретения - повышение прочности и окислительной стойкости композиционных материалов. 2 н.п. ф-лы, 2 табл.
Изобретение относится к области композиционных материалов с керамической матрицей, предназначенных для работы в условиях окислительной среды и механического нагружения при высоких температурах. Изготавливают каркас из термостойких волокон, заполняют его дисперсным наполнителем и пропитывают коксообразующим связующим. В качестве дисперсного наполнителя используют тугоплавкие металлы, такие как B, Si, Ti, Zr, Hf, в капсуле из соответствующего нитрида или без таковой. Затем осуществляют формование пластиковой заготовки и ее термообработку в среде азота при температуре образования карбидов и/или карбонитридов соответствующих металлов. Полученную пористую заготовку силицируют паро-жидкофазным методом путем капиллярной конденсации паров кремния, нагревают до 1700-1850°C и выдерживают в указанном интервале температур в течение 1-3 часов. Технический результат - обеспечение возможности изготовления крупногабаритных тонкостенных изделий без применения механической обработки, а также повышение надежности их работы в окислительных средах при высоких температурах. 2 з.п. ф-лы, 13 пр., 1 табл.
Изобретение относится к конструкционным, электротехническим и теплозащитным материалам. Технический результат изобретения заключается в повышении термостойкости радиотехнического материала с сохранением высоких прочностных и диэлектрических характеристик. Способ получения радиотехнического материала включает смешение алюмохромофосфатного связующего Фоскон-351 с порошком белого электрокорунда при соотношении 55-65 мас.%:35-45 мас.%. Полученную композицию наносят на стеклоткань, предварительно аппретированную 10-15% спирто-ацетоновым раствором кремнийорганической смолы КМ-9К, в котором соотношение спирта и ацетона 1:1. Проводят отверждение методом вакуумного формования при удельном давлении 0,8 МПа при подъеме температуры до 170°C и выдержке при этой температуре не менее 2-х часов или отверждение в замкнутой форме при подъеме температуры до 170°C и выдержке при этой температуре не менее 2-х часов. Дополнительную термообработку полученного материала осуществляют при подъеме температуры до 300°C и выдержке при этой температуре в течение 3-4 часов с последующим охлаждением до комнатной температуры. Полученный материал пропитывают кремнийорганической смолой марки МФСС-8 в течение 1-2 часов с последующей сушкой на воздухе не менее 4-х часов и проведением режима полимеризации в термостате путем нагрева до температуры 320°C и выдержки при этой температуре в течение 2-3 часов. 1 табл.

Изобретение относится к области композиционных материалов с керамической матрицей, предназначенных для работы в условиях окислительной среды и механического нагружения при высоких температурах. Способ включает изготовление каркаса из термостойких волокон, заполнение его дисперсным наполнителем, пропитку каркаса коксообразующим связующим, формирование и силицирование полученной пористой заготовки. В качестве дисперсного наполнителя используют нитриды тугоплавких металлов (таких как кремний и титан), при химическом взаимодействии которых с углеродом образуются тугоплавкие карбиды и/или карбонитриды металлов. Силицирование заготовки проводят парожидкофазным методом путем капиллярной конденсации паров кремния при температуре заготовки не более 1500оС с последующим нагревом до 1700-1850°С, выдержкой в указанном интервале температур в течение 1-3-х часов и охлаждением. Перед проведением процесса силицирования осуществляют термообработку пластиковой заготовки при температуре образования карбидов или карбонитридов металлов 1300-1400оС. Техническим результатом является обеспечение возможности изготовления крупногабаритных тонкостенных изделий без применения механической обработки, а также повышение надежности их работы в окислительных средах при высоких температурах. 2 з.п. ф-лы, 1 табл., 10 пр.
Изобретение относится к области композиционных материалов состава SiC/C-SiC-Si, предназначенных для работы в условиях окислительной среды и механического нагружения при высоких температурах. Согласно способу формируют каркас из карбидокремниевых волокон, содержащих в своей структуре свободный углерод и связанный с кремнием кислород, уплотняют его коксопироуглеродной матрицей до ее содержания, составляющего 0,9-1,7 от содержания кислорода в карбидокремниевых волокнах в пересчёте на плотность пластиковой заготовки. После этого проводят термообработку полученной заготовки при 1300-1500°C. В предпочтительном варианте выполнения способа термообработку проводят при атмосферном давлении в среде аргона и/или особо чистого азота или в парах моноокиси кремния. Перед силицированием заготовки ее частично уплотняют пироуглеродом и/или пропитывают коксообразующим связующим с последующей карбонизацией до получения материала с открытой пористостью 20-30% и плотностью более 1,5 г/см3, если они не соответствовали таковым. Силицирование проводят паро-жидкофазным методом путем пропитки материала конденсатом паров кремния. Техническим результатом является существенное повышение срока службы изделий в условиях окислительной среды и механического нагружения при высоких температурах. 6 з.п. ф-лы, 1 табл., 26 пр.
Наверх