Оптический пассивный затвор



Оптический пассивный затвор
Оптический пассивный затвор
Оптический пассивный затвор
Оптический пассивный затвор
Оптический пассивный затвор

 

G02F1/00 - Устройства или приспособления для управления интенсивностью, цветом, фазой, поляризацией или направлением света, исходящего от независимого источника, например для переключения, стробирования или модуляции; нелинейная оптика (термометры с использованием изменения цвета или прозрачности G01K 11/12; с использованием изменения параметров флуоресценцией G01K 11/32; световоды G02B 6/00; оптические устройства или приспособления с использованием подвижных или деформируемых элементов для управления светом от независимого источника G02B 26/00; управление светом вообще G05D 25/00; системы визуальной сигнализации G08B 5/00; устройства для индикации меняющейся информации путем выбора или комбинации отдельных элементов G09F 9/00; схемы и устройства управления для приборов

Владельцы патента RU 2521206:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирская государственная геодезическая академия" (ФГБОУ ВПО "СГГА") (RU)

Изобретение относится к устройствам предохранения фоточувствительных элементов оптических и оптоэлектронных систем от разрушающего воздействия мощного излучения. Оптический пассивный затвор содержит зеркальную металлическую пленку на подложке, установленной в плоскости промежуточного действительного изображения оптической системы приемника излучения. Пленка содержит подслой из терморазлагающегося с выделением газов химического соединения. Технический результат - увеличение быстродействия затвора, уменьшение пороговой интенсивности излучения срабатывания затвора. 2 з.п. ф-лы, 5 ил.

 

Изобретение относится к оптической и оптоэлектронной технике, к устройствам предохранения фоточувствительных элементов оптических и оптоэлектронных систем от разрушающего воздействия мощного излучения.

Для защиты чувствительных приемников излучений от повреждения мощным излучением исследуется применение золей или тонких пленок, содержащих наночастицы углерода или металлов [Каманина Н.В. Фотофизика фуллереносодержащих сред: ограничители лазерного излучения, дифракционные элементы, диспергированные жидкокристаллические модуляторы света. // Нанотехника. №1, 2006]. Излучение проходит через золь или пленку, обладающую прозрачностью 50-70%, к защищаемому приемнику; при увеличении интенсивности излучения его поглощение в среде нелинейно увеличивается до практически полной непрозрачности среды, и приемник оказывается защищенным от повреждения мощным излучением. Недостатком такой защиты является инерционность наступления защитного эффекта, которая составляет 10-100 нс и более. Причина инерционности принципиально не устранима и обусловлена значительным объемом среды, в которой должна быть поглощена световая энергия падающего излучения для наступления нелинейного поглощения света.

Известно также другое устройство, которое выбрано прототипом заявленного. Подвергаемую абляции лазерным излучением зеркальную металлическую пленку на пленочной полимерной подложке используют в качестве пассивного затвора для предохранения чувствительных элементов фотоприемников [Cohnatal.,US Patent 4,719,342, January 12, 1988]. Металлическая пленка на прозрачной полимерной пленочной подложке помещается на пути светового пучка в фокальной плоскости объектива фотоприемного устройства; отражаемый от зеркальной пленки свет с помощью дополнительной оптики формирует изображение на поверхности чувствительного фотоприемника; при увеличении интенсивности падающего излучения в пленке прожигается отверстие, излучение после этого проходит в отверстие, не отражаясь от зеркальной пленки и не попадает к фотоприемнику; фотоприемник оказывается не поврежденным излучением. В данном техническом решении излучение производит необходимый для защиты приемников эффект, поглощаясь в слое среды толщиной порядка толщины скин-слоя в металле, то есть в слое приблизительно в 100 раз меньшем, чем в аналоге.

Недостатками прототипа являются значительная величина пороговой интенсивности излучения, при которой за счет абляции прожигается отверстие в зеркале - отражателе оптического затвора, и, следовательно, низкая чувствительность к поражающим фоточувствительные элементы факторам.

Задачей, решаемой данным предложением, является увеличение быстродействия затвора и уменьшение пороговой интенсивности излучения срабатывания затвора.

Задача решается тем, что в предлагаемом оптическом пассивном затворе, содержащем, удаляемую сфокусированным излучением зеркальную металлическую пленку на подложке, установленной в плоскости промежуточного действительного изображения оптической системы приемника излучения, в соответствии с изобретением подслоем зеркальной пленки является слой терморазлагающегося с выделением газов химического соединения.

Предлагается также, что материал подслоя обладает свойством при облучении терморазлагаться с высвобождением тепла.

Предлагается также, что подслой выполнен в виде совокупности островков.

На Фиг.1 приведен пример конструкции предлагаемого пассивного затвора как ограничителя излучения, на Фиг.2 показана первая фаза работы затвора - нагревание структуры падающим излучением, на Фиг.3 показана вторая фаза работы затвора - термораспад подслоя и удаление газообразными продуктами распада зеркального слоя, Фиг.4 иллюстрирует конструкцию и функционирование пассивного затвора при падении излучения на тыльную сторону подложки, Фиг.5 показывает выполнение подслоя в виде совокупности островков. Обозначения на рисунках:

- на фиг.1: 1 - металлическая впоследствии локально удаляемая действием излучения зеркальная пленка; 2 - подложка; 3 - терморазлагающийся подслой, 4 и 5 - падающее и отраженное излучения.

На последующих фигурах одинаково обозначены аналогичные друг другу элементы:

- на фиг.2: 6 - нагретая излучением зона зеркального слоя 1; 7 - нагретая за счет теплопроводности зона подслоя 3;

- на фиг.3: 8 - отверстие в зеркальной пленке 1, 9 - удаленный участок подслоя 3 при термораспаде;

- на фиг.4: 10 - прозрачная подложка структуры затвора, на которую излучение падает с тыльной, противоположной размещению структуры затвора, стороны;

- на фиг.5: 11 - зеркальный слой, нанесен на структуру островков подслоя и повторяет форму островков, 12 - подслой в виде совокупности островков, 13 - отверстия в зеркальном слое, образовавшиеся при диссоциации вещества подслоя и разрушения зеркального слоя в местах островков, 14 - оставшиеся между островками участки зеркального слоя 11.

Рассмотрим работу устройства.

Подложку 2 со структурами затвора 1 и 3 располагают в плоскости промежуточного действительного изображения сцены наблюдения наблюдательного оптического устройства, не показанного на фигурах. Ослепляющее сфокусированное излучение 4 падает на зеркальный слой 1 структуры (Фиг.1), отражается в виде пучка 5. Под действием излучения (Фиг.2) прогреваются участок 6 зеркального слоя 1 и за счет теплопроводности область 7 подслоя (первая фаза работы затвора).

При достижении температуры терморазложения химического соединения, являющегося основой состава терморазлагающегося подслоя 3, выделяются газообразные продукты реакции разложения. Давления продуктов реакции достаточно для разрушения зеркального слоя, на фиг.3 - 9 - область диссоциации подслоя, 8 - образующееся отверстие в зеркальном слое. Образование отверстия 8 приводит к нарушению зеркального отражения в этом месте, к чувствительному приемнику излучения сфокусированное в область отверстия ослепляющее излучение не проходит. Разрушение зеркального слоя при подходящем выборе химического соединения может происходить при меньшей энергии падающего излучения, чем необходимо для локального удаления зеркального слоя лазерной сублимацией, то есть порог срабатывания пассивного затвора уменьшится.

Излучение на зеркальный слой может быть направлено со стороны подложки, как показано на Фиг.4. При этом ослепляющее излучение проходит также через подслой, который должен быть прозрачным. Механизм срабатывания затвора при этом остается прежним, как и при падении излучения на подложку со стороны зеркального слоя

Примерами терморазлагающихся химических соединений могут быть карбонилы металлов. Декакарбонилдирения диссоциирует в соответствии с реакцией: Re2(CO)10=2Re+10CO, диссоциация одной молекулы приводит к появлению десяти молекул угарного газа. Высокая скорость диссоциации имеет место при температуре вещества 700К. Если диссоциации подвергся слой толщиной 0,1 мкм, в котором содержится N=2,8·1020 мoлeкyл/м2 декакарбонила, то концентрация молекул угарного газа после диссоциации в объеме этого слоя равна n=10N/d=2,8·1028 молоку л/м3. Давление угарного газа в слое p=nkT(k - постоянная Больцмана, Т - термодинамическая температура газа); при температуре Т=700 К давление p=7,5·108 Па (7500 атм); этого давления достаточно для разрушения и удаления участка зеркального слоя, расположенного на разлагающемся участке подслоя.

В соответствии с п.2 Формулы предлагается выполнить подслой из химического соединения, разлагающегося с выделением тепла. Подобные соединения после инициирования разложения внешним нагреванием дополнительно нагреваются выделяющимся в ходе реакции теплом, реакция разложения далее идет с самоускорением, в ряде случаев, в виде взрыва. При использовании подобного соединения начало реакции инициируется на начальной стадии нагревания зеркального слоя ослепляющим импульсом излучения, в дальнейшем химическая реакция не требует внешнего подогрева излучением, развивается самопроизвольно. Выделяющиеся газы разрушают зеркальный слой своим избыточным давлением, время протекания разрушения характерно для взрывных процессов; это время может быть меньше длительности ослепляющего импульса, что приведет к улучшению эффективности защиты затвором фоточувствительных структур и дальнейшему уменьшению порога срабатывания затвора.

В соответствии с п.3 Формулы пленка подслоя представляет собой массив островков, что исключает распространение волны детонации вдоль поверхности подложки по подслою при инициации диссоциации подслоя излучением. Предпочтительно периодичность расположения и размеры островков должны составлять малую долю размера изображения ослепляющего источника излучения на поверхности со структурой затвора, заполнение всего подслоя островками необходимо максимально возможным и близким к 90%-100%, так как оставшиеся в промежутках между островками участки зеркального слоя ослабляют эффективность защиты.

Примерами подобных химических соединений могут быть азиды щелочных металлов, свинца. Реакция диссоциации азида натрия следующая: NaN3→Na+1,5N2+Q где Q - тепловыделение при диссоциации.

Технология нанесения слоев азидов может быть жидкостной, осаждением из растворов или путем реализации жидкостной химической реакции. Скорость детонации некоторых азидов может составлять 5000 м/с, что при распространении волны детонации поперек подслоя толщиной 0,1 мкм дает время диссоциации порядка 2·10-11 с, температура вспышки порядка 300°С.

Как видно из приведенных примеров, температуры быстрого образования газовой фазы при использовании термически диссоциирующих химических соединений существенно меньше температур лазерной сублимации зеркальных металлических покрытий, что уменьшает порог срабатывания затвора и время его срабатывания на порядок (можно сравнить с сублимацией пленок металлов с высоким коэффициентом отражения - температуры кипения алюминия и серебра 2621 К и 2436 К).

Для реализации изобретения можно использовать для зеркальной пленки металлы типа алюминия, серебра, магния, в качестве терморазлагающихся соединений - упомянутые в тексте карбонилы металлов или азиды металлов, подложка может быть стеклянная.

Расчеты показывают, что при использовании предложенных технических решений порог срабатывания противоослепляющего затвора уменьшится на порядок величины, скорость срабатывания увеличится на порядок в сравнении с прототипом.

Таким образом, показано, что отличительные особенности изобретения позволяют решить поставленные задачи.

Оптический пассивный затвор может найти применение в оптоэлектронике в качестве оптического предохранителя, предохраняющего от возможных лучевых повреждений фотоприемные устройства.

Технический результат изобретения состоит в создании оптического затвора - ограничителя излучений с субнаносекундной инерционностью, работающего в широком спектральном диапазоне и имеющего пониженный порог срабатывания.

1. Оптический пассивный затвор, содержащий удаляемую сфокусированным излучением зеркальную металлическую пленку на подложке, установленной в плоскости промежуточного действительного изображения оптической системы приемника излучения, отличающийся тем, что подслоем зеркальной пленки является слой терморазлагающегося с выделением газов химического соединения.

2. Устройство по п.1, отличающееся тем, что материал подслоя обладает свойством при облучении терморазлагаться с высвобождением тепла.

3. Устройство по п.1, отличающееся тем, что подслой выполнен в виде совокупности островков.



 

Похожие патенты:

Изобретение относится к области светотехники. Техническим результатом является повышение качества отображения путем подавления неоднородности яркости и цвета на экране дисплея.

Изобретение относится к оптической технике. Устройство для модуляции монохроматического оптического излучения содержит оптически прозрачную среду, в которой установлены разделитель монохроматического оптического излучения на первый и второй каналы распространения, отражающий элемент во втором канале, участок когерентного суммирования для формирования модулированного монохроматического оптического излучения.

Изобретение относится к области светотехники. Техническим результатом является устранение неравномерной яркости.

Устройство отображения содержит систему (100) окружающего освещения для испускания окружающего света (106) на стену (107) позади устройства (104) отображения. Система окружающего освещения включает по меньшей мере один источник (101) света, расположенный в области внутри центральной части задней стороны устройства (104) отображения, и по меньшей мере один отражатель (102), расположенный на задней стороне устройства (104) отображения.

Изобретение относится к области светотехники. Техническим результатом является обеспечение излучения общего практически однородного цвета.

Изобретение относится к области визуализации терагерцового (ТГц) излучения (ν=0,1÷10 ТГц или λ=30÷3000 мкм) и может быть использовано при создании приборов для регистрации и анализа ТГц-излучения.

Изобретение относится к области светотехники. Техническим результатом является уменьшение неоднородности яркости панели отображения без увеличения числа технологических операций.

Устройство задней подсветки для цветного ЖК-дисплея включает в себя светодиоды (СИДы) белого света, образованные с использованием синего СИДа со слоем красного и зеленого люминофоров над ним.

Жидкокристаллическое устройство (100) отображения настоящего изобретения включает в себя жидкокристаллическую индикаторную панель (10) и блок (20) боковой подсветки, служащий для испускания света из позиции, которая является боковой по отношению к панели (10).

Изобретение относится к области светотехники. Техническим результатом является устранение неравномерности подсветки.

Изобретение относится к генераторам импульсного широкополосного электромагнитного излучения терагерцового диапазона частот. Многоэлементный генератор терагерцового излучения содержит исследуемый образец, фемтосекундный лазер, многоэлементный эмиттер, в котором элементарный эмиттер представляет собой слой кристаллического полупроводника с напыленной металлической маской, формирующей резкий градиент освещенности слоя кристаллического полупроводника лазерным излучением. На границе освещенной и неосвещенной частей слоя полупроводника сформирован резкий градиент концентрации фотовозбужденных носителей зарядов параллельно его поверхности. Устройство дополнительно содержит эллиптическое зеркало, выполненное формирующим фокусированный пучок терагерцового излучения и содержащее отверстие для пропускания лазерного излучения, а многоэлементный эмиттер выполнен содержащим растр цилиндрических микролинз, распределяющий лазерное излучение между элементарными эмиттерами и формирующий на слое полупроводника освещение только областей, участвующих в генерации терагерцового излучения. При этом металлическая маска выполнена в виде плоских металлических полос. Технический результат заключается в повышении мощности терагерцового излучения, а также в обеспечении возможности использования исследуемых образцов небольшого размера. 2 з.п. ф-лы, 2 ил.

Группа изобретений относится к области светотехники. Техническим результатом является предотвращение или исключение неравномерной яркости света, испущенного из светопроводящей пластины. Осветительное устройство (24) задней подсветки снабжено основанием (22) задней подсветки, на котором размещены блок (32) LED и светопроводящая пластина (20), боковые поверхности которой являются светоприемными поверхностями (20a). Блок (32) LED обращен к светоприемным поверхностям (20a) светопроводящей пластины (20). Основание (22) задней подсветки имеет направляющие штифты (40), выступающие из поверхности основной пластины (22a), причем светопроводящая пластина (20) имеет вогнутые соединительные участки (38) в позициях, обращенных к направляющим штифтам (40), а направляющие штифты (40) соединены с соединительными участками (38). Боковая поверхность каждого направляющего штифта (40) снабжена сквозным отверстием (40a), которое проходит сквозь упомянутую боковую поверхность. 3 н. и 6 з.п. ф-лы, 12 ил.

Изобретение относится к области электротехники и оптики и касается способа получения инфракрасного излучения. Для получения инфракрасного излучения электрический сигнал подают на вход блока предыскажений. Блок предыскажений изменяет форму сигнала путем извлечения из него корня восьмой степени. Измененный сигнал затем подается на вход источника инфракрасного излучения. Технический результат заключается в упрощении и ускорении обработки сигнала. 3 ил.

Система сканирования коллимированного света содержит оптический волновод, систему ввода света в первый конец оптического волновода и контроллер для управления местоположением вдоль первого конца оптического волновода. Оптический волновод содержит первый конец, второй конец, противоположный первому концу, наблюдаемую поверхность, продолжающуюся, по меньшей мере, частично, между первым концом и вторым концом, заднюю поверхность, противоположную наблюдаемой поверхности, и концевой отражатель, расположенный на втором конце оптического волновода. Концевой отражатель содержит одну или более структур многогранной линзы и дифракционную решетку. Технический результат - повышение эффективности сканирования коллимированного света. 2 н. и 11 з.п. ф-лы, 16 ил.

Объединенная система видения и отображения содержит формирующий отображаемое изображение слой; детектор изображения, выполненный с возможностью визуализации инфракрасного излучения в узком диапазоне углов относительно нормали к поверхности отображения и включающий в себя отражение от одного или более объектов на поверхности отображения или вблизи нее; излучатель системы видения, выполненный с возможностью излучения инфракрасного излучения для освещения объектов; пропускающий видимое и инфракрасное излучение световод, имеющий противолежащие верхнюю и/или нижнюю поверхности, выполненный с возможностью приема инфракрасного излучения от излучателя системы видения, проведения инфракрасного излучения посредством TIR от верхней и нижней поверхностей и проецирования инфракрасного излучения на объект за пределами узкого диапазона углов относительно нормали к поверхности отображения. Технический результат - повышение функциональности и компактности. 13 з.п. ф-лы, 14 ил.

Изобретение относится к системам боковой подсветки. Система боковой подсветки содержит источник излучения в виде, по меньшей мере, одного светодиода; нижнее зеркало с зеркальным покрытием; верхнюю зеркально-диффузную пленку, расположенную выше нижнего зеркала и боковые зеркала, расположенные с четырех сторон и образующие совместно с нижним зеркалом и верхней зеркально-диффузионной пленкой воздушный волновод. Верхняя зеркально-диффузная пластина выполнена из материала с объемным диффузным рассеянием с нанесенным на ее нижнюю сторону зеркальным покрытием, снабженным рядом прозрачных или частично прозрачных областей. Технический результат - повышение яркости и равномерности освещения. 2 н. и 2 з.п. ф-лы, 6 ил.

Изобретение относится к области генерации электромагнитного излучения в субтерагерцовом и терагерцовом диапазонах частот. Генератор субтерагерцового и терагерцового излучения включает источник лазерного излучения, электрическую цепь с источниками напряжения и импедансной нагрузкой, и оптически активный элемент. Оптический активный элемент оснащен дополнительным полевым транзистором, имеющим в подзатворной области слой полупроводника с коротким временем жизни фотовозбужденных носителей заряда, затвор из прозрачного или полупрозрачного материала, при этом электрическое смещение подается на сток и исток проводящего канала полевого транзистора. Технический результат заключается в увеличении выходной мощности. 2 ил.
Изобретение относится к оптической технике, а именно к способу изготовления тонированного изделия для прозрачных поверхностей с возможностью регулирования степени их светопропускания. Способ изготовления тонированного изделия, содержащего тонировочную пленку, включает соединение полимерных листов. В качестве полимерных листов используют два листа из прозрачного материала с нанесением на один из них в виде точек размером менее 30 мкм эластичного полимера, его полимеризацией, соединением с другим листом путем наложения с последующей герметизацией по контуру и введением через клапан в межпленочное пространство окрашенной оптически прозрачной рабочей жидкости для регулирования степени светопропускания путем ее ввода и вывода. При вводе рабочей жидкости показатель светопропускания уменьшается, а при выводе рабочей жидкости показатель светопропускания увеличивается. Технический результат - возможность регулирования степени светопропускания, а значит улучшение оптических характеристик поверхностей в зависимости от эксплуатационных условий. 1 з.п. ф-лы, 2 пр.

Изобретение относится к оптоэлектронике. Способ генерации электромагнитного излучения в терагерцовом диапазоне заключается во взаимодействии направленного возбуждающего излучения с активной средой образца и получении вторичного электромагнитного излучения. В качестве активной среды образца используют материал со свойствами топологического изолятора, при этом возбуждение осуществляют импульсным излучением с длительностью возбуждающих импульсов τ=10-12-10-14 с, энергией в импульсе Eимп=10-5-10-2 Дж и длиной волны λвозб=350-5000 нм, причем возбуждающее излучение направляют на плоскость образца с активной средой под углом α≠90°. В качестве активной среды может быть использована тонкая пленка или кристалл селенида висмута (Bi2Se3) или теллурида висмута (Bi2Te3). В качестве детектирующего элемента может быть использован теллурид цинка (ZnTe). Технический результат заключается в обеспечении возможности контроля и управления параметрами генерации при возбуждении материалов, обладающих свойствами топологического изолятора. 3 н. и 2 з.п. ф-лы, 2 ил.

Изобретение относится к области физики, в частности к методикам модуляции интенсивности электромагнитного излучения видимого и ближнего ИК диапазонов посредством приложения магнитного поля. Способ модуляции света включает в себя создание магнитоплазмонного кристалла на основе периодически наноструктурированной диэлектрической матрицы, с пространственным периодом d, последующее напыление на нее слоев ферромагнитных и благородных металлов, а также диэлектриков, освещение магнитоплазмонного кристалла светом и приложение магнитного поля. Модуляция интенсивности ТМ-поляризованного отраженного света осуществляется с помощью периодически наноструктурированной пленки ферромагнитного металла толщиной h=50-200 нм. В качестве источника света используется ТМ-поляризованное электромагнитное излучение, падающее на поверхность магнитоплазмонного кристалла под углом, соответствующим возбуждению поверхностных плазмон-поляритонов. При этом переменное магнитное поле прикладывается в геометрии экваториального магнитооптического эффекта Керра. Технический результат - уменьшение толщины магнитооптического модулятора. 4 ил.
Наверх