Способ градуировки резервуара вертикального цилиндрического для определения вместимости, соответствующей высоте его наполнения

Изобретение относится к измерительной технике и может быть использовано для определения вместимости и градуировки резервуаров вертикальных цилиндрических. Способ заключается в том, что производят построение цифровой векторной трехмерной (3D) модели внешней поверхности резервуара при наполнении его поверочной жидкостью отдельными фиксированными дозами путем сканирования внешней поверхности резервуара при помощи наземного лазерного сканера с линейной дискретностью шага сканирования в пределах от 2 до 5 мм не менее чем с четырех сканерных станций и в соответствии с эксплуатационной документацией на прибор. Выполняют объединение сканов между собой, при этом качество объединения полученных данных контролируют путем выполнения следующих условий: средняя квадратическая погрешность единицы веса объединения сканов не должна превышать ±3 мм; расхождение координат расположения специальных марок не должно превышать ±5 мм; средняя квадратическая ошибка определения элементов внешнего ориентирования для линейных величин не должна превышать ±2 мм, а для угловых величин - ±15". Производят обработку данных результатов наземного лазерного сканирования с помощью специального программного обеспечения, позволяющего выполнить привязку сканов к заданной системе координат, причем сканирование и обработку производят каждый раз при заполнении резервуара поверочной жидкостью отдельными фиксированными дозами, передают полученную цифровую информацию в специальную компьютерную программу, где, сравнивая полученные модели внешней поверхности резервуара для каждого измерения, получают градуировочную характеристику резервуара в виде цифровой векторной трехмерной (3D) модели внешней поверхности резервуара, соответствующей высоте его наполнения поверочной жидкостью. Технический результат - повышение достоверности и точности градуировки резервуара вертикального цилиндрического для определения вместимости, соответствующей высоте его наполнения. 3 ил.

 

Данный способ относится к измерительной технике и может быть использован для определения вместимости и градуировки резервуаров вертикальных цилиндрических.

Известен способ определения вместимости цилиндрических резервуаров, в котором в центре резервуара устанавливают лазерный теодолит и на базовом расстоянии от него - второй теодолит, формируют на внутренней стенке резервуара световую марку от лазерного теодолита, наводят на нее оптическую ось зрительной трубы второго теодолита, последовательно перемещают световую марку вдоль образующей резервуара, определяют для каждого положения световой марки радиус резервуара и оценивают его вместимость [Авторское свидетельство SU 1415059, G01В 11/00, 07.08.1988].

Недостатком данного способа является то, что надо освобождать резервуар от имеющейся в нем жидкости для установления теодолита в его центре, а также большая погрешность в определении вместимости резервуара.

Известен способ, который заключается в определении площадей горизонтальных сечений поясов резервуаров и посредством расчетных методов определения его вместимости [Патент №(11) 2286549. Способ градуировки резервуара для определения вместимости, соответствующей высоте его наполнения. Фторов А.Ю., 2005]. Данный способ предполагает предварительную горизонтальную разбивку исходного сечения резервуара путем измерения длины периметра первого пояса резервуара, с последующим делением периметра на отрезки. Выполняют вертикальную разбивку исходного сечения резервуара методом технического нивелирования. Вертикальной проекцией точек предварительной горизонтальной разбивки на уровень вертикальной разбивки определяют опорные точки исходного горизонтального сечения резервуара. Электронным тахеометром с функцией измерения расстояний в безотражательном режиме и электронной регистрацией данных осуществляют измерение высот поясов резервуара, наклонных расстояний, горизонтальных и вертикальных углов при координировании точек. С учетом полученных данных определяют пространственные координаты опорных точек на периметрах горизонтальных сечений резервуара. Строят трехмерную математическую модель резервуара. На основе построенной модели с использованием математических методов интерполяции определяют площади горизонтальных сечений проверяемого резервуара, по которым рассчитывают вместимость резервуара.

Недостатком этого способа является то, что он основан на интерполяции между измерениями. В результате чего не учитываются изменения вместимости из-за неровности стенок резервуара.

Задачей предлагаемого изобретения является повышение достоверности и точности градуировки резервуара вертикального цилиндрического для определения вместимости, соответствующей высоте его наполнения.

Поставленная задача достигается тем, что согласно изобретению производят построение цифровой векторной трехмерной (3D) модели внешней поверхности резервуара вертикального цилиндрического при наполнении его поверочной жидкостью отдельными фиксированными дозами путем сканирования внешней поверхности резервуара при помощи наземного лазерного сканера с линейной дискретностью шага сканирования в пределах от 2 до 5 мм не менее чем с четырех сканерных станций и в соответствии с эксплуатационной документацией (ЭД) на прибор выполняют объединение сканов между собой, при этом качество объединения полученных данных контролируют путем выполнения следующих условий:

- средняя квадратическая погрешность единицы веса объединения сканов не должна превышать ±3 мм;

- расхождение координат расположения специальных марок не должно превышать ±5 мм;

- средняя квадратическая ошибка определения элементов внешнего ориентирования для линейных величин не должна превышать ±2 мм, а для угловых величин - ±15",

производят обработку данных результатов наземного лазерного сканирования с помощью специального программного обеспечения, позволяющего выполнить привязку сканов к заданной системе координат, причем сканирование и обработку производят каждый раз при заполнении резервуара поверочной жидкостью отдельными фиксированными дозами, передают полученную цифровую информацию в специальную компьютерную программу, в которой, сравнивая полученные модели внешней поверхности резервуара для каждого измерения, получают градуировочную характеристику резервуара в виде цифровой векторной трехмерной (3D) модели внешней поверхности резервуара, соответствующей высоте его наполнения поверочной жидкостью.

Способ поясняется чертежами. На Фиг.1 представлена схема определения углового шага сканирования, на Фиг.2 представлена схема определения зон перекрытия между сканерными станциям, на Фиг.3 представлена схема расположения сканерных станций и связующих марок.

Предлагаемый способ осуществляется следующим образом. Для определения геометрических характеристик резервуара вертикального цилиндрического выбирают шаг сканирования, количество станций и место их расположения. Шаг сканирования должен быть подобран с учетом того, чтобы плотность точек, измеряемых на поверхности резервуара, позволяла с достаточной точностью и достоверностью определять его геометрию, учитывая деформацию стенок резервуара при наполнении его поверочной жидкостью отдельными фиксированными дозами. Также цифровые точечные модели, полученные с разных станций, должны иметь достаточную плотность в зонах перекрытий для качественного объединения их в единую модель. Для выбора необходимого количества станций сканирования и определения зон перекрытия точечных моделей (фиг.1) необходимо определить угловой шаг сканирования ей, при котором расстояние между наиболее близкими к сканеру точками на поверхности резервуара d будет составлять заданное значение:

α 1 = arcsin ( R sin ϕ 1 /S 1 )                                   (1)

S 1 = ( D + R ) 2 + R 2 2 ( D + R ) R cos  ϕ 1          (2)

ϕ 1 = d 1 / R                                                         (3) ,

где: α - угловой шаг сканирования;

R - радиус резервуара;

S1 - расстояние от сканера;

φ1 - угловой сектор поверхности резервуара;

D - расстояние от сканера до стенок резервуара.

d1 - расстояние между наиболее близкими к сканеру точками на внешней поверхности резервуара.

Определяют угловой сектор на внешней поверхности резервуара (р max, в пределах которого плотность измеряемых точек будет достаточна, вводят коэффициент k, определяющий максимально допустимую степень разрежения измеряемых точек, определяют допустимый линейный шаг сканирования dmax:

d max = d 1 k ,                                         (4)

Угол φmax равен двойному углу φi для последнего i-го шага сканирования, для которого должно соблюдаться условие (di-di-1)≤dik.

Определяют расстояние di по формулам:

ϕ i = 180 α i A i                                                    (6);

A i = 180 arcsin ( ( D + R ) sin α i / R )                      (7);

α i = α 1 I                                                                  (8)

где αi - угловой шаг сканирования;

i - измеряемая точка.

Кроме φmax определяют угловой сектор резервуара φv, видимый со станции сканирования. Для границы видимого сектора всегда будет соблюдаться условие Av=90°:

ϕ v = 2 ( 180 A v α v ) = 2 ( 90 α v ) ( 9 )

α v = arcsin ( R sin A v / ( D + R ) = arcsin ( R / ( D + R ) )                      (10)

где φv - угловой сектор резервуара;

Av - угол между направлениями на крайнюю точку области сканирования и радиуса резервуара;

αv - угол области сканирования.

Имея значение φmax, определяют количество станций N (значение округляют вперед до ближайшего целого) и величину перекрытия между станциями М как в угловых величинах mугл, так и в линейных mлин: (Фиг.2):

n = 360 / ϕ max ( 11 )

m у г л = ( n ϕ v 360 ) / n ( 12 )

m л и н = m у г л ( р а д ) R ( 13 )

Вычисляя зоны перекрытия между станциями, можно проектировать места их положения еще до начала полевых работ, что позволяет выбрать оптимальную конфигурацию станций. Величину угловой зоны перекрытия между двумя станциями Мугл вычисляют по формуле:

M у г л = ( ϕ max ( n ) / 2 ) + ( ϕ max ( n + 1 ) / 2 ) V ( 14 ) ,

где φmax(n) - угловой сектор резервуара с достаточным шагом сканирования,

V - угол между осями сканирования в линейном выражении на поверхности резервуара перекрытия

В линейном выражении на поверхности резервуара перекрытие Млин будет равно:

M лин = M угл (рад)R (15) ,

где Mлин - выражение углового сектора резервуара;

R - радиус резервуара, м.

На Фиг.3 приведена оптимальная схема расположения сканерных станций и количество используемых связующих марок при проведении работ по градуировке резервуара вертикального цилиндрического для определения вместимости, соответствующей высоте его наполнения. Снаружи резервуара вертикального цилиндрического устанавливают наземный лазерный сканер и собственной программой обработки данных, принадлежащей данному оборудованию, и в соответствии с эксплуатационной документацией на прибор (ЭД) автоматически определяют координаты точек, принадлежащих внешней поверхности резервуара, выполняют измерение расстояний при помощи встроенного лазерного дальномера, при этом для каждого измерения фиксируют вертикальные и горизонтальные углы, шаг сканирования (расстояние между смежными точками) должен соответствовать вышеизложенным условиям (Фиг.1). Для выполнения сплошной сканерной съемки внешней поверхности резервуара сканирование выполняют с нескольких точек установки прибора (сканерных станций), соответствующих вышеизложенным условиям (Фиг.2), передают результаты сканирования (сканы) в ПЭВМ и с помощью специальной компьютерной программы регистрируют в ней сканы со всех станций и получают цифровую точечную трехмерную (3D) модель внешней поверхности резервуара. Результатом работ является «облако точек» лазерных отражений или «сканы» внешней поверхности резервуара. Производят обработку данных результатов наземного лазерного сканирования с помощью специального программного обеспечения, позволяющего выполнять привязку сканов к заданной системе координат (Фиг.3), производят построение точечной трехмерной (3D) модели внешней поверхности резервуара, передают цифровую точечную трехмерную (3D) модель внешней поверхности резервуара в специальную компьютерную программу и получают цифровую векторную трехмерную (3D) модель внешней поверхности резервуара, при наполнении ее поверочной жидкостью отдельными фиксированными дозами для определения вместимости передают полученную цифровую информацию в специальную компьютерную программу, в которой, сравнивая полученные модели внешней поверхности резервуара для каждого измерения, получают градуировочную характеристику резервуара в виде цифровой векторной трехмерной (3D) модели внешней поверхности резервуара, соответствующей высоте его наполнения поверочной жидкостью.

В настоящее время не существует достоверного геометрического способа определения вместимости резервуара вертикального цилиндрического. Предлагаемый инновационный способ позволит проводить калибровку и градуировку резервуаров вертикальных цилиндрических с относительной погрешностью измерений вместимости резервуара 0,07%. Кроме того, данный способ, основанный на бесконтактном дистанционном методе не требует предварительного освобождения его от нефтепродуктов, зачистку, определение объема внутренних элементов конструкций и других затратных мероприятий, связанных с простоем, а значит - с упущенной коммерческой прибылью.

Способ градуировки резервуара вертикального цилиндрического для определения вместимости, соответствующей высоте его наполнения, включающий построение трехмерной (3D) модели поверхности вышеупомянутого резервуара, отличающийся тем, что производят построение цифровой векторной трехмерной (3D) модели внешней поверхности резервуара вертикального цилиндрического, при наполнении его поверочной жидкостью отдельными фиксированными дозами путем сканирования внешней поверхности резервуара при помощи наземного лазерного сканера с линейной дискретностью шага сканирования в пределах от 2 до 5 мм не менее чем с четырех сканерных станций и в соответствии с эксплуатационной документацией (ЭД) на прибор выполняют объединение сканов между собой, при этом качество объединения полученных данных контролируют путем выполнения следующих условий:
- средняя квадратическая погрешность единицы веса объединения сканов не должна превышать ±3 мм;
- расхождение координат расположения специальных марок не должно превышать ±5 мм;
- средняя квадратическая ошибка определения элементов внешнего ориентирования для линейных величин не должна превышать ±2 мм, а для угловых величин - ±15",
производят обработку данных результатов наземного лазерного сканирования с помощью специального программного обеспечения, позволяющего выполнить привязку сканов к заданной системе координат, причем сканирование и обработку производят каждый раз при заполнении резервуара поверочной жидкостью отдельными фиксированными дозами, передают полученную цифровую информацию в специальную компьютерную программу, в которой, сравнивая полученные модели внешней поверхности резервуара для каждого измерения, получают градуировочную характеристику резервуара в виде цифровой векторной трехмерной (3D) модели внешней поверхности резервуара, соответствующей высоте его наполнения поверочной жидкостью.



 

Похожие патенты:

Изобретение относится к области машиностроения, а именно к способам определения объема жидкости в емкости при ее расходе. Предложен способ градуировки сигнализаторов уровня, заключающийся в определении части объема емкости, соответствующей плоскости зеркала жидкости, при котором срабатывает сигнализатор, путем суммирования элементарных объемов, измеренных по внешнему контуру сечений, перпендикулярных оси емкости.

Изобретение относится к измерительной технике, в частности к средствам контроля массы и уровня жидкости в резервуарах, например, на автозаправочных станциях, и может быть использовано также в нефтяной, топливной, химической и других отраслях промышленности.

Способ измерения объема сосуда заключается в том, что изменяют объем сосуда на величину ΔV и определяют изменение давления газа в сосуде до и после изменения объема, на основании которых определяют искомый объем сосуда V0.

Изобретение относится к измерительной технике и может быть использовано для определения вместимости и градуировки резервуаров шаровых (сферических). .

Изобретение относится к области охраны почв и может быть использовано для определения потерь почвы при полевом обследовании земель, подверженных эрозии, в научных исследованиях и проектных разработках.
Изобретение относится к измерительной технике, а конкретно к способам градуировки резервуаров для определения вместимости, соответствующей высоте их наполнения. .
Изобретение относится к автоматизированному учету поступающей товарной массы и сведению товарного баланса между отпуском нефтепродуктов на нефтебазах и АЗС непрерывно в режиме реально текущего времени.

Изобретение относится к измерительной технике и может быть использовано на топливных складах и нефтебазах, осуществляющих хранение нефтепродуктов в вертикальных и горизонтальных резервуарах и их отпуск потребителям.

Изобретение относится к области машиностроения, а именно к способам определения вместимости емкостей газом. Способ определения объема емкости большой вместимости путем измерения параметров газа в емкости до и после подачи в нее известного весового количества газа и вычисления объема емкости по соответствующей формуле. При этом согласно изобретению газ перед подачей в емкость охлаждается до температуры, исключающей тепловое расслоение в процессе повторного измерения параметров газа. Технический результат - повышение точности определения объема емкости большого размера.

Изобретение относится к медицине, урологии, гинекологии, проктологии, хирургии. Оценка подвижности тазового дна у женщин включает построение трехмерной модели тазового дна в динамике - в состоянии покоя и напряжения. При этом пациентку во время исследования располагают полувертикально в гинекологическом кресле, выполняют при помощи метода оптической фотометрии сеансы сканирования не более 10 секунд каждый, определяют количественный показатель подвижности тазового дна - прирост объема пролапса по отношению разности объема пролапса при пробе Вальсальвы и в состоянии покоя к объему пролапса в состоянии покоя, в процентах. При наличии пролапса тазовых органов, выходящего за пределы гименального кольца, производят мануальную репозицию тазового дна с последующим дополнительным сеансом сканирования и рассчитывают общий объем пролапса тазовых органов как разность объема пролапса при пробе Вальсальвы и объема пролапса после мануальной репозиции пролапса тазовых органов. Способ обеспечивает объективное выявление патологической подвижности тазового дна на ранней стадии заболевания до клинических проявлений, диагностику степени и типа опущения тазового дна у пациенток с пролапсом тазовых органов для последующего планирования объема его хирургической коррекции, включая выбор метода, с учетом индивидуальных резервов подвижности тазового дна во избежание его гиперкоррекции и развития таких функциональных осложнений как: тазовые боли, диспареуния, недержание мочи при напряжении, запоры. 1 з.п. ф-лы, 13 ил., 3 пр.

Изобретение относится к области геодезического контроля резервуаров вертикальных цилиндрических стальных и может быть использовано при поверке стальных и железобетонных резервуаров вертикальных цилиндрических. Технический результат - повышение точности и достоверности определения величины отклонения образующих стенок резервуара вертикального цилиндрического от вертикали. Cпособ определения величины отклонения образующих стенок резервуара вертикального цилиндрического от вертикали геодезическим методом по внешней поверхности вышеупомянутого резервуара заключается в том, что производят сканирование внешней поверхности резервуара при помощи наземного лазерного сканера не менее чем с четырех сканерных станций на расстоянии от 15 до 25 м от резервуара. Определяют пространственные координаты по осям Χ, Υ, Ζ точек отражения лазерного луча от поверхности резервуара в условной системе координат. Выполняют регистрацию сканов между собой, производят обработку данных результатов. Формируют образующие боковой поверхности резервуара с любым интервалом путем сечения цифровой векторной трехмерной (3D) модели внешней боковой поверхности резервуара вертикальной плоскостью, а на самой образующей формируют точки с любым шагом. Получают цифровую векторную трехмерную (3D) модель образующей в местах сечения. Выполняют упомянутые действия по всем образующим. Передают полученную цифровую информацию в компьютерную программу, в этой же программе моделируют проектную цифровую трехмерную модель образующих стенок резервуара, используя их проектные значения. Совмещают ее с полученной фактической цифровой векторной трехмерной (3D) моделью образующих стенок резервуара. В автоматическом режиме определяют расхождения между фактическими и проектными значениями, получают величины отклонения образующих стенок вышеупомянутого резервуара от вертикали. 2 ил.

Изобретение относится к области машиностроения, а именно к технологическим методам измерения полных объемов топливных баков жидкостных ракет, а также к методам градуировки объемов по уровням. Предложен способ, заключающийся в горизонтальном размещении бака на опорах, обеспечивающих возможность поворота его вокруг оси в пределах ±360°C, сканирования наружной поверхности лазерным радаром с целью измерения наружных размеров изделия с плотностью облака точек, обеспечивающей требуемую точность измерения контура внутренней поверхности, размеры которой получают вычитанием из наружных размеров изделия размера толщины его стенок, и вычисления значений объемов до каждой последовательной плоскости контроля уровня. Для оценки влияния веса заполняющей среды и давления над ее поверхностью предварительно и однократно проводят испытания по измерению объемов контрольной среды под каждой контрольной плоскостью вертикально установленного топливного бака или его полноразмерного макета последовательно при смоделированных реальных условиях его эксплуатации. В результаты градуировки бака с использованием лазерного радара вносятся коррективы в соответствии с соответствующим соотношением. Техническим результатом является повышение точности измерений за счет учета изменений геометрии топливных баков в реальных условиях полета ракеты. 2 ил.

Изобретение относится к области авиации, в частности к топливным системам летательных аппаратов. Бортовая система контроля и измерения топлива содержит установленные в топливных баках средства контроля параметров топлива: датчики уровня, средства измерения температуры и сигнализации нижнего уровня топлива, а также бортовой вычислитель с модулями автоматического управления, пульт управления с задатчиком плотности топлива, модули топливомера и схемы запрета. В качестве средства измерения температуры и сигнализации нижнего уровня топлива применен датчик двойного назначения, выполненный на основе терморезисторного сигнализатора уровня жидкости, содержащий терморезистор, имеющий возможность непосредственного контакта с окружающей средой, и формирователь сигнала с сигнальным выходом, причем данный датчик дополнительно снабжен температурным выходом, подсоединенным к высокопотенциальному выводу терморезистора и подключенным к одному из входов соответствующего модуля топливомера через схему запрета, при этом сигнальный выход каждого датчика двойного назначения дополнительно подключен к запирающему входу схемы запрета. Достигается повышение надежности системы, уменьшение ее массы. 2 ил.
Наверх