Модульная донная станция

Изобретение относится к области гидрофизических исследований и может быть использовано для исследований, проводимых в океане. Сущность: станция содержит плавучесть (1) из синтактика, внутри которой закреплены автономные модули (2, 3) с датчиками (4). Модули (2, 3) заключены в бароустойчивые корпуса. Бароустойчивые корпуса выполнены с прозрачными вставками (5), выдерживающими внешнее давление. Внутри каждой из вставок (5) расположены излучатель и приемник (6) оптического сигнала. При этом размещение автономных модулей должно обеспечивать оптическую связь излучателей и приемников всех автономных модулей. Технический результат: повышение надежности работы, упрощение эксплуатации. 1 ил.

 

Настоящее предлагаемое изобретение относится к области исследования океана и может быть использовано для комплексного измерения гидрофизических параметров в океанологии, гидрофизике и гидрографии.

Известна донная станция для измерения гидрофизических параметров, содержащая жесткий опорный корпус, объединяющий микропроцессор с подключенными к нему блоками аналого-цифровой обработки сигналов, связанными через бароустойчивые разъемы с гидрофизическими датчиками [1]. Система MINIpack имеет возможность использовать 16 каналов измерений сигналов от внешних датчиков как в притопленном, так и буксируемом режиме, а также возможность замены измерителей путем разборки корпуса и установки датчиков в объединяющем бароустойчивом корпусе. Наличие корпуса не только затрудняет перекомпоновку для рекомбинации и требует стационарных условий для последующей метрологической поверки всей системы, но и ограничивает возможности вариабельности измеряемых параметров конкретным объемом, что весьма существенно в процессе экспедиции или рейса судна. В большинстве случаев требуется возможность оперативно варьировать набором измеряемых параметров в процессе дорогостоящего рейса научного судна или экспедиции. Известная станция не может обеспечить высокого качества по причине указанных недостатков.

Известна система для измерения гидрофизичечких параметров, содержащая жесткий поплавок из синтактика, в котором закреплены автономные модули, заключенные в бароустойчивые корпуса, каждый из которых предназначен для измерения одного из регистрируемых станцией параметров [2].

Известная система позволяет оперативно изменять количество контролируемых параметров, но по-прежнему требует механических манипуляций, связанных с использованием гермовводов электрических цепей и их монтажем, следствием чего является снижение надежности работы всей системы и сложность ее эксплуатации.

Целью настоящего изобретения является увеличение надежности работы морских измерительных станций, упрощение их эксплуатации и унификация морской измерительной техники.

Поставленная цель достигается тем, что в известной измерительной системе, содержащей жесткий поплавок из синтактика, в котором закреплены автономные модули, заключенные в бароустойчивые корпуса, каждый из которых предназначен для измерения одного из регистрируемых станцией параметров, каждый бароустойчивый корпус имеет оптически прозрачную вставку, выдерживающую внешнее давление, в которой расположены излучатель и приемник оптического сигнала, при этом размещение автономных модулей должно обеспечивать оптическую связь излучателей и приемников всех модулей.

В предлагаемой станции электрическая связь заменена на оптическую, что позволяет гибко и в широких пределах изменять компоновку станции, ее назначение и условия работы. Ведущий модуль устройства снимает информацию с датчиковых модулей по световому беспроводному каналу и накапливает ее в энергонезависимой памяти типа FLASH-карты. При этом для связи между модулями не требуются герморазъемы и подводные кабели. Упрощается замена измерительных модулей в конструктиве, что повышает потребительскую привлекательность комплекса, его вариабельность. Также упрощается поверка автономных датчиковых модулей, способных работать самостоятельно.

Пример практической реализации

На чертеже - фиг.1 - показано устройство модульной донной станции. Она содержит плавучесть из синтактика - 1, в которой размещены ведущий модуль - 2 и измерительные модули - 3 с датчиками - 4, содержащие весь набор аппаратуры для измерения какого-то одного параметра (давления, солености, скорости потока и пр.). Обычно бароустойчивые корпуса выполняются из металла. Внизу модулей 2, 3 находятся вставки - 5 из прозрачного для светового излучения материала (например, из акрилового стекла), внутри которых расположены приемо-передающие модемы с излучателями и фотоприемниками - 6. Материал вставок должен выдерживать давление на рабочей глубине. Станция содержит традиционные для подводных станций размыкатель балласта - 7 и сам балласт -8, находящийся на дне - 9. Работа донной станции не отличается от известных измерительных систем современной архитектуры.

Каждый модуль измерительной станции работает в автономном режиме независимо от остальных модулей, но по программе, написанной для всей системы и хранящейся в памяти программ ведущего модуля. Такая система формируется под задачу непосредственно перед измерениями из готовых к употреблению отдельных модулей. Предлагаемая станция очень удобна в эксплуатации. После подъема на поверхность вся информация, накопленная в ведущем блоке, может быть считана на персональный компьютер по скоростному WiFi-каналу.

Источники информации

1. Chelsea Technologies Group - Sensors - MINIpack CTD-F, Sensor Suite Compact, Smart Media based multi-parameter monitoring system for oceanography and limnology, Chelsea Technologies Group 55 Central Avenue, Molesey, Surrey, KT8 2QZ, UK.

http://www.chelsea.co.uk/lnstruments%20MINIPACK.htm.

2. Патент России №2350934.

Модульная донная станция, содержащая жесткий поплавок из синтактика, в котором закреплены автономные модули, заключенные в бароустойчивые корпуса, каждый из которых предназначен для измерения одного из регистрируемых станцией параметров, отличающаяся тем, что каждый бароустойчивый корпус имеет оптически прозрачную вставку, выдерживающую внешнее давление, в которой расположены излучатель и приемник оптического сигнала, при этом размещение автономных модулей должно обеспечивать оптическую связь излучателей и приемников всех автономных модулей.



 

Похожие патенты:
Способ относится к области океанографических измерений и может быть использован для контроля состояния открытых водоемов, вызванного их загрязнением, при проведении экологических и природоохранных мероприятий, а также для мониторинга гидрологических характеристик.

Изобретение относится к горному делу, а именно к исследованиям горных пород, в частности к способам исследования керна, извлеченного из скважины. Способ включает установку керна на предметный столик, освещение его поверхность направленным потоком видимого диапазона света, прием части света, отраженного от поверхности керна и обработку полученной информации.
Изобретение относится к области геофизики и может быть использовано для поиска месторождений нефти и газа. Сущность: проводят геологическую и сейсмическую съемки, а также дистанционный оптический газовый анализ с помощью дистанционного лидара.

Изобретение относится к нефтедобывающей промышленности и может быть использовано при разведке и управлении разработкой месторождений углеводородного сырья. Техническим результатом является получение объективных данных о физико-химических свойствах добываемой нефти, а именно оптических свойствах для расчета остаточных извлекаемых запасов нефти и определения текущих свойств коллекторов разрабатываемого месторождения, а также данных по обводненности продукции скважин в промысловых условиях.

Изобретение относится к области геофизики и может быть использовано для контроля состояния магистральных трубопроводов нефти и газа. .

Изобретение относится к области нефтедобывающей промышленности и предназначено для использования в нефтяных и газоконденсатных скважинах, расположенных в северных районах.

Изобретение относится к способам и устройствам для моноволоконной оптической телеметрии, которая может быть пригодна для облегчения связи между различными скважинными зондами, пересекающими толщу пород, и наземным блоком сбора данных.

Изобретение относится к технике видеонаблюдения и может быть использовано для оперативного изучения окружающей обстановки в условиях ограниченных возможностей наблюдения из-за наличия естественных и искусственных препятствий.

Изобретение относится к области геофизики и, в частности, к измерению или обнаружению скрытых масс или объектов оптическими средствами, а также к устройствам для наблюдения за оборудованием трубопроводов.

Изобретение относится к нефтяной промышленности и может найти применение при определении нефтенасыщенных пластов в разрезе скважины. Техническим результатом является повышение точности определения нефтенасыщенного пласта в разрезе скважины.

Изобретение относится к области нефтяной промышленности, а именно к разработке нефтяных залежей, и может использоваться при проведении геолого-технических мероприятий по увеличению добычи нефти.

Изобретение относится к области нефтяной промышленности и, более конкретно, к поиску и добыче нефти. Обеспечивает возможность создания системы разработки, обеспечивающей добычу нефти непосредственно из нефтеподводящего канала, соединяющего глубинный резервуар с нефтяной залежью.

Изобретение относится к области геофизики и может быть использовано для определения насыщения флюидом порового пространства пород исследуемых пластов. Способ определения насыщения водой в подземном пласте включает в себя определение глубины проникновения в пласт на основании множества измерений, выполняемых в стволе скважины, пробуренном сквозь пласт.

Изобретение относится к области геофизики и может быть использовано для построения структурных планов на акваториях: от фундамента до границы М. Для реализации способа используют магнитные, гравитационные поля и рельеф дна моря.
Изобретение относится к области геофизики и может быть использовано для поиска месторождений нефти и газа. Сущность: проводят геологическую и сейсмическую съемки, а также дистанционный оптический газовый анализ с помощью дистанционного лидара.
Изобретение относится к геофизике и может быть использовано с целью поиска и разведки нефтяных и газовых подводных месторождений. Согласно заявленному способу регистрации сейсмических сигналов при поиске подводных залежей углеводородов осуществляют регистрацию сейсмических колебаний поверхности Земли с использованием приемников сейсмических колебаний, способных регистрировать сейсмические колебания в диапазоне от 0,1 до 20 Гц.

Изобретение относится к области геофизики и может быть использовано при разведке месторождений углеводородов (УВ) с использованием измерений параметров геофизических полей различной природы при обработке данных для определения детальных (тонкослоистых) фильтрационно-емкостных свойств коллекторов и типа их насыщения в межскважинном и околоскважинном пространстве.

Изобретение относится к области геофизики и может быть использовано при разведке месторождений газовых гидратов. .

Изобретение относится к области геофизики и может быть использовано для прогнозирования землетрясений. .
Изобретение относится к способам прогнозирования катастрофических явлений. Сущность: измеряют вариации магнитного поля, магнитную индукцию электромагнитного поля, электрическую составляющую электромагнитного поля, акустические шумы, сейсмические шумы, гидродинамический шум моря в зонах тектонических разломов. Судят о возможности наступления катастрофических явлений при достижении величины глобального максимума, равного среднему значению между амплитудами, характеризующими уровни геофизического и гидрофизического полей в естественном состоянии и в период нахождения cолнца и луны на одной небесной линии. Дополнительно выполняют двумерную или трехмерную реконструкцию распределения электронной концентрации в ионосфере, контролируют вертикальное распределение озона от приземного слоя до стратосферы, измеряют плотности, температуры, скорости ветра, исследуют аэрозоли, в атмосфере контролируют активизацию разломов - изменения проницаемости, миграцию газов, включая эманацию радона, ионизацию воздуха α-частицами, гидратацию ионов - формирование крупных кластерных ионов, конвективный подъем ионов, разделение зарядов, дрейф в электронном поле, формирование линейных облачных структур, формирование аномалий температуры и давления, реактивные потоки, в ионосфере также контролируют изменения проводимости пограничного слоя, рост атмосферного электрического поля, эффекты аномального электрического поля, захват ОНЧ шумов, высыпание электронов высоких энергий, в магнитосфере измеряют продольные неоднородности электронной концентрации. Технический результат: расширение функциональных возможностей, повышение достоверности прогноза.
Наверх