Способ подземной газификации


 


Владельцы патента RU 2521255:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" (RU)

Изобретение относится к горному делу и может быть применено для получения газообразного энергоносителя из угля или сланца на месте залегания. Способ включает бурение скважин с поверхности земли в обрабатываемый интервал в подземном пласте, размещение в скважинах электродов, приложение напряжения к электродам, пропускание электрического тока и нагрев пласта за счет джоулева тепла. К электродам прикладывают напряжение, достаточное для возникновения частичных разрядов и триинга до образования канала электротеплового пробоя в пласте, о моменте образования которого судят по снижению сопротивления межэлектродного пространства, затем пропускают ток через канал электротеплового пробоя в пласте. Технический результат заключается в снижении трудоемкости способа и экономических издержек при подготовке газификации. 1 ил.

 

Изобретение относится к горному делу, в частности к способам подземной газификации твердых ископаемых топлив, и может быть использовано для получения газообразного энергоносителя (горючего газа) из угля или сланца на месте залегания.

Известен способ подземной газификации, включающий бурение скважин, их сбойку, розжиг, подачу дутья и отвод продуктивного газа [Патент РФ №2385412, МПК E21B43/295, опубл. 27.03.2010].

Недостатком известного способа является низкая энергоемкость (калорийность) получаемого товарного газа вследствие наличия в нем большого количества балластного газа, возникающего в результате сжигания части органической массы в камере подземного газогенератора.

Известен способ обработки подземного пласта, содержащего твердое органическое вещество, включающий обеспечение, по меньшей мере, одной скважины, проходящей в обрабатываемый интервал в подземном пласте, создание по меньшей мере, одного разрыва от, по меньшей мере, одной скважины, который пересекает, по меньшей мере, одну скважину, помещение электропроводного материала в разрыве, осуществление контакта двух электродов с электропроводным материалом, приложение напряжения к двум электродам для пропускания электрического тока по разрыву таким образом, что электрический ток проходит по, по меньшей мере, части электропроводного материала и достаточное тепло вырабатывают электрическим удельным сопротивлением в части электропроводного материала для осуществления пиролиза, по меньшей мере, части твердого органического вещества в извлекаемые углеводороды [Патент РФ №2349745, МПК E21B43/24, опубл. 20.03.2009]. Указанный способ выбираем за прототип.

Недостатком прототипа является трудоемкость способа, связанная с наличием дополнительных технологических операций, возможная токсичность электропроводного материала.

Задача изобретения - создание эффективного, экологически безопасного способа подземной газификации.

Технический результат, достигаемый при использовании изобретения, заключается в снижении трудоемкости способа газификации, снижении экономических издержек при подготовке газификации за счет создания канала электротеплового пробоя в пласте.

Указанный технический результат достигается тем, что в способе подземной газификации, включающем, как и прототип, бурение скважин с поверхности земли в обрабатываемый интервал в подземном пласте, размещение в скважинах электродов, приложение напряжения к электродам, пропускание электрического тока и нагрев пласта, в отличие от прототипа, к электродам прикладывают напряжение, достаточное для возникновения частичных разрядов и триинга до образования канала электротеплового пробоя в пласте, о моменте образования которого судят по снижению сопротивления межэлектродного пространства, затем пропускают ток через канал электротеплового пробоя в пласте и осуществляют нагрев пласта за счет джоулева тепла.

Изобретение поясняется иллюстрацией фиг.1, на которой показана функциональная схема реализации способа подземной газификации.

Способ подземной газификации включает бурение двух скважин 1 с поверхности грунта, проходящих в обрабатываемый интервал в подземном пласте 2 твердого горючего ископаемого и размещение внутри них электродов 3, соединенных кабелями с наземным источником тока 4 (фиг.1). Газификация осуществляется за счет нагрева пласта до температуры газовыделения твердого топлива (300-500°С). Нагрев породы производится пропусканием тока через канал электротеплового пробоя за счет джоулева тепла.

Электрическое сопротивление твердых топлив велико (108÷1012Ом·см), поэтому джоулево тепло в породе при технически возможных значениях напряжения будет мало. Приложение к межэлектродному промежутку пласта высокого переменного напряжения вызывает появление частичных разрядов, которые образуют электропроводящие участки в месте действия разряда в объеме породы твердого топлива. Действие следующего разряда удлиняет проводящий участок. Растущая в результате разрядная структура, называемая дендритом, имеет древовидную форму и распространяется от электродов в направлении электрода другой полярности. Этот процесс, называемый триингом, продолжается до образования сквозного канала между электродами. Прикладываемое к электродам напряжение на этом этапе должно быть достаточным для образования частичных разрядов. Это напряжение зависит от расстояния между электродами и вида породы. Величину напряжения определяют экспериментальным путем на образцах породы, извлеченных на поверхность. Наличие частичных разрядов при этом устанавливают визуально, а образование проводящего канала определяют по снижению межэлектродного сопротивления. Величина напряжения должна примерно составлять 1-10 кВ/м. Необходимо использовать переменное напряжение, может быть использовано напряжение промышленной частоты. Когда дендриты, растущие с разнополярных электродов, замыкаются, образуя сквозной проводящий канал между электродами, линейное сопротивление межэлектродного промежутка становится низким (10-100 Ом/см). Для определения момента образования канала осуществляют контроль напряжения на электродах и тока между ними. При этом возможен нагрев джоулевым теплом в образованном проводящем канале. На этом этапе к электродам подключают сильноточный источник постоянного или переменного напряжения. Далее осуществляют нагрев за счет джоулева тепла в проводящем канале. Напряжение источника в этом режиме может составлять 10-100 В/м, а ток ограничен мощностью источника и может составлять 10-100 А.

Пример 1

Проведено лабораторное испытание способа в экспериментальной камере на образце горючих сланцев с расстоянием между электродами 50 см. Предварительно измеренное омическое сопротивление межэлектродного расстояния составляло ~250 кОм. На начальном этапе к электродам прикладывалось синусоидальное напряжение частотой 50 Гц и амплитудой 5 кВ. Этого напряжения достаточно для возникновения частичных разрядов, наличие которых установлено визуально. От источника потреблялась мощность ~300 Вт. Этот режим продолжался в течение 30 мин. По истечении этого времени образовался сквозной проводящий канал. Омическое сопротивление межэлектродного расстояния стало ~800 Ом. Далее через межэлектродный промежуток пропускался ток частотой 50 Гц от регулируемого источника напряжения, и нагрев производился за счет джоулева тепла в сформированном низкоомном канале. Напряжение сначала составляло сотни вольт, по мере разогрева канала его сопротивление снизилось до ~10 Ом, напряжение было уменьшено до 100 В для поддержания мощности ~1 кВт.

Пример 2

Проведено лабораторное испытание способа в экспериментальной камере на образце бурого угля с расстоянием между электродами 45 см. Предварительно измеренное омическое сопротивление межэлектродного расстояния составляло ~150 кОм. На начальном этапе к электродам прикладывалось синусоидальное напряжение частотой 50 Гц и амплитудой 8 кВ. Этого напряжения достаточно для возникновения частичных разрядов, наличие которых установлено визуально. От источника потреблялась мощность ~600 Вт. Этот режим продолжался в течение 15 мин. По истечении этого времени образовался сквозной проводящий канал. Омическое сопротивление межэлектродного расстояния стало составлять ~300 Ом. Далее через межэлектродный промежуток пропускался ток частотой 50 Гц от регулируемого источника напряжения, и нагрев производился за счет джоулева тепла в сформированном низкоомном канале. Напряжение сначала составляло сотни вольт, по мере разогрева канала его сопротивление снизилось до ~3-5 Ом, напряжение было уменьшено до 60 В для поддержания мощности ~1 кВт.

Таким образом, заявляемый способ позволяет снизить количество подготовительных работ, исключить проведение гидроразрыва пласта и использование токсичных электропроводных материалов и повысить эффективность процесса.

Способ подземной газификации, включающий бурение скважин с поверхности земли в обрабатываемый интервал в подземном пласте, размещение в скважинах электродов, приложение напряжения к электродам, пропускание электрического тока и нагрев пласта за счет джоулева тепла, отличающийся тем, что к электродам прикладывают напряжение, достаточное для возникновения частичных разрядов и триинга до образования канала электротеплового пробоя в пласте, о моменте образования которого судят по снижению сопротивления межэлектродного пространства, затем пропускают ток через канал электротеплового пробоя в пласте.



 

Похожие патенты:

Изобретение относится к тепловым методам разработки трудноизвлекаемых тяжелых углеводородных залежей путем их нагрева. Обеспечивает создание огневой технологии воздействия на залежь тяжелых углеводородов для создания коллекторов повышенной дренирующей способности.

Изобретение относится к области горного дела и может быть применено при подземной газификации угля. Способ заключается в том, что выделенный в поверхностном химическом комплексе СО2 делят на два потока: первый из них нагнетают в дутьевые скважины эксплуатируемого подземного газогенератора и инициируют в зонах газификации эндотермическую химическую реакцию СО2+С=2СО-q, обогащая при этом газ ПГУ горючим компонентом СО; второй поток СО2 нагнетают в отработанный подземный газогенератор.

Способ относится к области горной промышленности, в частности к угольной, и может быть использован при отработке склонных к самовозгоранию угольных пластов. Техническим результатом является повышение безопасности ведения горных работ при отработке склонных к самовозгоранию угольных пластов.

Изобретение относится к способам подземной газификации угольных пластов путем превращения угольной массы на месте ее залегания в горючий газ, который может использоваться в различных энергетических установках.

Изобретение относится к горному делу, в частности, к способам подземной газификации твердых ископаемых топлив и может быть использовано для получения газообразного энергоносителя (горючего газа) из угля или сланца на месте залегания.

Изобретение относится к области горного дела, а конкретнее к области подземной газификации угля - ПГУ и производству на ее основе водорода. .

Изобретение относится к области горного дела и может быть применено в технологии подземной газификации угля (ПГУ). .

Изобретение относится к горному делу и может быть применено при разработке месторождений каменных и бурых углей путем подземной газификации и направлено на улучшение экологических показателей процесса подготовки энергетического газа.

Изобретение относится к горному делу и к переработке бытовых и (или) промышленных отходов, в частности к разработке крутых и крутонаклонных угольных пластов по технологии подземной газификации, и утилизации изношенных автомобильных шин.

Изобретение относится к горной промышленности и может быть использовано для подземной газификации целиков угля, оставшихся после применения технологии глубокой разработки угольных пластов.

Изобретение относится к области горнодобывающей промышленности, а именно к скважинным методам геотехнологии разработки месторождений горючих сланцев. Обеспечивает повышение эффективности способа при минимальных затратах на его осуществление. Сущность изобретения: способ заключается в бурении на залежь горючих сланцев серии параллельных чередующихся дутьевых и продуктоотводящих скважин, каждая из которых имеет породную, пройденную по породам с земной поверхности до сланцевой залежи, и сланцевую часть, пройденную преимущественно по подошве залежи. Забои этих скважин пересекают поперечной сбоечной скважиной. При этом породные части этих скважин обсаживают трубами и цементируют. В сланцевые части всех скважин опускают хвостовики из легкоплавкого металла. В поперечную сбоечную скважину вместе с хвостовиком опускают устройство для фиксации очага горения по длине сланцевой части. Создают на забое вертикальной розжиговой скважины очаг горения и устанавливают зависимость скорости противоточного перемещения очага горения от расхода нагнетаемого воздушного дутья. После завершения огневой проработки сланцевой части поперечной сбоечной скважины нагнетают воздушное дутье в первую продуктоотводящую скважину согласно зависимости, зафиксированной ранее на поперечной сбоечной скважине. 4 з.п. ф-лы, 1 ил.

Изобретение относится к горному делу и может быть применено в подземной газификации бурого угля в тонких и средней мощности пластах. Способ включает осушение угольного пласта, нагнетание в реакционный канал окислителя по вертикальным дутьевым скважинам, отсос из него продуктов газификации через газоотводящие скважины и минимизацию давления в реакционном канале. При этом дополнительно бурят две вертикальные скважины до почвы угольного пласта и соединенные с ними две вертикальные скважины длиной 100-140 м на границах отрабатываемого участка газифицируемого угольного пласта на расстоянии 50-60 м друг от друга, а также нагнетательные скважины по центру данного участка пласта с шагом 15-20 м. В качестве окислителя используют атмосферный воздух с добавкой парокислородной смеси в количестве 20000-50000 м3/ч, поддерживают температуру огневого забоя на уровне 550-700°С, а управляют огневым забоем последовательным переключением на нагнетательную скважину, к которой подходит огневой забой, а также путем изменения количества нагнетаемого окислителя. Технический результат заключается в обеспечении устойчивого горения в огневом забое фильтрационного канала и повышении калорийности энергетического газа при подземной газификации тонких и средней мощности пластов бурого угля. 1 ил., 1 табл.

Изобретение относится к горному делу и может быть использовано для комплексного освоения месторождений бурого угля. Технический результат заключается в обеспечении эффективного комплексного использования месторождений бурого угля и комплексной защите окружающей среды от воздействия технологического процесса. Способ комплексного освоения месторождений бурого угля включает деление месторождения на блоки, бурение дренажных скважин и подземную газификацию угля, растворение золошлаковых остатков угля и откачку продуктивного раствора на поверхность для последующей экстракции ценных компонентов, заполнение выработанного пространства блока закладочным материалом. Бурят 6 рядов вертикальных скважин, расположенных в блоке друг от друга на расстоянии 20…25 м, которые последовательно используют как дренажные, продуктивные для газификации угля, для растворения и извлечения золошлаковых остатков угля и для нагнетания закладочной смеси. В каждом ряду располагают 10…12 вертикальных скважин на расстоянии 15…20 м друг от друга. Откачивают подземную воду и через узел водоподготовки направляют к потребителю. Газ подземной газификации угля очищают от примесей в узле очистки энергетического газа и сжигают в локальной газовой электростанции. Образующийся диоксид углерода нагнетают в закладочный массив посредством узла аккумулирования, а продуктивный раствор очищают от твердых примесей и откачивают по трубопроводу к химико-технологическому узлу, связанному с закладочным комплексом посредством узла неутилизированных отходов. 1 ил., 2 табл.

Изобретение относится к комплексному освоению угольного месторождения при подземной газификации угля. Способ комплексного освоения угольного месторождения включает бурение системы дутьевых и газоотводящих скважин, гидравлически связанных между собой по угольному пласту, осуществление через них гидродинамического воздействия с образованием зоны искусственных полостей и трещин и огневого воздействия на угольный пласт с образованием очага горения, перемещаемого от дутьевой скважины в сторону газоотводящей скважины, получение сырого генераторного газа, охлаждение его до температуры ниже температуры конденсации компонентов, входящих в состав сырого газа, и получение вместе с очищенным газом других полезных компонентов. Особенностью способа является то, что в пространстве между дутьевой и газоотводной скважинами бурят на равном расстоянии друг от друга ряд питающих скважин с поверхности в зону искусственных полостей и трещин, в очаг горения сначала по дутьевой, а потом по мере перемещения очага горения и по питающим скважинам подают пыль минерала, содержащего химически активный элемент, на выходе из газоотводящей скважины генераторный газ сепарируют, выделяя из него газообразные соединения ценных химических элементов и переводя их в жидкоподвижное состояние для извлечения ценных элементов. Технический результат заключается в повышении эффективности комплексного освоения угольного месторождения. 1 ил.

Изобретение относится к комплексному освоению месторождения полезных ископаемых и может быть использовано для получения продуктов подземной газификации горючих сланцев. Способ комплексного освоения месторождения горючих сланцев включает бурение дутьевых, газоотводящих и питающих скважин. Через дутьевые скважины осуществляют огневое воздействие на пласт, через питающие - подачу углеродсодержащего материала, а получение генераторного газа - через газоотводящие скважины. При этом осуществляют управление перемещением очага горения в плоскости пласта. Особенностью способа является то, что перед огневым воздействием осуществляют разупрочнение пласта созданием вдоль траектории перемещения очага горения зоны искусственных полостей и трещин, скорость перемещения очага горения контролируют измерением температуры газов в питающих скважинах. В качестве углеродсодержащего материала используют промпродукт мокрого обогащения каменных углей, брикетированные твердые бытовые и другие промышленные отходы. Выработанное пространство заполняют негорючей частью отходов. Технический результат заключается в повышении эффективности комплексного освоения месторождения горючих сланцев. 1 ил.
Изобретение относится к технологиям подземной газификации угольных пластов посредством преобразования угля на месте его залегания в горючий газ, который в качестве топлива может использоваться в энергоустановках разного типа. Способ включает бурение дутьевой и газоотводящей скважин, установку колонн труб, соединение скважин по угольному пласту гидроразрывом, заполнение образованного канала катализатором, осуществление розжига угольного пласта с нагревом его до температур 300-500 °С, подачу в канал перегретого водяного пара той же температуры, отвод через газоотводящую скважину горючего газа. При этом операции гидроразрыва и заполнения канала катализатором совмещают посредством использования в качестве материала проппанта катализатора на базе оксидов железа. Технический результат заключается в ускоренном процессе газификации угля в недрах земли при одновременном снижении стоимости получаемого горючего газа. 2 з.п. ф-лы.
Изобретение относится к области переработки, обезвреживания и утилизации твердых бытовых отходов. Для термической утилизации отходов бурят скважину, проводят газификацию органических компонентов отходов при помощи контролируемого нагрева и подачи топлива с получением синтез-газа и его последующим выводом. При этом скважину бурят на полигоне захоронения отходов. Газификацию проводят непосредственно в массиве складированных отходов с помощью проложенной в скважине газовоздушной магистрали, которую перемещают внутри массива по вертикали путем погружения/извлечения подводящих и отводящих труб, а по горизонтали - путем бурения скважин по рассчитанной сетке с чередованием подводящих и отводящих труб. Изобретение обеспечивает стабилизацию массива отходов, сокращение энергозатрат и затрачиваемого времени.

Изобретение относится к горному делу и может быть применено для газификации угля. Комплекс включает подземный газогенератор, при этом отводящая скважина размещена в центре газифицируемого участка угля, а подающие скважины размещены вокруг нее по периферии газифицируемого участка угля. Парогенерирующее оборудование включает два спиральных трубопровода, обвитых вокруг газоотводящей трубы, первый из которых выполнен на ее верхнем участке, а второй выполнен ниже первого. Приемное отверстие первого спирального трубопровода сообщено с источником воды, а его выпускное отверстие сообщено соединительным трубопроводом с приемным отверстием второго спирального трубопровода. При этом выпускное отверстие второго спирального трубопровода, размещенное в его верхней точке, сообщено с паровой турбиной посредством паропровода. Причем выход паровой турбины через узел приготовления дутья сообщен с подающей скважиной, которая дополнительно сообщена с паропроводом через обводной паропровод. Обводной паропровод пропущен через узел приготовления дутья с возможностью эжектирования его содержимого, кроме того, на поверхности размещен узел сушки углеродсодержащих твердых отходов, сообщенный с их дезинтегратором, выход которого сообщен с узлом приготовления дутья. В качестве средства утилизации CO2 использована линия по производству углекислоты или накопитель углекислоты, выполненный с возможностью ее регулируемого сброса в узел приготовления дутья. Технический результат заключается в повышении эффективности утилизации тепла исходящих газов. 2 з.п. ф-лы, 2 ил.

Изобретение относится к горному делу и может быть применено для освоения подземной угольной формации. Эксплуатационный участок залежи угля разбивается на эксплуатационные панели, которые в определенной последовательности разбуриваются до подошвы угольного пласта скважинами среднего и большого диаметров, и которые через эти скважины последовательно отрабатываются в процессе подземной газификации угля с получением полезных продуктов - горючего газа, технологического пара, электроэнергии, и после завершения выгазовки угля с получением полезных продуктов - металла скандия из золы и биогаза из захороненных в выработанном объеме панели твердых бытовых отходов. Технический результат заключается в повышении эффективности освоения подземной угольной формации через технологические скважины за счет комплексного использования теплового ресурса процесса горения угля, минеральной части золы угля, выгазованного объема подземного газогенератора. 6 з.п. ф-лы, 8 ил.

Изобретение относится к горному делу и может быть применено для газификации угля в условиях многолетней мерзлоты. Способ включает бурение скважин с обсаживанием их трубами с оставлением у забоя скважин необсаженного участка длиной 1,5-2,0 м. Сбойку скважин между собой производят гидроразрывом угольного пласта с помощью труднозамерзающей горючей жидкости, например керосином. Образовавшиеся щели промывают этой же жидкостью не менее 3 раз. Обсадные трубы извлекают из скважин по мере выжигания угольного пласта. Технический результат заключается в упрощении процесса подземной газификации углей и повышении надежности гидроразрыва пласта угля. 2 ил.
Наверх