Буровой раствор


 


Владельцы патента RU 2521259:

Общество с ограниченной ответственностью Научно-производственное предприятие "БУРИНТЕХ" (ООО НПП "БУРИНТЕХ") (RU)

Изобретение относится к нефтегазодобывающей промышленности, а именно к безглинистым гелево-эмульсионным буровым растворам для бурения наклонно-направленных и горизонтальных нефтяных и газовых скважин с различными отклонениями от вертикали. Буровой раствор, содержащий углеводородную фазу и поверхностно-активные вещества, утяжелитель, минеральные соли, стабилизатор и воду, содержит в качестве углеводородной фазы и поверхностно-активных веществ добавку МУЛЬТИОЛ, в качестве стабилизатора - МУЛЬТИСТАР и ксантановую камедь и дополнительно гидроксид натрия, при следующем соотношении компонентов, мас.%: реагент МУЛЬТИОЛ 8,5-25, стабилизатор МУЛЬТИСТАР 1,5-2,0, ксантановая камедь 0,2-0,5, карбонат кальция 5-20, хлорид магния 4-15, гидроксид натрия 1-2, вода остальное. Изобретение развито в зависимых пунктах формулы изобретения. Технический результат - повышение ингибирующих и смазочных свойств. 7 з.п. ф-лы, 2 пр., 2 табл.

 

Изобретение относится к нефтегазодобывающей промышленности, а именно к безглинистым гелево-эмульсионным буровым растворам для бурения наклонно-направленных и горизонтальных нефтяных и газовых скважин с различными отклонениями от вертикали. Раствор подходит как для бурения основного ствола, так и для вскрытия продуктивных пластов. При этом раствор идеально подходит для бурения неустойчивых глинистых отложений, таких как: кошайская пачка алымской свиты, яностановская свита, «кыновские глины», «шоколадные глины» Западной Сибири, Ачимовские аргиллиты и другие.

Известен эмульсионный буровой раствор (патент РФ №2114889, МПК C09K 7/02, опубл. 10.07.1998), включающий дисперсионную среду, дисперсную фазу и эмульгатор. Известный буровой раствор имеет следующие недостатки: узкий диапазон плотностей, что сужает область применения данного раствора, высокая условная вязкость (вплоть до нетекучей жидкости), что создает проблемы при прокачивании раствора.

Наиболее близким по составу и технологической сущности является эмульсионный буровой раствор (патент РФ №2213761, МПК C09K 7/06, опубл. 10.10.2003), содержащий углеводородную фазу, карбонат кальция, минеральную соль, стабилизатор, поверхностно-активное вещество и минерализованную воду. Известный буровой раствор обладает довольно низким коэффициентом восстановления проницаемости кернов, то есть вызывает загрязнение продуктивного пласта. Кроме того, низкие значения статического напряжения сдвига (СНС) свидетельствуют о возможных проблемах с выносом шлама и с его оседанием при остановках циркуляции.

Задачей изобретения является разработка высокоэффективного гелево-эмульсионного бурового раствора, подходящего для бурения активных и неустойчивых глинистых отложений, горизонтальных стволов и вскрытия продуктивного пласта, обладающего повышенными ингибирующими и смазочными свойствами, и выступающего в качестве альтернативы растворам на углеводородной основе.

Поставленная задача решается тем, что буровой раствор, содержащий углеводородную фазу и поверхностно-активные вещества, карбонат кальция, минеральные соли, стабилизатор и воду, согласно изобретению, содержит в качестве углеводородной фазы и поверхностно-активных веществ реагент МУЛЬТИОЛ, в качестве стабилизатора - МУЛЬТИСТАР и, дополнительно, гидроксид натрия и ксантановую камедь, при следующем соотношении компонентов, мас.%:

Реагент МУЛЬТИОЛ 8,5-25
Стабилизатор МУЛЬТИСТАР 1,5-2,0
Ксантановая камедь 0,2-0,5
Карбонат кальция 5-20
Хлорид магния 4-15
Гидроксид натрия 1-2
Вода Остальное

Дополнительно может содержаться хлорид кальция при общем содержании хлоридов не более 40 масс.%, либо хлорид калия при общем содержании хлоридов не более 30 масс.%, либо хлорид натрия при общем содержании хлоридов не более 45 масс.%

Дополнительно могут содержаться хлорид кальция и калия, либо хлорид кальция и натрия при общем содержании хлоридов не более 55 масс.%

Дополнительно могут содержаться хлорид калия и натрия при общем содержании хлоридов не более 50 масс.%

Дополнительно могут содержаться хлорид кальция, натрия и калия при общем содержании хлоридов не более 55 масс.%

В качестве стабилизатора используется полисахаридный реагент, например крахмал, модифицированный для бурения МУЛЬТИСТАР (ТУ 2458-029-50783875-2012), и дополнительно ксантановая камедь, например, Zibaxan производства Deosen.

В качестве углеводородной фазы и поверхностно-активного вещества используется добавка для буровых растворов МУЛЬТИОЛ, выпускается по ТУ 2458-032-50783875-2012. Добавка для буровых растворов МУЛЬТИОЛ, предназначенная для улучшения смазочных свойств, уменьшения загрязнения призабойной зоны пласта, повышения устойчивости стенок скважины, предотвращения сальникообразования. Добавка представляет собой смесь неполярных жидкостей природного или синтетического происхождения с поверхностно-активными веществами, предназначенными для ее эмульгирования в водных буровых растворах и гидрофобизации контактируемых поверхностей. По физико-химическим показателям добавка соответствует следующим требованиям и нормам, приведенным в ТУ:

Наименование показателя Таблица значений
1. Внешний вид Однородная прозрачная жидкость темно-
коричневого цвета без посторонних
включений
2. Плотность при 20°C, г/см3, не более 1,10
3. Вязкость кинематическая при 40°C, мм2/с, в пределах 30-300
4. Температура застывания, °C, не выше -20

Карбонат кальция (молотый мрамор, мел (ТУ 5716-001-05494314-2010)) используется в качестве утяжелителя и кольматанта. Также необходимая плотность может достигаться добавлением минеральных солей.

В качестве минеральных солей могут использоваться хлориды натрия, кальция, магния, калия в различных сочетаниях.

Для приготовления раствора в лабораторных условиях использовались следующие соли:

Хлорид магния (CAS # 7786-30-3, MERCK) в присутствии гидроксида натрия является гелеобразователем.

Хлорид кальция (по ГОСТ 450-77) выполняет роль утяжелителя бурового раствора и ингибитора набухания глинистых сланцев.

Хлорид калия (по ГОСТ 4568-95) выполняет роль утяжелителя бурового раствора и ингибитора набухания глинистых сланцев.

Хлорид натрия (по ТУ 2111-006-00352816-2008) выполняет роль утяжелителя бурового раствора и ингибитора набухания глинистых сланцев.

Гидроксид натрия (по ТУ 2132-185-00203312-99). Он является регулятором рН и вызывает гелеобразование.

Для предотвращения биодеструкции полимеров возможно добавление бактерицида, например, ЛПЭ-32 по ТУ 2458-039-00209295-02.

Существует эмульсионный буровой раствор на основе полисахаридного полимера (пат. РФ №2255105), где гелеобразование достигается взаимодействием биополимера и соли борной кислоты и не является основным свойством. В заявляемом растворе образуется гидрогель, стабилизированный специально подобранными неионогенными полимерами. Гидрогели обладают высокими псевдопластическими свойствами, то есть в состоянии покоя структурно-механические свойства увеличиваются за счет роста кристаллов Mg(OH)2 и оксихлоридов и сращивания их друг с другом по принципу коагуляции, что обеспечивает высокое качество очистки ствола скважины.

В растворе МУЛЬТИБУР используется смесь солей, которые одновременно являются утяжелителями и ингибиторами набухания глин. Благодаря применению катионов одно- и двухвалентных металлов, раствор позволяет обеспечить активность фильтрата, равную или ниже активности пластового флюида, насыщающего глинистые породы, что исключает набухание глинистых минералов из-за адсорбционно-осмотических процессов на стенке скважины и предотвращает появление связанных с этим проблем.

Предотвращение сальникообразования, повышенная смазывающая способность и устойчивость стенок скважины при использовании заявляемого раствора МУЛЬТИБУР достигается гидрофобизацией и изменением типа смачиваемости капилляров породы эмульсией первого рода. В качестве дисперсной фазы выступает добавка для буровых растворов МУЛЬТИОЛ.

Благодаря присутствию в растворе МУЛЬТИБУР добавки для буровых растворов МУЛЬТИОЛ на границе пласт-скважина образуется гидрофобная фильтрационная корка, обладающая пониженной проницаемостью для воды, что снижает загрязнение продуктивного пласта.

Были изучены патенты на гидрогелевые и полимергидрогелевые буровые растворы (Пат. РФ №2135542, ЗИ №97100696, №2000109400). Существующие гидрогелевые растворы не содержат в своем составе эмульсии 1-го рода, способной образовывать гидрофобную пленку. Таким образом, МУЛЬТИБУР обладает новым свойством, что обуславливает изобретательский уровень.

Способ приготовления бурового раствора заключается в следующем.

Пример 1.

В 507 г воды при перемешивании добавляют 1,0 г ксантановой камеди Zibaxan, 12 г стабилизатора МУЛЬТИСТАР, 20 г хлорида магния, 200 г карбоната кальция. После введения каждого компонента раствор перемешивают лабораторной мешалкой 15-20 мин. 255 г добавки МУЛЬТИОЛ добавляют к водному раствору и перемешивают 30 мин высокоскоростным миксером. Добавляют 5 г NaOH. Готовый раствор оставляют на 16 часов при нормальных условиях в закрытой емкости. После чего раствор перемешивают 5 мин и замеряют его параметры.

Пример 2.

В 568 г воды при перемешивании добавляют 2,0 г ксантановой камеди Zibaxan, 15 г стабилизатора МУЛЬТИСТАР, 50 г хлорида магния, 100 г карбоната кальция, 100 г хлорида кальция. После введения каждого компонента раствор перемешивают лабораторной мешалкой 15-20 мин. К полученному раствору добавляют 150 г добавки МУЛЬТИОЛ и перемешивают 30 мин высокоскоростным миксером. Добавляют 15 г NaOH. Готовый раствор оставляют на 16 часов при нормальных условиях в закрытой емкости. После чего раствор перемешивают 5 мин и замеряют его параметры.

Аналогичным образом готовили другие составы заявляемого бурового раствора с различным соотношением ингредиентов. В таблице 1 приведены данные о компонентных составах исследованных растворов. Растворы 2-17 содержат компоненты предлагаемой рецептуры в различных концентрациях. Растворы №№1 и 18 приведены в таблице в качестве экспериментальных и содержат компоненты в количествах ниже нижнего и вне верхнего пределов соответственно, но при таких соотношениях поставленная задача не достигается.

Таблица 1
Состав раствора, мас.% № п.п.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Прототип
Ксантановая камедь 0,1 0,2 0,5 0,2 0,5 0,5 0,2 0,5 0,2 0,5 0,2 0,3 0,5 0,5 0,2 0,2 0,5 0,7
МУЛЬТИСТАР 1,2 1,5 2,0 1,5 2,0 1,5 2 1,5 2,0 1,5 2,0 1,5 2,0 1,5 2 2 1,5 2,5
Хлорид магния 2 5 5 15 4 4 15 4 15 4 15 4 15 4 15 4 15 17 10
Хлорид кальция 0 10 3 25 25 3 3 25 25 3 35
Хлорид калия 15 3 15 3 15 3 3 15 5
Хлорид натрия 30 5 5 20 5 20 5 10
Карбонат кальция 20 10 10 20 5 5 20 20 5 20 5 20 5 5 5 10 5 2 5
МУЛЬТИОЛ 25,5 15 10 10 25 20 8,5 8,5 25 25 8,5 25 8,5 15 10 8,5 15 5
NaOH 0,5 1,5 2 2 2 1 2 2 2 1 2 1 2 1 2 2 2 2
Вода 50,7 56,8 70,5 33,3 33,5 38 47,3 33,5 27,8 28 44,3 45,2 42 58 62,8 40,3 33 35,8 49
Нефть 20
Крахмал Фито РК 4
ПАВ ПКД-515 7

Концентрации полимеров взяты в соответствии с рекомендациями производителей. Образующиеся в растворе кристаллогидраты обладают избыточным запасом свободной энергии и поэтому являются неустойчивыми новообразованиями, подверженными термической и механической деструкции. Уменьшение концентрации ксантановой камеди ниже 0,2 масс.% приведет к ухудшению реологических показателей из-за термической и механической деструкции кристаллизационно-коагуляционной структуры. Повышение концентрации ксантановой камеди выше 0,5% вызовет сильное загущение раствора. Снижение концентрации стабилизатора МУЛЬТИСТАР ниже 1,5 масс.% приведет к увеличению показателя фильтрации. Увеличение содержания стабилизатора МУЛЬТИСТАР выше 2,0 масс.% нецелесообразно, так как не вызывает значительного уменьшения показателя фильтрации.

Содержание добавки МУЛЬТИОЛ обусловлено плотностью раствора и гидрофобизацией поверхности глины. При попадании кусочков шлама в МУЛЬТИБУР на их поверхности образуется гидрофобная пленка, выполняющая функцию инкапсулянта. При концентрации реагента МУЛЬТИОЛ ниже 8,5 масс.% не будет достигаться необходимая гидрофобизация породы, то есть увеличится процент диспергированного шлама в растворе, а при концентрации выше 25 масс.% ухудшается стабильность эмульсии и ее параметров, и повышается стоимость раствора.

Содержание хлорида магния зависит от содержания воды. Для образования гидрогеля достаточно добавления 4 масс.% по отношению к воде. Увеличение концентрации хлорида магния выше 15 масс.% приводит к значительному увеличению вязкости и потере текучести раствора.

Концентрация хлорида кальция влияет на плотность раствора и на активность фильтрата. Чем больше хлорида кальция, тем ниже активность раствора, тем выше его ингибирующая способность по отношению к глинистым сланцам. Поэтому минимальное содержание хлорида кальция - 3 масс.%. Максимальная концентрация обусловлена растворимостью солей и влиянием на полимеры. Добавка более 25 масс.% хлорида кальция может не раствориться в присутствии других солей.

Концентрация хлорида калия в растворе меньше 3 масс.% или хлорида натрия меньше 5 масс.% не позволяет достичь необходимого уровня ингибирования разбуриваемых пород, а добавка хлорида калия более 15% масс или хлорида натрия более 30 масс.% может не раствориться в присутствии других солей.

Концентрация карбоната кальция обусловлена требуемой плотностью раствора. При этом концентрация мела для образования кольматационной корки должна быть не менее 5 масс.%. Добавление более 20 масс.% мела может негативно воздействовать на реологические параметры раствора.

Оценка основных технологических параметров исследуемых растворов проводилась с помощью стандартных приборов и методик (Рязанов Я.А. Справочник по буровым растворам. М.: Недра, 1979; Рекомендованная практика для лабораторных исследований буровых растворов 13I / ISO 10416:2002; Рекомендованная практика для полевых исследований растворов на углеводородной основе 13 B-2). В лабораторных условиях анализировали следующие показатели свойств буровых растворов:

- удельный вес (ρ, г/см3) определялся при помощи рычажных весов;

- условная вязкость (УВ, с) измерялась при помощи ВП-5;

- показатель фильтрации (ПФ, см3 при перепаде давления 0,7 МПа) измеряли на фильтр-прессе фирмы OFITE;

- реологические свойства - пластическую вязкость (PV, мПа·с), динамическое напряжение сдвига (YP, дПа) и статическое напряжение сдвига через 10 с и 10 мин (CHC10/10, дПа), замеряли на ротационном 8-скоростном вискозиметре фирмы OFITE;

- водородный показатель (pH) замеряли на приборе ACORN;

- коэффициент восстановления проницаемости призабойной зоны пласта (β, %) определяли на установке FDS-350 на кернах терригенных коллекторов;

- активность раствора (А) измеряли с помощью электрогигрометра Sensing GE;

- процент сохранившегося шлама (Д, %) (диспергирующую способность) определяли с использованием ячеек старения и роллерной печи по следующей методике.

Исследуемый раствор помещается в металлическую ячейку старения буровых растворов. В ячейку также помещается взвешенный спрессованный образец бентонита ПБН (ml), имитирующий шлам. Ячейка с тестируемым раствором и глинистым шламом вращается в роллерной печи в течение 16 ч при 50°C. По истечению установленного времени раствор извлекается из ячейки и фильтруется через сетку с размером ячеек 1 мм. Остаток образца шлама извлекается, промывается струей воды со слабым напором и сушится в течение 16 ч при температуре 105°C. Оценка влияния тестируемого раствора на диспергирование глинистого шлама в среде бурового раствора производится по остаточной массе глины (m2) (выраженной в процентах) после эксперимента, не прошедшей через сетку:

Д=(m2∗100)/m1, %.

В таблице 2 приведены сведения о технологических параметрах исследованных растворов.

Таблица 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Прототип
ρ, г/см3 1,10 1,18 1,09 1,35 1,27 1,22 1,17 1,39 1,23 1,25 1,29 1,14 1,38 1,13 1,16 1,16 1,33 1,49 1,18
УВ, сек 40 55 45 54 42 43 53 62 52 60 54 51 65 45 55 48 68 150 30
ПФ, см3/30 мин при 0,7 МПа 10 3 2,4 2,2 2,6 2,9 1,6 2,7 1,9 2,8 1,7 3 2,5 2,5 1,5 2,7 2,9 2,4 2
СНС10/10, дПа 10/10 30/40 10/12 38/57 26/35 24/33 39/56 27/35 40/59 29/37 21/29 19/27 45/65 19/27 42/60 29/38 48/67 55/75 1,1/1,4
PV, мПа·с 13,5 17 14 21 16 18 22 24 20 27 18 16 25 14 21 16 27 45
YP, дПа 5 20 26 27 21 24 26 23 27 26 17 14 35 16 29 18 36 50
pH 8,2 8 8,4 8,1 8,3 8,3 8,5 8,6 8,4 8 8 8,5 8,2 8,1 8,3 8 8,1 8,3
β,% 90 92 95 95 94 93 95 96 94 96 94 95 94 94 93 94 92 91 87
А 0,9 0,85 0,94 0,84 0,38 0,74 0,89 0,36 0,68 0,88 0,64 0,89 0,4 0,8 0,9 0,32 0,43 0,3
Д,% 96 95 95 95 97 96 95 94 95 97 93 97 94 96 95 95 96 88
После термостатирования 16 ч при 95°C
PV, мПа·с 13 18 15 19 19 21 18 23 17 20 19 14 23 20 16 17 20 42
YP, дПа 1 10 24 16 12 14 17 19 19 17 15 12 32 16 21 10 33 49

Данные, приведенные в таблицах 1-2, показывают, что заявляемый раствор имеет низкие значения показателя фильтрации при перепаде давления 0,7 МПа, т.е. образует достаточно прочную полимерную корку. Заявляемый буровой раствор имеет широкий диапазон плотностей, что дает возможность использовать его при бурении скважин с различными пластовыми давлениями. Кроме того, он имеет высокие значения СНС по сравнению с прототипом, то есть он обеспечивает удержание твердой фазы во взвешенном состоянии и хорошую очистку ствола скважины от выбуренной породы. Коэффициент восстановления проницаемости призабойной зоны пласта для заявляемого раствора выше, чем для прототипа и находится на уровне с растворами на углеводородной основе.

1. Буровой раствор, содержащий углеводородную фазу и поверхностно-активные вещества, утяжелитель, минеральные соли, стабилизатор и воду, отличающийся тем, что в качестве углеводородной фазы и поверхностно-активных веществ содержит добавку МУЛЬТИОЛ, в качестве стабилизатора - МУЛЬТИСТАР и ксантановую камедь и дополнительно гидроксид натрия при следующем соотношении компонентов, мас.%:

Реагент МУЛЬТИОЛ 8,5-25
Стабилизатор МУЛЬТИСТАР 1,5-2,0
Ксантановая камедь 0,2-0,5
Карбонат кальция 5-20
Хлорид магния 4-15
Гидроксид натрия 1-2
Вода Остальное

2. Буровой раствор по п.1, отличающийся тем, что дополнительно содержит хлорид кальция в концентрации при общем содержании хлоридов не более 40 мас.%

3. Буровой раствор по п.1, отличающийся тем, что дополнительно содержит хлорид калия при общем содержании хлоридов не более 30 мас.%

4. Буровой раствор по п.1, отличающийся тем, что дополнительно содержит хлорид натрия при общем содержании хлоридов не более 45 мас.%

5. Буровой раствор по п.1, отличающийся тем, что дополнительно содержит хлорид кальция и калия при общем содержании хлоридов не более 55 мас.%

6. Буровой раствор по п.1, отличающийся тем, что дополнительно содержит хлорид кальция и натрия при общем содержании хлоридов не более 55 мас.%

7. Буровой раствор по п.1, отличающийся тем, что дополнительно содержит хлорид калия и натрия при общем содержании хлоридов не более 50 мас.%

8. Буровой раствор по п.1, отличающийся тем, что дополнительно содержит хлорид кальция, натрия и калия при общем содержании хлоридов не более 55 мас.%



 

Похожие патенты:

Изобретение относится к газовой промышленности и может быть использовано для крепления призабойной зоны пескопроявляющих газовых скважин, в том числе используемых для подземного хранения газа.

Группа изобретений относится к эластомерам и, конкретнее, к армированным эластомерам. Способ выполнения скважинного уплотнения в стволе скважины содержит создание базового полимера и армирующего активного наполнителя, включающий в себя матрицу дискретных частей первого материала, расположенную в базовом полимере.
Изобретение относится к области нефтедобычи, в частности к строительству и ремонту скважин, при цементировании обсадных колонн и проведении водоизоляционных работ при низких и нормальных скважинных температурах.
Изобретение относится к цементной композиции, способу цементирования в межтрубном пространстве между обсадной колонной скважины и буровой скважиной и к сухой цементной композиции.

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам герметизации эксплуатационной колонны скважины. Способ герметизации эксплуатационной колонны скважины включает спуск в эксплуатационную колонну насосно-компрессорных труб (НКТ) и установку открытого конца НКТ на глубине ниже интервала нарушения.

Изобретение относится к нефтегазодобывающей промышленности, может быть использовано при изоляции водопритоков в скважину. Способ изоляции водопритоков в скважину включает определение приемистости скважины при максимальном давлении, закачку в пласт гелеобразующего состава с последующим докреплением нефильтрующимся в пласт составом.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для ремонтно-изоляционных работ, увеличения нефтеотдачи пластов. Способ изоляции пластов цементно-силикатными растворами включает нагнетание в прискважинную зону пласта цементного раствора с ускорителем схватывания.
Изобретение относится к нефтяной промышленности, в частности к способу приготовления состава для получения кислоторастворимого тампонажного камня. Способ может быть использован для приготовления составов, применяемых преимущественно для закрепления водоизоляционных составов в горизонтальном стволе скважины, для временного блокирования пластов, установки опорного моста с целью зарезки бокового ствола скважины.
Изобретение относится к заканчиванию и ремонту нефтяных и газовых скважин и может быть использовано в условиях аномально высоких пластовых давлений и высоких температур для первичного и вторичного вскрытия продуктивных пластов, для глушения и выполнения различных видов работ, в том числе в многопластовых скважинах, имеющих разное пластовое давление и проницаемость пластов.

Изобретения могут быть использованы в области химии, а также в области обработки подземных формаций. Способ включает стадии обеспечения материала, содержащего бор, выбранного из группы, состоящей из улексита, пробертита, кернита и их смесей, введения материала, содержащего бор, в предварительно нагретую до температуры от 426,7 °С до 537,8 °С печь, а также его нагревание от примерно 5 мин до примерно 120 мин, удаления материала, содержащего бор, из печи и охлаждения его до комнатной температуры.
Изобретение относится к созданию расклинивающих агентов - проппантов, которые используются для удержания в открытом состоянии трещин в породах, образованных при закачке жидкости с проппантом в нефтяные, газовые и геотермальные скважины. Проппант, полученный из каолина Нижне-Увельского месторождения, представляющий собой спеченные обожженные керамические гранулы со средним размером 0,15-2,0 мм, с насыпной плотностью 1,35-1,47 г/см3 и удельным весом 2,37-2,49 г/см3, состава, мас.%: оксид алюминия 17,00-29,00, диоксид кремния 65,00-77,00, оксид кальция 0,20-0,39, оксид хрома 0,03-0,0, оксид железа 1,80-4,20, оксид калия 0,40-0,95, оксид натрия 0,20-0,38, оксид титана 1,20-2,00, оксид магния 0,50-1,00, оксид марганца 0,00-0,01, пятиокись фосфора 0,00-0,01. Способ применения указанного выше проппанта в качестве расклинивающего агента при интенсификации добычи нефти и газа методом гидравлического разрыва пласта путем закачивания в продуктивный пласт смеси, содержащей гранулы проппанта. Технический результат - повышение прочности. 2 н.п. ф-лы, 1 табл.
Изобретение относится к нефтегазодобывающей промышленности, а именно к технологии изготовления керамических проппантов, предназначенных для использования в качестве расклинивающих агентов при добыче нефти или газа методом гидравлического разрыва пласта. Способ изготовления высокопрочного магнийсиликатного проппанта, включающий помол исходной шихты, ее гранулирование и обжиг полученных гранул, где помол исходной шихты, содержащей 24-28 масс.% MgO, осуществляют до фракции 8 мкм и менее, а гранулирование производят на воде с добавлением натриевой или калиевой соли полиметиленнафталинсульфокислоты или поликарбоксиметиленсульфокислоты в количестве 0,02-0,07% от массы шихты в пересчете на твердое вещество. Изобретение развито в зависимых пунктах формулы. Технический результат - получение среднеплотного высокопрочного проппанта. 2 з.п. ф-лы, 2 пр., 2 табл.

Изобретение относится к нефтегазодобывающей промышленности и может быть применено для гидравлического разрыва пласта. Способ включает перфорацию в интервале пласта, спуск колонны труб с пакером, посадку пакера, закачку в подпакерную зону гелированной жидкости разрыва, заполнение колонны технологической жидкостью, определение общего объема гелированной жидкости разрыва, создание в подпакерной зоне давления гидроразрыва пласта и продавку в образовавшуюся трещину пласта гелированной жидкости разрыва с проппантом, выдержку в течение времени, необходимого для спада давления на 70%, распакеровку и извлечение пакера с колонной труб из скважины. После определения общего объема гелированной жидкости разрыва закачивают в скважину по колонне труб гелированную жидкость разрыва - линейный гель - до образования трещин разрыва в пласте, оставшийся объем гелированной жидкости разрыва после образования трещин разрыва в пласте разделяют на две части: сшитый гель и линейный гель, циклически производят поочередную закачку сначала линейного, а затем сшитого геля с добавлением проппанта в 3-5 циклов. Причем линейный гель закачивают равными порциями с расходом 4-6 м3/мин и концентрацией проппанта 400 кг/м3, а сшитый гель закачивают со ступенчатым увеличением объема закачки от 3 до 7 м3 с расходом 1-2 м3/мин и концентрацией проппанта 1200 кг/м3. При этом в последние порции линейного и сшитого гелей с проппантом добавляют стекловолокно в количестве 1,5% от веса проппанта в каждой из последних порций линейного и сшитого гелей. Технический результат заключается в повышении эффективности гидравлического разрыва пласта. 2 ил.

Изобретение относится к доставке зернистого материала на участок, расположенный под землей. Скважинный флюид является жидкостью-носителем на водной основе, содержащим первый и второй гидрофобные зернистые материалы - частицы, суспендированные в нем, где первые частицы имеют больший удельный вес, чем вторые, и флюид содержит газ для смачивания поверхности частиц и связывания их вместе в агломераты. Способ доставки зернистого материала под землю, включающий подачу указанного выше флюида так, что агломераты из частиц, удерживаемых газом, находятся ниже грунта. Способ гидравлического разрыва подземного газонефтеносного пласта включает доставку указанного выше флюида к трещине и подачу его в трещину так, что агломераты из частиц, удерживаемые газом, находятся в трещине. Изобретение развито в зависимых пунктах формулы. Технический результат - облегчение транспортирования и размещения зернистых материалов в трещине гидравлического разрыва или гравийной набивке. 3 н. и 12 з.п. ф-лы, 5 табл., 8 пр., 6 ил.
Изобретение относится к нефтедобывающей промышленности и может быть использовано для кислотной обработки призабойной зоны пласта, представленного карбонатными или терригенными коллекторами. Технический результат - разработка многоцелевого состава для кислотной обработки призабойной зоны пласта, обладающего высокой проникающей способностью в пласт за счет замедления скорости реакции кислоты с породой пласта, ограничения образования и диспергирования отложений смолянистых осадков при контакте кислотного состава с нефтью, а также обладающего низким межфазным натяжением на границе кислотный состав/нефть и совместимостью с пластовой водой и нефтью. Состав для кислотной обработки призабойной зоны пласта включает, масс.%: соляную кислоту 24,9-90,0, реагент ИТПС-806 А 5,0-7,5, воду остальное. Состав может содержать фтористоводородную кислоту в количестве 4,0-10,0 масс.%. 1 з.п. ф-лы, 3 табл., 7 пр.

Представлен способ отклонения закачиваемой рабочей жидкости, содержащей понизитель трения, при гидравлическом разрыве пласта. Способ гидравлического разрыва подземной формации включает закачивание промежуточной жидкости с вязкостью менее чем приблизительно 50 мПа·с при скорости сдвига 100 с-1 при внешних условиях. Далее закачивают суспензию расклинивающего агента с вязкостью менее чем приблизительно 50 мПа·с при скорости сдвига 100 с-1 при внешних условиях. Закачивают загущенную жидкость с вязкостью более чем приблизительно 50 мПа·с при скорости сдвига 100 с-1 при внешних условиях или загущенную жидкость, которая во время закачки обладает вязкостью менее чем приблизительно 20 мПа·с, после чего загустевает. Техническим результатом является повышение эффективности гидроразрыва. 3 пр., 3 ил.

Изобретение относится к нефте-, газодобычи с применением проппантов. Способ получения проппанта включает получение смеси олигоциклопентадиенов путем нагрева дициклопентадиена до температуры 150-220°С и выдержки при данной температуре в течение 15-360 мин, охлаждение смеси до 20-50°С, последовательное введение в полученную смесь олигоциклопентадиенов следующих компонентов: по крайней мере одного из полимерных стабилизаторов, выбранных из указанной группы, по крайней мере одного из радикальных инициаторов, выбранных из указанных соединений, или их смеси, и катализатора - соединения приведенной формулы, при этом компоненты полимерной матрицы находятся в следующих количествах, масс.%: полимерные стабилизаторы 0,1-3; радикальные инициаторы 0,1-4; катализатор 0,001-0,02; смесь олигоциклопентадиенов - остальное, полученную полимерную матрицу выдерживают при температуре 20-50°С в течение 1-40 минут, после чего вводят в виде ламинарного потока в предварительно нагретую не ниже температуры матрицы воду, содержащую ПАВ из указанной группы, где смесь воды с ПАВ имеет вязкость ниже вязкости полимерной матрицы, в процессе постоянного перемешивания воду нагревают до 50-100°С, продолжая перемешивать в течение 1-60 мин, образовавшиеся микросферы отделяют от воды, нагревают в среде инертного газа до температуры 150-340°С и выдерживают в указанной среде при данной температуре в течение 1-360 мин. Полимерный проппант получен указанным выше способом. Технический результат - повышение термопрочности. 2 н.п. ф-лы, 33 пр.

Изобретение относится к производству проппантов, используемых при добыче нефти и газа. Способ получения материала для проппанта включает получение смеси олигоциклопентадиенов с содержанием тримеров и тетрамеров 5-60 мас.% путем нагрева дициклопентадиена до температуры 150-220°С и выдержки при данной температуре в течение 15-360 мин, охлаждение смеси до 20-50°С, последовательное введение в полученную смесь олигоциклопентадиенов следующих компонентов: по крайней мере, один из полимерных стабилизаторов, выбранных из приведенной группы, по крайней мере, один из радикальных инициаторов, выбранных из приведенной группы, по крайней мере, один из метакрилатов, выбранных из приведенной группы, и катализатор - соединение приведенной общей формулы, при этом компоненты полимерной матрицы находятся в следующих количествах, мас.%: полимерный стабилизатор или смесь стабилизаторов 0,1-3, радикальный инициатор или смесь инициаторов 0,1-4, метакрилат или смесь метакрилатов 0,3-30, катализатор 0,001-0,02, смесь олигоциклопентадиенов - остальное, полученную полимерную матрицу нагревают до температуры 50-340°С и выдерживают при данной температуре в течение 1-360 мин, после чего охлаждают до комнатной температуры. Материал для проппанта получен указанным выше способом. Технический результат - повышение термопрочности. 2 н.п. ф-лы, 33 пр.
Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при цементировании обсадных колонн газовых, газоконденсатных или нефтяных скважин, осложненных наличием слабосвязанных, склонных к гидроразрыву пород. Технический результат - уменьшение плотности тампонажного раствора, улучшение прочностных и адгезионных характеристик. Портландцемент тампонажный облегченный содержит тампонажный портландцемент, модифицирующую добавку в виде водорастворимого полимера и облегчающий наполнитель. При этом водорастворимый полимер содержит анионный полиакриламид с молекулярной массой 18-20 млн Дальтон и степенью гидролиза 20-25%, сополимер акриловой кислоты с 2-акриламид-2-метилпропансульфокислотой, а в качестве облегчающего наполнителя использованы алюмосиликатные полые микросферы или вспученный перлит при следующем соотношении компонентов, мас.%: тампонажный портландцемент 70-85; алюмосиликатные полые микросферы 19,6-29,6 или вспученный перлит 14,6-24,6, анионный полиакриламид 0,1-0,2; сополимер акриловой кислоты с 2-акриламид-2-метилпропансульфокислотой 0,1-0,2. Изобретение развито в зависимых пунктах формулы изобретения. 1 табл., 2 з.п. ф-лы.

Изобретение относится к доставке зернистого материала на участок, расположенный под землей. Скважинный флюид включает жидкость-носитель на водной основе и гидрофобный зернистый материал, суспендированный в нем, где гидрофобный зернистый материал имеет объемный медианный размер частиц d50 не больше чем 200 микрон, определяемый как медианный диаметр сфер эквивалентного объема, при этом флюид дополнительно включает газ для смачивания поверхности частиц и связывания их вместе в агломераты. Скважинный флюид включает жидкость-носитель на водной основе и гидрофобный зернистый материал, суспендированный в нем, где гидрофобный зернистый материал имеет площадь поверхности, по меньшей мере, 30 м2 на литр (30000 м2/м3 или 0,03 м2/мл), определяемую как площадь поверхности ровных сфер эквивалентного объема, при этом флюид также включает газ, чтобы смачивать поверхность частиц и связывать их вместе в агломераты. Способ доставки зернистого материала под землю включает подачу под землю композиции флюида, включающего жидкость-носитель на водной основе, в которой суспендирован гидрофобный зернистый материал, имеющий объемный медианный размер частиц d50 не больше чем 200 микрон, определяемый как медианный диаметр сфер эквивалентного объема, при этом также включающей газ, смачивающий поверхность частиц и связывающий частицы вместе так, что агломераты зернистого материала, удерживаемые вместе газом, находятся ниже грунта. Технический результат - повышение эффективности доставки под землю. 3 н. и 12 з.п. ф-лы, 8 пр., 5 ил.
Наверх