Способ комплексной переработки мартит-гидрогематитовой руды

Изобретение может быть использовано при получении железооксидных пигментов. Способ комплексной переработки мартит-гидрогематитовой руды включает грохочение руды, магнитную сепарацию с получением магнитной и немагнитной фракций, измельчение, гидравлическую классификацию, сгущение и сушку. Мартитовую руду сначала подвергают грохочению с разделением на три класса крупности - крупный, промежуточный, мелкий. Крупный класс направляется на сенсорную сепарацию с получением отвальных хвостов и концентрата, который додрабливается и разделяется грохочением на промежуточный и мелкий классы. Промежуточный класс транспортируют на металлургическую переработку, мелкий класс отправляют на брикетирование. Гидрогематитовую руда также подвергают грохочению с разделением на три класса крупности - крупный, промежуточный, мелкий. Крупный класс направляют на сенсорную сепарацию с получением отвальных хвостов и концентрата, который додрабливают и разделяют грохочением на промежуточный и мелкий классы. Промежуточный класс транспортируют на металлургическую переработку. Часть мелкого класса направляют на брикетирование, другую часть направляют на магнитную сепарацию, магнитная фракция которой поступает на брикетирование. Немагнитную фракцию измельчают с перемешиванием мелющей средой и направляют на гидравлическую классификацию первой стадии. Пески классификации возвращаются в мельницу. Слив поступает на вторую стадию классификации, слив которой после сгущения и сушки используют как пигмент третьего сорта. Пески второй классификации подают на вторую стадию измельчения с перемешиванием мелющей средой. Измельченный во второй стадии продукт подвергается гидравлической классификации третьей стадии, пески которой сгущают, сушат и используют как пигмент второго сорта. После этого слив сгущают, сушат и используют как пигмент первого сорта. Изобретение позволяет получить одновременно несколько сортов железооксидного пигмента и готовое сырье для металлургической промышленности. 1 з.п. ф-лы, 1 ил., 1 табл.

 

Изобретение относится к способу комплексной переработки железосодержащих руд и может быть использовано для получения природных (не синтетических) железооксидных пигментов, которые могут использоваться в специальных антикоррозионных грунтовках, применяемых в том числе и для нужд кораблестроения, с одновременным получением сырья для металлургической промышленности в виде брикетов. Также способ может быть использован для производства редких и особо дорогих марок пигментов, включая и транспарентные, для нужд фармацевтической, косметической и пищевой промышленности.

Известен «Способ получения красного железоокисного пигмента» (патент RU №2303046, опубл. 20.07.2007). Способ получения красного железоокисного пигмента включает окисление водных растворов сульфата или суспензий гидроксида железа (II) кислородом воздуха при квазистационарных значениях температуры и pH реакционной среды, гидротермальную термообработку суспензии из оксигидроксидов железа (III) в периодическом или непрерывном режиме в автоклавах, отмывку пигмента от водорастворимых солей, сушку и размол пигмента. В процессе гидротермальной термообработки на суспензию FeOOH воздействуют наносекундными электромагнитными импульсами со следующими характеристиками: длительность импульса 0,5-5 нс, амплитуда импульсов 4-10 кВ, частота повторения импульсов 200-1000 Гц, процесс проводят при температуре 130-200°C.

Основные недостатки способа в сложности и высокой стоимости получения синтетического пигмента, экологической вредности процесса.

Известен способ «Получение железной слюдки микронного класса крупности» (патент RU №2354672, опубл. 10.05.2009). Изобретение относится к получению оксида железа (III) пластинчатой структуры, который может быть использован в качестве пигмента. Природный механически измельченный оксид железа (III), пластинчатая структура которого составляет по меньшей мере 50 вес.%, предпочтительно 75 вес.%, содержит частицы размером менее 10 мкм в количестве, по меньшей мере, 50 вес.%, предпочтительно 70 вес.%, особо предпочтительно 90 вес.%. Соотношение толщины к максимальному диаметру пластин оксида железа (III) составляет 1:5, предпочтительно, 1:10. Для получения такого оксида железа (III) его механически измельчают в ударно-отражательной мельнице или в струйной мельнице. Полученный в результате механического измельчения оксид железа (III) разделяют по крупности частиц, например, посредством воздушного сепаратора.

Основные недостатки способа в сложности получения высококачественного пигмента по предлагаемой «сухой» технологии, низком выходе готового пигмента,

Известен способ получения природного красного железоокисного пигмента из руды (Кусков В.Б., Кускова Я.В. «Разработка технологии получения железооксидных пигментов». Металлург, №3, 2010, стр.70-72), принятый за прототип. Дробленую железную руду подвергают магнитной сепарации с разделением на магнитную и немагнитную фракции, немагнитную фракцию измельчают и классифицируют в 4 стадии, включающих основную классификацию, первое перечистное, первое контрольное и второе контрольное гидроциклирование с отделением песков основной классификации. Затем слив подвергают окислительной деструкции, сгущают и сушат с одновременной дезинтеграцией и воздушной классификацией пигмента.

Основными недостатками способа является невозможность получения нескольких сортов, в частности высококачественных, пигмента, сравнительно невысокий выход готового пигмента, сравнительно высокая стоимость переработки руды. Кроме того, магнитная фракция и пески основной классификации непригодны для непосредственной металлургической переработки.

Техническим результатом изобретения является повышение качества готового пигмента, получение сразу нескольких сортов пигмента, получение готового сырья для металлургической промышленности, снижение стоимости переработки.

Технический результат достигается тем, что способ комплексной переработки мартит-гидрогематитовой руды включает грохочение руды, магнитную сепарацию с получением магнитной и немагнитной фракций, измельчение, гидравлическую классификацию, сгущение и сушку, при этом мартитовую руду сначала подвергают грохочению с разделением на три класса крупности - крупный, промежуточный, мелкий, крупный класс направляют на сенсорную сепарацию с получением отвальных хвостов и концентрата, который додрабливают и разделяют грохочением на промежуточный и мелкий классы, промежуточный класс транспортируют на металлургическую переработку, мелкий класс отправляют на брикетирование, гидрогематитовую руду также подвергают грохочению с разделением на три класса крупности - крупный, промежуточный, мелкий, крупный класс направляют на сенсорную сепарацию с получением отвальных хвостов и концентрата, который додрабливают и разделяют грохочением на промежуточный и мелкий классы, промежуточный класс транспортируют на металлургическую переработку, часть мелкого класса направляют на брикетирование, другую часть направляют на магнитную сепарацию, магнитная фракция которой поступает на брикетирование, немагнитную фракцию измельчают с перемешиванием мелющей средой и направляют на гидравлическую классификацию первой стадии, пески классификации возвращаются в мельницу, слив поступает на вторую стадию классификации, слив которой после сгущения и сушки используют как пигмент третьего сорта, пески второй классификации подают на вторую стадию измельчения с перемешиванием мелющей средой, измельченный во второй стадии продукт подвергается гидравлической классификации третьей стадии, пески которой сгущают, сушат и используют как пигмент второго сорта, слив сгущают, сушат и используют как пигмент первого сорта.

Мартитовую руду можно делить на классы крупностью крупнее 80 мм, 80-5 мм и мельче 5 мм, гидрогематитовую руду на классы крупнее 150 мм, 150-5 мм и мельче 5 мм.

Грохочение позволяет сразу выделить промежуточный класс крупности, пригодный для непосредственной металлургической переработки без предварительно дробления руды, что снижает затраты на переработку.

Сенсорная сепарация позволяет выделить отвальные хвосты, что также снижает затраты на переработку, т.к. на дальнейшую переработку поступает уже не весь крупный класс, а только его часть. Кроме того, качество продукта, поступающего на дальнейшую переработку (концентрата), доводится до кондиционного.

Додрабливание концентрата из крупного класса с последующим его грохочением, позволяет выделать промежуточный класс крупности, пригодный для металлургической переработки, и мелкий класс для брикетирования.

Брикетирование мелкого класса крупности мартитовой руды совместно с мелким классом гидрогематитовой руды и магнитной фракцией цикла пигментного производства позволяет получить высококачественные брикеты, пригодные для металлургической переработки.

Измельчение в две стадии в мельницах с перемешивающейся мелющей средой (мельницах тонкого и сверхтонкого измельчения) и стадиальная классификация позволяет получить весьма мелкий пигмент нескольких сортов.

Магнитная сепарация позволяет выделить в магнитную фракцию большую часть «непигментных» минералов, которые обладают большей удельной магнитной восприимчивостью, чем «пигментные» минералы.

Разделение мартитовой руды на классы крупностью крупнее 80 мм, 80-5 мм и мельче 5 мм, объясняется тем, что максимальная крупность мартитовой руды, поступающей на доменную переработку, должна быть не более 80 мм. Класса мельче 5 мм должно быть в доменной шихте как можно меньше, т.к. этот класс существенно ухудшает показатели доменного процесса.

Разделение гидрогематитовой руды на классы крупностью крупнее 150 мм, 150 -5 мм и мельче 5 мм объясняется тем, что максимальная крупность гидрогематитовой руды, поступающей на доменную переработку, должна быть не более 150 мм. Класса мельче 5 мм должно быть в доменной шихте как можно меньше, т.к. этот класс существенно ухудшает показатели доменного процесса.

Способ осуществляют следующим образом - фиг.1. Исходную мартитовую руду в ходе грохочения I ст. делят на три класса крупности: крупный, промежуточный, мелкий.

Крупный класс направляется на сенсорную сепарацию, в ходе которой выделяют отвальные хвосты и концентрат. Концентрат додрабливают до крупности промежуточного класса и подвергают грохочению II ст. для выделения мелкого класса, который направляют на брикетирование.

Промежуточный класс, полученный в ходе грохочения I ст. (вместе с промежуточным классом, полученным в ходе грохочения II ст.), направляется на непосредственную металлургическую переработку.

Мелкий класс, полученный в ходе грохочения I ст. (вместе с мелким классом, полученным в ходе грохочения II ст.), направляется на брикетирование.

Исходную гидрогематитовую руду в ходе грохочения I ст. также делят на три класса крупности: крупный, промежуточный, мелкий.

Крупный класс направляется на сенсорную сепарацию, в ходе которой выделяют отвальные хвосты и концентрат. Концентрат додрабливают до крупности промежуточного класса и подвергают грохочению II ст. для выделения мелкого класса, который направляют на брикетирование.

Промежуточный класс, полученный в ходе грохочения I ст. (вместе с промежуточным классом, полученным в ходе грохочения II ст.), направляется на непосредственную металлургическую переработку.

Часть мелкого класса, полученного в ходе грохочения I ст.(вместе с мелким классом, полученным в ходе грохочения II ст.), направляют на брикетирование. Другая часть поступает в цикл получения пигмента.

Цикл получения пигмента включает магнитную сепарацию, в ходе которой выделяют магнитную фракцию, поступающую на брикетирование (вместе с мелкими фракциями, полученными в результате грохочения).

Немагнитная фракция поступает на измельчение I стадии, которое работает в замкнутом цикле с классификацией. Пески классификации возвращаются в измельчение I стадии, слив I подают на классификацию II стадии. В ходе классификации II стадии получают слив II, который сгущают, сушат, при этом получается пигмент 3 сорта.

Пески классификации II стадии направляют на измельчение II стадии. Измельченный продукт подвергают классификации III стадии, при этом получают пески III, которые сгущают, сушат, при этом получается пигмент 2 сорта. Также получают слив IV, который сгущают, сушат, при этом получается пигмент 1 сорта.

Количество стадий измельчения и классификации может быть различным в зависимости от свойств исходной руды и требований потребителя готовой продукции. Также различным может быть количество сортов пигмента. В зависимости от свойств исходного сырья I стадия классификации может быть открытой. Тогда пески этой классификации направляют на брикетирование вмести с классами - 5 мм

Пример. Используют мартитовую и гидрогематитовую железную руду Яковлевского месторождения. Получена опытная партия пигмента и брикетов из железной руды.

Исходную мартитовую руду, крупностью 200-0 мм на двухситном самобалансном грохоте (I стадия грохочения) делят на три класса крупности: - 200+80 мм, - 80+5 мм и - 5 мм.

Класс - 200+80 мм разделяют на сенсорном сепараторе фирмы TOMRA Sorting Solutions на отвальные хвосты и концентрат. Концентрат дробят на щековой дробилке до 80 мм. Дробленый продукт на самобалансном грохоте (II стадия грохочения) рассеивают на классы - 80+5 мм и - 5 мм. Класс - 80+5 мм объединяют с классом - 80+5 мм, полученным на первой стадии грохочения, и отправляют на доменную переработку.

Класс - 5 мм объединяют с классом - 5 мм, полученным на I стадии грохочения, и отправляют на брикетирование.

Исходную гидрогематитовую руду, крупностью 250 - 0 мм на двухситном самобалансном грохоте (I стадия грохочения) делят на три класса крупности: - 250+150 мм, - 150+5 мм и - 5 мм.

Класс - 250+150 мм разделяют на сенсорном сепараторе фирмы TOMRA Sorting Solutions на отвальные хвосты и концентрат. Концентрат дробят на щековой дробилке до 150 мм. Дробленый продукт на самобалансном грохоте (II стадия грохочения) рассеивают на классы - 150+5 мм и - 5 мм. Класс - 150+5 мм объединяют с классом - 150+5 мм, полученным на первой стадии грохочения и отправляют на доменную переработку.

Класс - 5 мм объединяют с классом - 5 мм, полученным на I стадии грохочения, объединяют с классом - 5 мм и часть его отправляют на производство пигмента. Другую часть объединяют с классом - 5 мм, полученным из мартитовой руды, и отправляют на брикетирование.

Для производства пигмента класс - 5 мм из гидрогематитовой руды подвергают магнитной сепарации. Магнитная фракция, содержащая в основном «непигментные» минералы, объединяется с классами - 5 мм, направляемыми на брикетирование.

Немагнитная фракция поступает на измельчение I стадии на мельнице VERTIMILL фирмы Metso. Измельченный продукт классифицируется в гидроциклоне, пески возвращаются в мельницу. Слив I поступает на II стадию классификации в гидроциклоне. Слив II сгущается, сушится и отгружается потребителю как пигмент 3 сорта. Пески II стадии классификации измельчают в мельнице SMD фирмы Metso и направляют на классификацию III стадии также в гидроциклоне.

Пески III из классификации III стадии сгущаются, сушатся и отгружаются как пигмент 2 сорта. Слив также сгущается, сушится и отгружается как пигмент 1 сорта.

Технологические показатели по полученному пигменту приведены в табл.1

Брикетирование классов - 5 мм с добавкой магнитной фракции производят в валковом прессе. Предварительно материал смешивают со связующим веществом. Брикеты изготавливались размером 26×20×12 мм.

Полученные брикеты оказались пригодными для металлургической переработки в качестве компонента доменной шихты.

Таким образом, способ расширяет свои возможности и позволяет повысить качество готового пигмента, получить сразу нескольких сортов пигмента, получить готовое сырья для металлургической промышленности, снизить стоимость переработки.

№ пр-та Наименование продукта Выход, % Крупность, мкм Укрывистость, г/м2
8 Класс - 5 мм после грохочения II 2,6
9 Класс - 80+5 мм после грохочения II 5,2
7 Класс - 80 после дробления 7,8
6 Концентрат сенсорной сепарации 7,8
5 Хвосты сенсорной сепарации 6,9
2 Класс+80 после грохочения I 14,7
3 Класс - 80+5 после грохочения I 18,3
10 Классы -80+5 после грохочения I и II 23,5
4 Класс - 5 после грохочения I 29,4
11 Классы - 5 мм после грохочения I и II 32,0
1 Всего: исходная мартитовая руда 62,4
33 Пески III (Пигмент 2 сорт) 2,5 15 9
34 Слив IV (Пигмент 1 сорт) 2,2 7 6
32 Продукт измельчения II 4,7
31 Слив II (Пигмент 3 сорт) 2,4 24 15
30 Пески II 4,7
29 Слив I 7,1
28 Пески I 7,2
27 Продукт измельчения I 14,3
26 Питание измельчения I 14,3
24 Немагнитная фракция 7,1
25 Магнитная фракция 2,4
23 Питание магнитной сепарации 9,5
22 Гидрогематитовая руда на брикетирование 5,7
19 Класс - 5 мм после грохочения II 1,4
20 Класс - 150+5 мм после грохочения II 3,7
21 Классы -150+5 после грохочения I и II 19,3
18 Дробленый продукт 5,1
17 Концентрат сенсорной сепарации 5,1
16 Хвосты сенсорной сепарации 3,1
13 Класс+150 после грохочения I 8,2
14 Класс - 150+5 мм после грохочения I 15,6
15 Класс - 5 мм после грохочения I 13,8
12 Всего: исходная гидрогематитовая руда 37,6
Всего: руда 100,0

1. Способ комплексной переработки мартит-гидрогематитовой руды, включающий грохочение руды, магнитную сепарацию с получением магнитной и немагнитной фракций, измельчение, гидравлическую классификацию, сгущение и сушку, отличающийся тем, что мартитовую руду сначала подвергают грохочению с разделением на три класса крупности - крупный, промежуточный, мелкий, крупный класс направляют на сенсорную сепарацию с получением отвальных хвостов и концентрата, который додрабливают и разделяют грохочением на промежуточный и мелкий классы, промежуточный класс транспортируют на металлургическую переработку, мелкий класс отправляют на брикетирование, гидрогематитовую руду также подвергают грохочению с разделением на три класса крупности - крупный, промежуточный, мелкий, крупный класс направляют на сенсорную сепарацию с получением отвальных хвостов и концентрата, который додрабливают и разделяют грохочением на промежуточный и мелкий классы, промежуточный класс транспортируют на металлургическую переработку, часть мелкого класса направляют на брикетирование, другую часть направляют на магнитную сепарацию, магнитная фракция которой поступает на брикетирование, немагнитную фракцию измельчают с перемешиванием мелющей средой и направляют на гидравлическую классификацию первой стадии, пески классификации возвращаются в мельницу, слив поступает на вторую стадию классификации, слив которой после сгущения и сушки используют как пигмент третьего сорта, пески второй классификации подают на вторую стадию измельчения с перемешиванием мелющей средой, измельченный во второй стадии продукт подвергается гидравлической классификации третьей стадии, пески которой сгущают, сушат и используют как пигмент второго сорта, слив сгущают, сушат и используют как пигмент первого сорта.

2. Способ по п.1, отличающийся тем, что мартитовую руду делят на классы крупностью крупнее 80 мм, 80-5 мм и мельче 5 мм, гидрогематитовую руду делят на классы крупнее 150 мм, 150-5 мм и мельче 5 мм.



 

Похожие патенты:
Изобретение относится к технологии подготовки и производства металлургических и угольных брикетов. Связующее для производства брикетов содержит органический полимер в виде полимерного натриево- и полиалкиленоксидного производного полиметилен-нафталинсульфокислот и добавку производных гликозидов.

Изобретение относится к области черной металлургии, а именно к производству железорудных окатышей. Способ включает укладку слоя влажных окатышей на транспортерную ленту корытообразного сечения, профилирование слоя окатышей по форме сечения транспортерной ленты, опирающейся боковыми поверхностями на наклонные роликоопоры и центральной частью, опирающейся на горизонтальные роликоопоры и расположенной в теплоизоляционном горне с осуществлением частичной сушки нагретым воздухом, подаваемым вентилятором через дутьевой короб.

Изобретение относится к области черной металлургии и может быть использовано при производстве металлошихты для выплавки стали в дуговых электропечах. Синтетический композиционный шихтовый материал содержит железоуглеродистый сплав, углеродосодержащее вещество и железосодержащий окисленный компонент, включающий оксид железа (Fe2O3) и монооксид железа (FeO), при следующем соотношении компонентов, мас.%: монооксид железа 5-30, оксид железа 0-10, углеродосодержащее вещество 0,1-5, железоуглеродистый сплав - остальное.

Изобретение относится к металлургическому, литейному производству, в частности к изготовлению чугунов, работающих в условиях абразивного износа. Способ включает приготовление смеси исходного материала с последующим формованием.

Изобретение относится к способу получения агломератов из мелкозернистых носителей железа и по меньшей мере одного связующего в качестве сырья для металлургического процесса.
Изобретение относится к черной металлургии, в частности к окускованию железорудного сырья. Шламовый брикет экструзионный, полученный методом жесткой вакуумной экструзии, содержащий минеральное связующее, железо- и/или железоуглеродсодержащие отходы, включая шламы, и, при необходимости, железорудный концентрат и/или железную руду, флюсующие добавки и углеродсодержащие материалы, применяют в качестве компонента доменной шихты.
Изобретение относится к черной металлургии, в частности к способам окускования железорудного сырья, и может быть использовано при подготовке шихты для доменной плавки.
Изобретение относится к черной металлургии, в частности к способам окускования железорудного сырья. Брикеты экструзионные для выплавки металла получают методом жесткой вакуумной экструзии из шихтовой смеси, содержащей железорудный концентрат и/или руду, углеродсодержащие материалы, минеральное связующее и, при необходимости, железо- и/или железоуглеродсодержащие отходы и флюсующие добавки.

Изобретение относится к области черной металлургии, а именно к производству железорудных окатышей. Концентрат и связующее смешивают с получением влажной шихты, формируют гарнисаж на днище окомкователя.
Изобретение относится к черной металлургии, в частности к способам окускования железорудного сырья, и может быть использовано при подготовке шихтовых материалов для выплавки металла в электропечах, включая рудотермические печи, индукционные печи и дуговые электросталеплавильные печи.
Изобретение относится к области защиты металлов от коррозии лакокрасочными покрытиями. Противокоррозионный пигмент получают на основе отхода электропечей литейного производства - аспирационной пыли, содержащей, мас.%: Fe2O3 63,9-70,0, FeO 7,0-11,32, SiO2 8,9-16, Al2O3 1,45-3,12.

Изобретение относится к получению биосовместимых магнитных наночастиц и может быть использовано для терапевтических целей, в частности для борьбы с раком. Способ получения наночастиц, включающих оксид железа и кремнийсодержащую оболочку и имеющих значение удельного коэффициента поглощения (SAR) 10-40 Вт на г Fe при напряженности поля 4 кА/м и частоте переменного магнитного поля 100 кГц, содержит следующие стадии: А1) приготовление композиции по меньшей мере одного железосодержащего соединения в по меньшей мере одном органическом растворителе; В1) нагрев композиции до температуры в диапазоне от 50°C до температуры на 50°C ниже температуры реакции железосодержащего соединения согласно стадии С1 в течение минимального периода 10 минут; С1) нагрев композиции до температуры между 200°C и 400°C; D1) очистку полученных частиц; Е1) суспендирование очищенных наночастиц в воде или водном растворе кислоты; F1) добавление поверхностно-активного соединения в водный раствор, полученный согласно стадии E1); G1) обработку водного раствора согласно стадии F1) ультразвуком; H1) очистку водной дисперсии частиц, полученных согласно стадии G1); I1) получение дисперсии частиц согласно стадии H1) в смеси растворителя из воды и растворителя, смешивающегося с водой; J1) добавление алкоксисилана в дисперсию частиц в смеси растворителя согласно стадии I1); и К1) очистку частиц.

Изобретение относится к способу получения природных (несинтетических) железоокисных пигментов, которые могут использоваться в специальных антикоррозионных грунтовках, применяемых в том числе и для нужд кораблестроения с одновременным получением сырья для металлургической промышленности в виде брикетов.

Изобретение относится к области получения неорганических, в частности железооксидных, пигментов, применяемых для производства красок, которые могут найти применение в промышленности строительных материалов (для получения цветных бетонов, тротуарной плитки, грунтовок, эмалей, красок), а также к области утилизации отходов станций водоподготовки - шламов, выделенных из железистых подземных вод при их очистке для производственных и хозяйственно-бытовых нужд населения.

Изобретение относится к получению антикоррозионных пигментов, которые могут быть использованы для приготовления консервационных смазок. .

Изобретение относится к технологии получения неорганических пигментов из отходов производства и может быть использовано в различных отраслях промышленности, в частности при производстве лакокрасочных материалов.
Изобретение относится к получению высокостойких неорганических пигментов, которые могут быть использованы для изготовления лакокрасочных материалов. .
Изобретение относится к способу получения природных (не синтетических) железоокисных пигментов, которые могут использоваться в специальных антикоррозионных грунтовках, применяемых в том числе и для нужд кораблестроения.

Изобретение относится к области неорганической химии, в частности термосолянокислотной обработки железомагнезиальных серпентинизированных ультраосновных пород для получения двуокиси кремния, хлорида магния, пигмента, а также тонкодисперсного кремнезема, которые могут использоваться в синтезе нанокомпозитных материалов, особых и оптических стекол, в качестве наполнителя в резине и пластмассах, силикагельных сорбентов, носителей катализаторов, формовочного вещества в металлургии, составной части в лакокрасках, пластмассах, линолеуме, эмалях, в высокотемпературных огнестойких красках, в производстве тонкокерамических и огнеупорных веществ, в качестве исходного вещества для кремния, магния и его оксида и т.д.
Изобретение относится к лакокрасочной промышленности, а именно к способу получения пигментов. .

Изобретение относится к электротехнической промышленности и может быть использовано при производстве материала положительного электрода источников тока на основе лития, для питания электронных устройств различной мощности, в частности портативных приборов, транспортных средств и т.д.
Наверх