Заливочный компаунд

Изобретение относится к электроизоляционным заливочным компаундам, в частности для создания монолитного основания радиотехнических схем. Заливочный компаунд включает эпоксидную диановую смолу ЭД-20 в количестве 100 масс. ч., отвердитель, пластификатор - трихлорэтилфосфат (ТХЭФ) и наполнитель - измельченный базальт с размером частиц 125-315 мкм, а в качестве отвердителя содержит полиэтиленполиамин ПЭПА при следующем соотношении компонентов, масс., ч.: эпоксидная диановая смола ЭД-20 - 100; полиэтиленполиамин ПЭПА - 10-15; трихлорэтилфосфат ТХЭФ - 20-30; измельченный базальт - 40-60. Техническим результатом является уменьшение количества ступеней отверждения компаунда. 1 табл.

 

Изобретение относится к электроизоляционным заливочным компаундам, которые могут быть использованы, в частности, в качестве материала для монолитного основания радиотехнических схем.

Известен эпоксидный заливочный компаунд на основе эпоксидной диановой смолы, полиэтиленполиамина или полиоксипропилендиамина, талька молотого, слюды молотой или гидроокиси алюминия, пигмента, диметилтриброманилина [1].

Однако этот компаунд обладает высоким водопоглощением (1,3%), низким пределом прочности на растяжение при -60°C и низким кислородным индексом. Для получения покрытия из данного заливочного компаунда конденсаторов их устанавливают в формы (резиновые или пластмассовые) и заливают приготовленным компаундом при комнатной температуре, а затем отверждают по следующему режиму: выдержка при комнатной температуре не менее 20 ч, затем термоотверждение при 100°C 8 ч.

Известен также электроизоляционный заливочный компаунд, включающий эпоксидную диановую смолу, отвердитель аминного типа, активный разбавитель, отличающийся тем, что содержит два активных разбавителя: триглицидиловый эфир полиоксипропилентриола и моноглицидиловый эфир н-бутанола, в качестве отвердителя аминного типа - смесь алифатического амина и низкомолекулярной полиамидной смолы [2].

Компаунд не обладает достаточной эластичностью.

Данные компаунды предназначены для электроизоляции электрических разъемов, датчиков, элементов электрорадиоаппаратуры, микросхем в изделиях, испытывающих высокие вибрационные и ударные нагрузки.

Близким по составу к предлагаемому заливочному компаунду является компаунд электроизоляционного назначения на основе эпоксидной диановой смолы ЭД-20, полиамидного отвердителя ПО-300, модификатора дибутилфенилфосфата следующего состава, масс.ч.[3]:

эпоксидная диановая смола ЭД-20 - 100

полиамидный отвердитель ПО-300 - 30

модификатор дибутилфенилфосфат - 30.

Компаунд готовится перед употреблением. В эпоксидную смолу вводится модификатор - дибутилфенилфосфат, система гомогенизируется перемешиванием и вводится отвердитель при стехиометрическом соотношении смола-отвердитель.

Процесс отверждения протекает при следующем режиме:

«холодное отверждение» (20±2°C) - 24 ч,

доотверждение при 140°C - 5 ч и при 160°C - 1,5 ч.

Такой режим обеспечивает степень сшивания до 94%.

Недостатком этого компаунда является низкий кислородный индекс и ударная вязкость, а также высокие потери массы при поджигании на воздухе.

Задачей изобретения является повышение ударной вязкости, кислородного индекса и снижение потерь массы при поджигании компаунда на воздухе.

Поставленная задача достигается тем, что заливочный компаунд, включающий эпоксидную диановую смолу ЭД-20 в количестве 100 масс.ч. и отвердитель, дополнительно содержит пластификатор - трихлорэтилфосфат (ТХЭФ) и наполнитель - измельченный базальт с размером частиц 125-315 мкм, в качестве отвердителя содержит полиэтиленполиамин ПЭПА при следующем соотношении компонентов, масс. ч.:

эпоксидная диановая смола ЭД-20 - 100

полиэтиленполиамин ПЭПА - 10-15

трихлорэтилфосфат ТХЭФ - 20-30

измельченный базальт - 40-60.

Новым в данном компаунде является использование в качестве пластификатора - трихлорэтилфосфат (ТХЭФ), а в качестве наполнителя измельченной горной породы - базальта с размером частиц 125-315 мкм.

Предлагаемый компаунд готовится перед употреблением. В эпоксидную смолу вводится модификатор - трихлорэтилфосфат и наполнитель - базальт, система гомогенизируется перемешиванием и вводится отвердитель при стехиометрическом соотношении смола-отвердитель.

Процесс отверждения протекает при следующем режиме:

«холодное отверждение» (20±2°C) - 24 ч,

доотверждение при 90°C - 0,25 ч.

Такой режим обеспечивает степень сшивания до 94%.

Изобретение может быть проиллюстрировано следующими примерами.

Пример 1. Для получения компаунда готовят смесь при следующем соотношении компонентов, масс. ч.:

эпоксидная диановая смола ЭД-20 - 100

полиэтиленполиамин ПЭПА - 10

трихлорэтилфосфат ТХЭФ - 20

базальт с размером частиц 140 мкм - 40.

Пример 2. Для получения компаунда готовят смесь при следующем соотношении компонентов, масс. ч.:

эпоксидная диановая смола ЭД-20 - 100

полиэтиленполиамин ПЭПА - 15

трихлорэтилфосфат ТХЭФ - 30

базальт с размером частиц 140 мкм - 50.

Пример 3. Для получения компаунда готовят смесь при следующем соотношении компонентов, масс. ч.:

эпоксидная диановая смола ЭД-20 - 100

полиэтиленполиамин ПЭПА - 15

трихлорэтилфосфат ТХЭФ - 30

базальт с размером частиц 140 мкм - 60.

Пример 4. Для получения компаунда готовят смесь при следующем соотношении компонентов, масс. ч.:

эпоксидная диановая смола ЭД-20 - 100

полиэтиленполиамин ПЭПА - 15

трихлорэтилфосфат ТХЭФ - 30

базальт с размером частиц 125 мкм - 50.

Пример 5. Для получения компаунда готовят смесь при следующем соотношении компонентов, масс. ч.:

эпоксидная диановая смола ЭД-20 - 100

полиэтиленполиамин ПЭПА - 15

трихлорэтилфосфат ТХЭФ - 30

базальт с размером частиц 315 мкм - 50.

Количество отвердителя менее 10 масс.ч. приведет к недостаточной степени отверждения композиции, а более 15 масс.ч. приведет к избыточному выделению отвердителя. Все компаунды, содержащие от 40 до 60 масс.ч. базальта с различным размером частиц, превосходят по свойствам прототип. Наиболее высокие физико-химические и механические характеристики наблюдаются при введении 50 масс.ч. базальта с размером частиц 140 мкм. Введение базальта в количестве менее 30 масс.ч. не приводит к достижению требуемых свойств: материал имеет малую ударную вязкость, низкий кислородный индекс, высокие потери массы при поджигании на воздухе. Повышение концентрации базальта более 50 масс.ч. приводит к уменьшению физико-механических свойств. При введении базальта с размерами частиц 125-315 мкм практически все физико-механические свойства превосходят свойства прототипа. Наиболее высокие показатели достигаются при использовании в компаунде базальта с размером частиц 140 мкм.

В таблице 1 представлены основные свойства предлагаемого заливочного компаунда и прототипа.

Техническим результатом предлагаемого изобретения является уменьшение количества ступеней отверждения компаунда с 3 до 2 и температур отверждения со 140-160°C до 90°C, что связано с введением в композицию наполнителя - измельченного базальта и пластификатора - трихлорэтилфосфата, а также снижение горючести и потерь массы при поджигании на воздухе, повышение ударной вязкости по сравнению с прототипом.

Источники информации

1. Пат. 2039785 РФ. Заливочный компаунд / Т.М.Сергеева, Т.Л.Скаченко, Л.Н.Шиханова и др. // www1.fips.ru.

2. Пат. 2343577 РФ. Электроизоляционный заливочный компаунд / С.Н.Гладких, Е.Н.Башарина, Л.И.Наумова и др. // wwwl.fips.ru.

3. Пат. 2131895 РФ. Модифицированный эпоксидный компаунд электроизоляционного назначения / С.Е.Артеменко, Л.Г.Панова, Е.В.Мальцева и др. // wwwl.fips.ru.

Заливочный компаунд, включающий эпоксидную диановую смолу ЭД-20 в количестве 100 масс.ч. и отвердитель, отличающийся тем, что дополнительно содержит пластификатор - трихлорэтилфосфат (ТХЭФ) и наполнитель - измельченный базальт с размером частиц 125-315 мкм, а в качестве отвердителя содержит полиэтиленполиамин ПЭПА при следующем соотношении компонентов, масс. ч.:
эпоксидная диановая смола ЭД-20 - 100
полиэтиленполиамин ПЭПА - 10-15
трихлорэтилфосфат ТХЭФ - 20-30
измельченный базальт - 40-60.



 

Похожие патенты:

Изобретение относится к изоляционному материалу, устройству изолятора, способу изготовления изоляционного материала и к альвеоле для внедрения в изоляционный материал.
Изобретение относится к ленте с нелинейными электрическими свойствами для управления полем, содержащей микроваристорные частицы из ZnO. .

Изобретение относится к кабельной промышленности, а именно к разработке негорючего состава, предназначенного для огнезащиты электрических кабелей, а также защиты кабелей от коррозии и механических повреждений.

Изобретение относится к области электротехники, в частности к способу изготовления пропитанных слюдосодержащих лент, при котором слюдинитовую бумагу склеивают с подложкой из стеклоткани с последующей пропиткой полотна заготовки пропитывающим составом в виде полиэфиримидного компаунда с вязкостью 100-200 с по В3-4, при помощи лакирующего вала со стороны слюдинитовой бумаги полотна заготовки.

Изобретение относится к электрическому нагревательному кабелю. .
Изобретение относится к области электронной техники и может быть использовано в производстве газоразрядных индикаторных панелей (ГИП). .

Изобретение относится к горной промышленности и может быть использовано при производстве электрических разделителей, используемых для передачи информации о направлении движения бура при бурении скважины.
Изобретение относится к изоляционным покрытиям, наносимым на металлическую проволоку, и может быть использовано для покрытия проволок, используемых для изготовления сетчатых конструкций, например габионов. Покрытие содержит адгезионный подслой из термопластичного клея и функциональный слой из наноструктурированного композиционного материала на основе полиэтилена. При этом композиционный материал функционального слоя имеет матрицу из полиэтилена и дисперсно-распределенные в матрице частицы монтмориллонита, в количестве 0,1-2 мас.%. Технический результат - повышение физико-механических свойств покрытия. 11 з.п. ф-лы, 2 пр.

Изобретение относится к термостойкому проводу или кабелю с высокими рабочими характеристиками, предназначенному для использования в требующихся или экстремальных условиях, например при бурении скважин или разработке месторождений, в промышленных, военных аэрокосмических, морских областях, а также автомобильном, железнодорожном и общественном транспорте. Такие кабели могут подвергаться воздействию экстремальных температур, разъедающих веществ или атмосфер или огня. Провод или кабель содержит жилу и полимерную оболочку, состоящую из внутренного и внешнего слоев. Один слой представляет собой ленту, выполненную из полиэфирэфиркетона (PEEK), и имеет толщину 5-150 мкм. Второй слой является огнестойким и выполнен из силоксанового полимера или полимера на основе диоксида кремния в качестве полимерной матрицы. Лента из полиэфирэфиркетона может быть скомбинирована со слоем слюды, либо со слоем, представляющим собой полимерную ленту с частицами слюды. Изобретение позволяет повысть огнестойкость оболочки, ее гибкость и сопротивление механическим напряжениям, получить провод или кабель с уменьшенной массой и уменьшенным диаметром. 11 з.п. ф-лы, 5 ил.

Представлена композиция, содержащая полимерный материал, материал наполнителя, диспергированный в полимерном материале, при этом материал наполнителя содержит неорганические частицы и дискретно распределенный проводящий материал, причем, по меньшей мере, часть проводящего материала находится в устойчивом электрическом контакте с неорганическими частицами, и проводящий материал, диспергированный в полимерном материале, при этом композиция имеет значение относительной диэлектрической проницаемости, которое изменяется нелинейным образом при изменении приложенного напряжения, а неорганические частицы выбраны из группы, содержащей частицы BaTiO3, BaSrTiO3, CaCu3Тi4O12, SrTiO3 и их смесей. Повышение нелинейности и значительное улучшение электрических свойств материала за счет повышения диэлектрической прочности на пробой является техническим результатом заявленного изобретения. 3 н. и 15 з.п. ф-лы, 9 ил., 11 пр., 3 табл.

Изобретение относится к способу получения противокоронной защиты для электрических машин. Противокоронная защита отверждается, по меньшей мере, с помощью УФ-излучения и имеет электрически полупроводящий наполнитель, который может содержать карбид кремния и/или графит. Отверждение может производиться при воздействии тепла. Сшивание отверждаемого материала происходит по свободнорадикальному или катионному механизму сшивания. 3 н. и 32 з.п. ф-лы, 7 ил.

Изобретение относится к антенной технике, в частности к СВЧ волноводам. Антенно-фидерное СВЧ-устройство содержит волноводный элемент, полностью выполненный из графеносодержащего углекомпозитного материала с высокой электропроводимостью. При этом углеродные волокна расположены в плоскости, перпендикулярной оси волноводного элемента. Способ изготовления предполагает формирование внутренней заготовки-матрицы, имеющей размеры, соответствующие расчетным параметрам волновода, и внешней заготовки-матрицы, имеющей внутренние размеры, определяемые толщиной стенок волновода. Затем на внутреннюю часть заготовки волноводного элемента СВЧ-устройства наматывают требуемое число слоев углекомпозитной нити или ткани. В дальнейшем на подготовленное изделие надевают внешнюю часть заготовки-матрицы и в результате нагрева методом вакуумного формования достигают устранение шероховатости поверхности. Отделяют внешнюю и внутреннюю матрицы и получают волноводный элемент. Технический результат - повышение прочности, снижение массогабаритных характеристик, упрощение процедуры изготовления. 2 н.п. ф-лы, 5 ил.
Наверх