Способ идентификации скважины с измененным массовым расходом жидкости куста нефтяных скважин



Способ идентификации скважины с измененным массовым расходом жидкости куста нефтяных скважин

 


Владельцы патента RU 2521623:

Абрамов Генрих Саакович (RU)

Изобретение относится к области измерения и контроля дебита нефтяных скважин и может быть использовано в информационно-измерительных системах добычи, транспорта, подготовки нефти, газа и воды. Технический результат заключается в возможности идентификации скважины с измененным массовым расходом жидкости куста нефтяных скважин непосредственно в процессе измерения дебита скважин. Способ заключается в непрерывном мониторинге суммарных массового расхода жидкости Мжи и объемного расхода газа Qги и вычислении коэффициента K и = Δ M ж и Δ Q г и , где ΔМжи и ΔQги соответственно разности предыдущих (запомненных) и текущих средних численных значений суммарных расходных параметров куста нефтяных скважин M ¯ ж и и Q ¯ г и . В случае отклонения численного значения Ки за пределы от заданных значений измеряют суммарный массовый расход жидкости Мжи(n-1) и суммарный объемный расход свободного газа Qги(n-1) по (n-1) скважинам, где n - общее число скважин в кусте, вычисляют по каждой скважине массовый расход жидкости (водонефтяной смеси) Мжiжи-M(n-1), объемный расход свободного газа Qгi=Qги-Qги(n-1) и коэффициент K i = M ж i Q г i , после чего сравнивают численные значения коэффициентов Ki по каждой скважине с текущим численным значением Ки, а скважину с измененным массовым расходом жидкости куста нефтяных скважин идентифицируют по признаку минимальной разности между численным значением Ki одной из скважин куста нефтяных скважин и численным значением коэффициента Ки. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к области измерения и контроля дебита нефтяных скважин и может быть использовано в информационно-измерительных системах добычи, транспорта, подготовки нефти, газа и воды.

Известен способ идентификации скважины с измененным массовым расходом продукции куста нефтяных скважин, заключающийся в измерении на групповой замерной установке, поочередно для каждой скважины куста скважин за фиксированный интервал времени, расходных параметров скважины: массового расхода жидкости (водонефтяной смеси) Мжi, объемного расхода свободного газа Qгi и массового расхода сырой нефти Мнi, а также в одновременном непрерывном измерении интегральных расходных параметров куста скважин: массового расхода жидкости (водонефтяной смеси) Мжи и объемного расхода газа Qги, реализованный на установке для измерения дебита группы нефтяных скважин, содержащей групповую замерную установку, выход которой подсоединен к промежуточному трубопроводу-коллектору. Вторым концом трубопровод-коллектор подсоединен к боковому патрубку дополнительного вертикального резервуара-сепаратора, верхний и нижний патрубки которого соединены с дополнительными трубопроводами отведения попутного газа и жидкости с установленными на них, соответственно, преобразователем объемного расходомера-счетчика газа и массовым расходомером-счетчиком жидкости, при этом вторые концы дополнительных трубопроводов отведения попутного газа и слива жидкости соединены через обратный клапан с нефтесборным коллектором (Патент РФ №115824, публ. 10.05.2012).

В данном устройстве наличие дополнительных преобразователей объемного расходомера-счетчика газа и массового расходомера-счетчика жидкости для измерения интегральных расходов группы скважин по жидкости и газу позволяет повысить надежность измерений дебита нефтяных скважин за счет дублирования измерений, обеспечивает возможность непрерывной корректировки (уточнения) алгоритма измерения покомпонентного состава продукции скважин путем сравнения результатов дискретных измерений дебитов с результатами мгновенных измерений интегральных дебитов с использованием расходомеров-счетчиков жидкости и газа. Реализуемый данной установкой способ позволяет быстро зафиксировать уменьшение суммарного расхода по жидкости куста нефтяных скважин, поскольку по этому параметру производится непрерывный мониторинг, и оперативно отреагировать на данное отклонение, а именно произвести визуальный осмотр скважин непосредственно на кусте и выявить из них скважину с измененным режимом работы.

Таким образом, в известном способе изменение суммарного расхода жидкости куста скважин дает оператору лишь сигнал об изменении режима работы одной из скважин, но не дает расшифровку этого сигнала, не идентифицирует конкретную скважину с нарушенным режимом работы.

Наиболее близким техническим решением (прототипом) к заявляемому способу является способ идентификации скважины с измененным массовым расходом жидкости куста нефтяных скважин, заключающийся в подключении всех добывающих скважин куста к промежуточному нефтесборному коллектору и непрерывном измерении посредством установленного на промежуточном нефтесборном коллекторе бессепарационного расходомера, например мультифазного, суммарных расходных параметров куста скважин: массового расхода жидкости (водонефтяной смеси) Мжи и объемного расхода газа Qги, причем все добывающие скважины подключают к промежуточному нефтесборному коллектору через переключатель нефтяных скважин с возможностью отвода продукции каждой скважины куста нефтяных скважин через байпасный трубопровод в обход бессепарационного расходомера.

В данном способе контроллером, по встроенной в него специальной программе, осуществляется мониторинг разностей суммарных (по кусту нефтяных скважин) дебитов (по нефти, газу и воде), измеренных, соответственно, групповой замерной установкой (метод дискретных измерений) и мультифазным расходомером (метод непрерывных измерений), и по отклонению разностей дебитов за пределы заданных в контроллере уставок (по нефти, газу и воде) оператором принимается то или иное решение в отношении изменения массового расхода скважин (Заявка №2011134553/03(051192), решение о выдаче патента на изобретение от 10.01.2013).

Данный способ позволяет выявить нарушения рабочих режимов эксплуатации нефтяных скважин куста (группы) нефтяных скважин, используя результаты дискретных (ГЗУ) и непрерывных (мультифазный расходомер) измерений, однако, он также имеет существенный недостаток, который заключается, во-первых, в том, что он не дает возможности идентифицировать конкретную скважину с нарушенным режимом работы, а во-вторых, данный способ не дает возможности, или, по крайней мере, затрудняет определение характера (причины) нарушения этого режима работы.

Задачей, на решение которой направлено заявленное изобретение, является обеспечение возможности идентификации скважины с измененным массовым расходом жидкости куста нефтяных скважин непосредственно в процессе измерения дебита скважин.

Технический результат достигается тем, что в способе идентификации скважины с измененным массовым расходом куста нефтяных скважин, заключающимся в подключении всех добывающих скважин куста к промежуточному нефтесборному коллектору и непрерывном измерении посредством установленного на промежуточном нефтесборном коллекторе бессепарационного расходомера, например мультифазного, суммарных расходных параметров куста скважин: массового расхода жидкости (водонефтяной смеси) Мжи и объемного расхода газа Qги, причем все добывающие скважины подключают к промежуточному нефтесборному коллектору через переключатель нефтяных скважин с возможностью отвода продукции каждой скважины куста нефтяных скважин через байпасный трубопровод в обход бессепарационного расходомера, непрерывно вычисляют численное значение коэффициента K и = Δ M ж и Δ Q г и , где ΔМжи и ΔQги соответственно разности предыдущих и текущих средних численных значений суммарных расходных параметров куста нефтяных скважин M ¯ ж и и Q ¯ г и , сравнивают вычисленные значения Ки с его предварительно заданным в диапазоне допустимых отклонений значением ±ΔКи и, в случае отклонения Ки от заданных значений, путем поочередного переключения отвода продукции каждой из скважин в байпасный трубопровод, измеряют суммарный массовый расход жидкости Мжи(n-1) и суммарный объемный расход свободного газа Qги(n-1) по (n-1) скважинам, где n - общее число скважин в кусте, вычисляют по каждой скважине массовый расход жидкости (водонефтяной смеси) Мжiжижи(n-1), объемный расход свободного газа Qгi=Qги-Qги(n-1) и коэффициент K i = M ж i Q г i , после чего сравнивают численные значения коэффициентов Кi по каждой скважине с текущим численным значением Ки, а скважину с измененным массовым расходом жидкости куста нефтяных скважин идентифицируют по признаку минимальной разности между численным значением Кi одной из скважин куста нефтяных скважин и численным значением коэффициента Ки.

В дополнение к этому, в процессе эксплуатации куста нефтяных скважин после каждого очередного отклонения текущего численного значения Ки за пределы заданных уставок ±ΔКи с последующей идентификацией i-й скважины с измененным массовым расходом жидкости, данные текущие численные значения Кi и Ки принимают в качестве предварительно заданных, с сохранением численного значения допустимого отклонения ±ΔКи.

Непрерывное определение отношения суммарных расходных параметров: массового расхода жидкости к объемному расхода газа, сравнение этих значений в каждый момент времени с предварительно заданным его значением, и, при наличии отклонения от заданных значений, измерение суммарного массового расхода жидкости Мжи(n-1) и суммарного объемного расхода свободного газа Qги(n-1) по (n-1) скважинам, где n - общее число скважин в кусте, вычисление по каждой скважине массового расхода жидкости Мжi, объемного расхода свободного газа Qгi и коэффициента K i = M ж i Q г i и идентификация скважины с измененным расходом по признаку минимальной разности между численными значениями коэффициентов Ki по каждой скважине с текущим численным значением Ки позволяет идентифицировать скважину с измененным массовым расходом куста нефтяных скважин непосредственно в процессе измерения дебита скважин.

На чертеже приведена принципиальная схема устройства для измерения дебита куста нефтяных скважин, реализующего предлагаемый способ.

В данном устройстве для измерения дебита нефтяных скважин все скважины куста нефтяных скважин 1 подсоединены к промежуточному нефтесборному коллектору 2 через многоходовый переключатель 3 скважин (ПСМ). С помощью байпасного трубопровода 4 имеется возможность посредством переключателя скважин 3 подключить выход каждой из скважин куста 1 в обход бессепарационного, например мультифазного, расходомера 5, установленного в комплекте с контроллером (не показан) на промежуточном нефтесборном коллекторе 2, который, в свою очередь, через обратный клапан 6 присоеденен к нефтесборному коллектору (на чертеже не показан).

В процессе работы данного устройства мультифазный расходомер 5, установленный на выходе промежуточного нефтесборного коллектора 4, осуществляет непрерывный мониторинг (измерения) суммарных (по кусту нефтяных скважин) расходных параметров по жидкости (водонефтяной смеси Мжи) и по объемному расходу свободного газа Qги. Измерения производятся, соответственно, в единицах массы и объема.

Интегральная оценка массового расхода жидкости, полученная с помощью непрерывных измерений, позволяет мгновенно отметить факт изменения режима работы какой-либо из скважин. Для определения тех или иных отклонений в режиме работы какой-то скважины куста нефтяных скважин естественно предположить, что это отклонение отразится прежде всего на изменении какого-либо интегрального показателя куста нефтяных скважин, например, суммарного массового расхода жидкости Мжи. Естественно предположить также, что это изменение должно быть больше, чем предельная погрешность его (расхода) измерения. Очевидно также, что при снижении массового расхода жидкости Мжi одной скважины при постоянной обводненности (Wж=Const) изменится массовый расход нефти Mнi этой скважины и соответственно изменится расход свободного газа Qгi.

Пусть по каждой скважине куста нефтяных скважин нам известны (измерены) следующие суточные расходные параметры: Мжi, Qгi, Mнi, и Ki, где Кi определяется по формуле:

K i = M жi /Q гi (1)

Предположим, что на одной из скважин куста нефтяных скважин снизился массовый расход по жидкости на величину ΔМжi, тогда на эту же величину соответственно изменится и суммарный массовый расход жидкости Мжи в соответствии с формулой:

M æè /изì = М æè  -  Δ M жi (2)

Известно, что при условии Wж=Const снижение массового расхода жидкости на скважине повлечет за собой уменьшение массового расхода нефти в соответствии с формулой (см., например, Научно-технический журнал «Автоматизация, телемеханизация и связь в нефтяной промышленности. М.: ОАО «ВНИИОЭНГ», 2006. - №11. - С.4-19):

M н i = M ж i ( 1 W ρ в ρ ж ) , ( 3 )

где ρв и ρж - соответственно плотности воды и жидкости.

Изменение массового расхода нефти скважины, в свою очередь, приведет и к снижению величины Qгi скважины, так как:

Q г i ( p ) = M н о Г с в P 0 P p , ( 4 )

где Qгi(p) - расход газа в рабочих условиях; Мно - массовый расход нефти в нормальных условиях; Гсв - объем свободного газа/на тонну нефти; Р0 и Рр - давление, соответственно в нормальных и рабочих условиях.

Имея численное значение ΔМжi и используя формулы (3) и (4), определяют (вычисляют) отклонения по суммарным расходным параметрам куста нефтяных скважин Qги и Мни, соответственно по газу и по нефти. В целом, по кусту нефтяных скважин, эти отклонения будут равны ΔМжи, ΔQги и ΔМни, а новые интегральные расходные параметры будут соответственно определяться(вычисляться) по формулам:

M жи/н = M ж и Δ M ж и ; ( 5 )

Q ги/н = Q г и Δ Q г и ; ( 6 )

M ни/н = M н и Δ M н и . ( 7 )

Таким образом, способ идентификации скважины с измененным массовым расходом жидкости куста нефтяных скважин осуществляется следующим образом.

По кусту нефтяных скважин вычисляется и запоминается (с помощью контроллера) численное значение коэффициента K и = Δ M ж и Δ Q г и , где ΔМжи и ΔQги соответственно разности предыдущих и текущих средних численных значений суммарных расходных параметров куста нефтяных скважин M ¯ ж и и Q ¯ г и , в случае отклонения численного значения которого за пределы заданных уставок ±ΔКи вычисляется и запоминается массовый расход жидкости (водонефтяной смеси) Мжi и объемный расход свободного газа Qгi каждой скважины, соответственно по формулам Мжiжижи(n-1) и Qгi=Qги-Qги(n-1), где n - число скважин в кусте; Мжи(n-1) и Qгu(n-1), соответственно, суммарный массовый расход жидкости и суммарный объемный расход свободного газа, измеренных в режиме байпасирования по (n-1) скважинам. Далее вычисляется и запоминается (с помощью контроллера) по каждой скважине куста нефтяных скважин численное значение коэффициента K i = M ж i Q г i , сравниваются численные значения коэффициентов Ki по каждой скважине с текущим численным значением Ки. Скважину с измененным массовым расходом жидкости куста нефтяных скважин идентифицируют по признаку минимальной разности между численным значением Ki одной из скважин куста нефтяных скважин и численным значением коэффициента Ки.

После того как скважина с измененным массовым расходом жидкости куста нефтяных скважин идентифицирована, численное значение коэффициента Кi (данной скважины с измененным массовым расходом жидкости) и текущее численное значение Ки принимают в качестве предварительно заданных, с сохранением численного значения допустимого отклонения ±ΔКи.

Предлагаемый способ, используя признак изменения суммарной оценки массового расхода жидкости куста нефтяных скважин и в дальнейшем отклонения коэффициента Ки за пределы заданных уставок ±ΔКи, обеспечивает возможность идентификации скважины с измененным массовым расходом куста нефтяных скважин непосредственно в процессе измерения дебита скважин.

Также непрерывные измерения и вычисления интегральных расходных показателей по жидкости, свободному газу (Мжи, Qги) и по коэффициенту Ки позволяют программным путем отслеживать тренды этих показателей и по их виду следить за динамикой их изменения с целью прогнозирования (экстраполяции) нарушения режима эксплуатации куста нефтяных скважин.

1. Способ идентификации скважины с измененным массовым расходом жидкости куста нефтяных скважин, заключающийся в подключении всех добывающих скважин куста к промежуточному нефтесборному коллектору и непрерывном измерении посредством установленного на промежуточном нефтесборном коллекторе бессепарационного расходомера, например, мультифазного, суммарных расходных параметров куста скважин: массового расхода жидкости (водонефтяной смеси) Мжи и объемного расхода газа Qги, причем все добывающие скважины подключают к промежуточному нефтесборному коллектору через переключатель нефтяных скважин с возможностью отвода продукции каждой скважины куста нефтяных скважин через байпасный трубопровод в обход бессепарационного расходомера, отличающийся тем, что непрерывно вычисляют численное значение коэффициента K и = Δ M ж и Δ Q г и , где ΔМжи и ΔQги соответственно разности предыдущих и текущих средних численных значений суммарных расходных параметров куста нефтяных скважин M ¯ ж и и Q ¯ г и , сравнивают вычисленные значения Ки с его предварительно заданным в диапазоне допустимых отклонений значением ±ΔКи и, в случае отклонения Ки от заданных значений, путем поочередного переключения отвода продукции каждой из скважин в байпасный трубопровод, измеряют суммарный массовый расход жидкости Мжи(n-1) и суммарный объемный расход свободного газа Qги(n-1) по (n-1) скважинам, где n - общее число скважин в кусте, вычисляют по каждой скважине массовый расход жидкости (водонефтяной смеси) Мжiжи-Mжи(n-1), объемный расход свободного газа Qгi=Qги-Qги(n-1) и коэффициент K i = M ж i Q г i , после чего сравнивают численные значения коэффициентов Кi по каждой скважине с текущим численным значением Ки, а скважину с измененным массовым расходом жидкости куста нефтяных скважин идентифицируют по признаку минимальной разности между численным значением Кi одной из скважин куста нефтяных скважин и численным значением коэффициента Ки.

2. Способ идентификации скважины с измененным массовым расходом жидкости куста нефтяных скважин по п.1, отличающийся тем, что в процессе эксплуатации куста нефтяных скважин после каждого очередного отклонения текущего численного значения Ки за пределы его допустимых значений ±ΔKи с последующей идентификацией i-й скважины с измененным массовым расходом жидкости, численное значение коэффициента Кi (данной скважины с измененным массовым расходом жидкости) и текущее численное значение Ки принимают в качестве предварительно заданных, с сохранением численного значения допустимого отклонения ±ΔКи.



 

Похожие патенты:

Способ одновременного определения расходов жидкой и газовой фаз потока газожидкостной смеси включает в себя зондирование потока несепарированной газожидкостной смеси непрерывным ультразвуковым сигналом, прием отраженного от неоднородностей сигнала, комплексное детектирование, выделяющее синфазную с зондирующим сигналом и квадратурную составляющие, проведение спектрального анализа и получение спектра мощности сигнала, определение средней частоты спектра сигнала.

Объемный газожидкостный двухфазный расходомер (10) измеряет расход суммарного газожидкостного потока (QM) в газожидкостном двухфазном потоке, включающем в себя жидкость и газ, и коэффициент пропорциональности (газовую долю (в)) расхода газового потока по отношению к расходу суммарного газожидкостного потока, а также вычисляет соответствующие расходы потоков жидкости и газа исходя из расхода суммарного газожидкостного потока (QM) и газовой доли (в).
Способ одновременного определения расходов жидкой и газовой фаз потока газожидкостной смеси, включающий зондирование восходящего потока несепарированной газожидкостной смеси непрерывным ультразвуковым сигналом, прием отраженного от неоднородностей сигнала, комплексное детектирование, выделяющее синфазную с зондирующим сигналом и квадратурную составляющие, проведение спектрального анализа с определением знака преобладающей частоты, определение частоты сигнала и доли времени, когда преобладающая частота принимает отрицательное значение.

Способ содержит создание циркуляции многофазной текучей среды (12) через горловину (26) трубки Вентури (20), ограниченной трубопроводом (14), и оценку первого расхода и второго расхода с использованием измеренной разности давления и величины, характеризующей относительную площадь, занимаемую измеренной газообразной фазой.

Электронный измеритель (20) включает в себя интерфейс (201), сконфигурированный для связи с расходомерной сборкой вибрационного расходомера и для приема колебательного отклика, и систему (203) обработки, связанную с интерфейсом (201).

Способ включает следующие шаги: (а) на основе электромагнитного измерения определяют диэлектрическую проницаемость многокомпонентной смеси, (б) определяют плотность многокомпонентной смеси, (в) получают значения температуры и давления, (г) на основе результатов, полученных по завершении шагов (а)-(в), и знания значений плотности и диэлектрической проницаемости компонентов текучей смеси вычисляют долю водной фракции многокомпонентной смеси.

Способ включает следующие шаги: (а) определяют температуру и давление многокомпонентной смеси, (б) на основе по меньшей мере двух измеренных физических характеристик многокомпонентной смеси и знания такой же физической характеристики индивидуальных компонентов многокомпонентной смеси определяют относительное содержание компонентов многокомпонентной смеси, (в) определяют скорость многокомпонентной смеси, (г) на основе результатов, полученных по завершении шагов (а)-(в), определяют расход индивидуального компонента текучей среды.

Группа изобретений относится к определению свойств многофазной технологической текучей среды. Способ определения свойств многофазной технологической текучей среды содержит этапы, на которых: пропускают многофазную текучую среду по колебательно подвижной расходомерной трубке и расходомеру переменного перепада давления; вызывают движение расходомерной трубки и определяют первое кажущееся свойство текучей среды; определяют, по меньшей мере, одно кажущееся промежуточное значение, которое представляет собой первый критерий Фруда для негазообразной фазы текучей среды и второй критерий Фруда для газообразной фазы текучей среды; определяют степень влажности текучей среды на основе преобразования между первым и вторым критериями Фруда и степенью влажности; определяют второе кажущееся свойство текучей среды с использованием расходомера переменного перепада давления; определяют фазозависимое свойство текучей среды на основе степени влажности и второго кажущегося свойства.

Изобретение относится к нефтяной промышленности и может найти применение при измерениях количества жидкостной составляющей скважинной продукции. Технический результат направлен на повышение точности определения жидкостной составляющей скважинной продукции.
Изобретение относится к нефтяной промышленности и может найти применение при определении обводненности продукции нефтедобывающей скважины. Технический результат направлен на повышение точности определения обводненности продукции скважины.

Изобретение относится к нефтегазодобывающей промышленности и может быть применено для изоляции водопритоков в открытых стволах многозабойных горизонтальных скважин.

Изобретение относится к нефтяной промышленности и может быть использовано при гидродинамических исследованиях многозабойных скважин. Предложен способ исследования многозабойной горизонтальной скважины, содержащий этапы, на которых осуществляют спуск в скважину глубинного прибора, проведение гидродинамических исследований и извлечение геофизического прибора из многозабойной горизонтальной скважины.

Изобретение относится к нефтедобывающей промышленности. Техническим результатом является обеспечение определения остаточного содержания газа в жидкости после дегазации продукции группы скважин в газосепараторе перед дальнейшей откачкой в нефтепровод.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для измерения дебита скважин. Технический результат направлен на повышение точности и качества измерения дебита скважин.

Изобретение относится к нефтяной промышленности и может найти применение при определении заколонных перетоков скважины. Техническим результатом является определение заколонных перетоков при потоке жидкости за скважиной сверху вниз.

Изобретение относится к гидрологии, бурению и эксплуатации скважин и может быть использовано при проведении геофизических исследований технического состояния скважин.

Изобретение относится к области геофизических исследований нефтяных и газовых скважин и может быть использовано, в частности, при определении профиля притока скважины и параметров околоскважинного пространства.

Предлагаемое изобретение относится к области добычи нефти и может быть использовано для определения дебитов нефти, воды и попутного нефтяного газа как передвижными, так и стационарными замерными установками.

Группа изобретений относится к нефтегазодобывающей промышленности, а именно к бурению скважин и добыче газа. Группа изобретений может найти применение при проведении геофизических и гидродинамических исследований и позволяет оценить продуктивность газовых скважин, вскрывших продуктивный изотропный пласт под заданным зенитным углом, и оптимизировать их конструкции.

Изобретение относится к газодобывающей промышленности. Техническим результатом является упрощение контроля герметичности, что приводит к повышению надежности и безопасности эксплуатации подземных хранилищ газа (ПХГ). В предлагаемом способе осуществляют циклическое воздействие на пласт, при котором каждый цикл включает закачку газа в пласт с последующим отбором газа. Воздействие на пласт осуществляют, по меньшей мере, в течение 10 циклов. В каждом цикле периодически одновременно измеряют текущее пластовое давление ( P t ф ) и объем отбора (или закачки) газа. С учетом измеренных параметров определяют расчетное давление в ПХГ ( P t Р ) для режима эксплуатации хранилища без утечек газа и для режима эксплуатации хранилища с утечками газа. Затем определяют функцию (F) как среднеарифметическое значение отклонений ( P t Р ) от ( P t ф ) , полученных при каждом i-м измерении, для режима эксплуатации хранилища без утечек газа и функцию (Fy) для режима эксплуатации хранилища с утечками газа и при выполнении неравенства Fy<F делают вывод о наличии утечек газа в хранилище. 1 табл.
Наверх