Гидроизоляционная полимербитумная эмульсионная мастика

Изобретение относится к области полимерных строительных гидроизоляционных материалов, применяемых в производстве и ремонте кровли, герметиков и ремонтных материалов, используемых для гидроизоляционной защиты бетонных, кирпичных и т.п. надземных и подземных сооружений, а также антикоррозийной защиты металлических конструкций и трубопроводов. Мастика включает нефтяной битум БНД 60/90, бутадиен-стирольный полимер ДСТ 30-01, эмульгатор Тамин Т4, тонкомолотый минеральный наполнитель, в качестве которого используется отход мокрой магнитной сепарации (ММС), предварительно измельченный, и воду. Соотношение компонентов следующее, мас.%: битум нефтяной БНД 60/90 - 49-51; полимер ДСТ 30-01 - 6; эмульгатор Тамин Т4 - 2,5; минеральный наполнитель - 10-13; вода - остальное. Мастика обладает повышенными физико-механическими свойствами, такими как адгезия к бетону и водопоглощение, стойкостью в большом диапазоне эксплуатируемых температур, а также низкой себестоимостью изготовления, что позволяет повысить качество и долговечность гидроизоляции, снизив издержки на содержание искусственных сооружений. 5 ил., 1 пр.

 

Изобретение относится к области полимерных строительных гидроизоляционных материалов, применяемых в производстве и ремонте кровли, герметиков и ремонтных материалов, используемых для гидроизоляционной защиты бетонных, кирпичных и т.п. надземных и подземных сооружений, а также антикоррозийной защиты металлических конструкций и трубопроводов.

Известны битумно-полимерные композиции, включающие битум, пластификаторы - минеральные масла или их отходы, наполнитель минерального или органического происхождения, растворители, в качестве полимерных добавок синтетический бутадиеновый каучук СКД или его отходы (Пат. РФ 2184751, C08L 95/00, 12.04.2000), синтетический полиизопреновый каучук СКИ-3, каучук этиленпропиленовый СКЭПТ-40 или полиэтилен высокого давления (Пат. РФ 2158742, C08L 95/00, 19.07.1999), полисульфидный каучук тиокол или полисульфидный ТПМ-2-полимер (Пат. РФ 2179986, C09D 195/00, 07.12.1999).

Недостатками таких мастик являются невысокая адгезия к основанию, узкий температурный диапазон эксплуатации, размягчение при нагревании под действием солнца и растрескивание при естественных минусовых температурах, вследствие чего утрачивается необходимая гидроизолирующая способность. Другим недостатком этих композиций является необходимость разогрева при нанесении на основание до температуры 140°С и выше, невозможность формирования гидроизолирующего покрытия сплошным монолитным бесшовным слоем. Эти композиции используют в виде раствора в органических растворителях.

За прототип была принята холодная мастика для гидроизоляции (см. патент SU 1804471, A3, 23.03.1993), содержащая, мас.%:

Битум 40,0-42,0
Бутадиен-стирольный латекс 3,0-6,0
Отходы асбестоцементного производства 15,0-20,0
Известь-пушонка 2,0-3,0
Вода остальное до 100

Недостатком данной композиции является низкая адгезия к основанию. По причине высокого содержания отходов асбестоцементного производства (15,0-20,0%) формирование гидроизолирующего покрытия слоем необходимой толщины невозможно без дополнительной приклейки рулонного материала.

Техническим результатом является создание мастики с повышенными физико-механическими свойствами (адгезия к бетону, водопоглощение), стойкой в большом диапазоне эксплуатируемых температур, а также низкая себестоимость ее изготовления.

Предлагается гидроизоляционная полимербитумная эмульсионная мастика, включающая нефтяной битум, бутадиен-стирольный полимер, эмульгатор, тонкомолотый минеральный наполнитель и воду, отличающаяся тем, что в качестве эмульгатора мастика содержит эмульгатор Тамин Т4 (катион-активная добавка, продукт взаимодействия природных или синтетических жирных кислот с аминами по ТУ 2482-003-45811026-05), в качестве бутадиен-стирольного полимера используют термоэластопласт линейный бутадиен-стирольный ДСТ 30-01 (по ТУ 38.103267-99), а в качестве тонкомолотого минерального наполнителя содержит отход мокрой магнитной сепарации (ММС), предварительно измельченный, а также количественным содержанием компонентов, мас.%:

битум нефтяной БНД 60/90 49-51
полимер ДСТ 30-01 6
эмульгатор Тамин Т4 2,5
минеральный наполнитель 10-13
вода остальное

Технологический процесс приготовления полимербитумных эмульсионных мастик предусматривает метод механического эмульгирования битума, и сущность его заключается в следующем:

готовят раствор эмульгатора в виде смеси 2,5% Тамин Т4 и воды; смешивание компонентов раствора производят непосредственно в смесителе мастики, куда в нужном соотношении поступает вода и Тамин Т4; перемешивание продолжают до получения массы однотонного цвета;

битум, нагретый до температуры 140-160°C, соединяют с 6% полимера ДСТ 30-01 и механически перемешивают в течение 20 мин;

в смеситель (уже содержащий рассчитанное на замес количество раствора эмульгатора) при непрерывном перемешивании за 4-6 раз поочередно (порциями) вводят отдозированные на замес битум и воду до тех пор, пока в смеситель не будут введены весь полимербитум и вода, рассчитанные по составу на замес; готовую мастику сливают в накопительную емкость;

при приготовлении мастики в смеситель после смешения с водой вводят отдозированное по составу количество тонкомолотого минерального наполнителя, представляющего собой техногенный тонкодисперсный песок темно-серого цвета, состоящий из неокатанных частичек кварца (около 60%), полевых шпатов, амфиболов, карбонатов, магнетита, гематита и их агрегатов; перемешивание смеси с наполнителем продолжаются 3…4 мин; готовая мастика разбавляется водой до рабочей консистенции и сливается в накопительную емкость.

Результаты исследования реологических свойств битума показали снижение энергии поверхностного натяжения и понижение вязкости битума в интервале его технологических температур в результате модификации. Эти два фактора в совокупности и обеспечивают улучшение смачивания и прилипания битума к поверхности каменных материалов (рис.1, 2).

В процессе испытаний определялись показатели, характеризующие прочность сцепления мастики в зависимости от тонкости помола и содержания минерального наполнителя с определением усилия адгезионного отрыва.

Прослеживается повышение прочности сцепления при повышении степени дисперсности частиц тонкомолотого минерального наполнителя, и при значении удельной поверхности наполнителя 700 м2/кг значение сцепления превышает аналогичный показатель наполнителя с удельной поверхностью 200 м2/кг на 80% (рис.1). Очевидно, что дальнейшее увеличение тонкости помола применяемого наполнителя улучшит адгезионные свойства мастики.

Влияние концентрации наполнителя с различным содержанием в процентах от массы битумно-полимерного вяжущего исследовалось при испытании прочности сцепления с бетоном образцов мастики с содержанием наполнителя от 1% до 12% от массы полимербитумного вяжущего, из которого видно, что прочность сцепления мастики возрастает с увеличением количества в ней тонкомолотого минерального наполнителя (рис.2).

Результаты исследований свидетельствуют о том, что увеличение концентрации минерального наполнителя и степени его помола в составе битумно-полимерной гидроизоляционной мастики обуславливает повышение адгезионной прочности гидроизоляции.

Повышение адгезии предлагаемого состава водно-эмульсионной обмазочной мастики подтверждает гипотезу о влиянии компонентного состава и технологии нанесения мастики на прочность ее сцепления с бетонными конструкциями, что можно объяснить следующими факторами:

- с ростом содержания и степени дисперсности частиц железистого наполнителя происходит увеличение числа парамагнитных центров, что, очевидно, связано с ростом количества неспаренных электронов, носителями которых являются асфальтены;

- при взаимодействии активных центров на поверхности зерен наполнителя с активной частью битума увеличивается ароматичность дисперсионной среды;

- улучшение физико-химического взаимодействия значительно более тонких пленок вяжущего, наносимого на бетонную поверхность конструкций под давлением.

Анализ результатов по влиянию тонкости помола наполнителя и его массового содержания в процентах в мастике свидетельствует об изменении температуры размягчения мастики с увеличением содержания и степени дисперсности наполнителя. Так, повышение содержания наполнителя с 4% до 12% увеличивает температуру размягчения для немолотых наполнителей на 8%, а для тонкомолотых рост температуры размягчения составил 17%.

Результаты по изменению температуры хрупкости комплексного органоминерального вяжущего сопоставимы с изменением хрупкости полимербитума и при введении 12% тонкодисперсного наполнителя в мастику практически не отличаются. Такие данные коррелируются с последними результатами исследований группы французских ученых о том, что введение тонкомолотого кремнеземистого наполнителя незначительно влияет на изменение температуры хрупкости асфальтовяжущего.

Гибкость при низких температурах оценивали по методу, который заключается в изгибе образцов материала размером (120×20)±1 мм на 180° на поверхности с закруглением соответствующего радиуса в течение 5 секунд.

Анализ полученных результатов экспериментальных исследований (рис.3) показывает, что с уменьшением толщины образцов материалов наблюдается существенное снижение температуры по критерию гибкости. С ростом толщины образца уменьшается величина угла изгиба, при котором появляется трещина в материале. Так при температуре испытания минус 15°C на стержне диаметром 35 мм угол изгиба мастики уменьшается на 113° при повышении толщины образца до 6 мм по сравнению с образцом в 1 мм.

С повышением степени дисперсности минерального наполнителя снижается температура гибкости мастики (рис.4), и при 700 м2/кг она составляет 27°C, что на 10°C ниже, чем при использовании наполнителя с удельной поверхностью 300 м2/кг.

При достижении максимальной тонкости помола и введении минерального наполнителя в мастику при его различных концентрациях наблюдается снижение температуры, при которой на пленке толщиной 3 мм образуется трещина при испытании ее на изгиб. При повышении концентрации тонкомолотого наполнителя до 12% температура гибкости уменьшается на 8°C и составляет -28°C.

Водонепроницаемость битумно-полимерных гидроизоляционных материалов определяли по глубине проникания воды в бетонные цилиндрические образцы диаметром 100 мм (с близкими значениями пористости) с нанесенной на их поверхность изоляцией при выдерживании их под действием избыточного гидростатического давления, равного 0,3 МПа, в течение 6 часов.

Представленные на рис.5 результаты показывают повышение водонепроницаемости комплексного органоминерального вяжущего при увеличении количества введенного тонкомолотого минерального наполнителя: при 8% отхода ММС на 32%, при 12% - на 46.

Полученные результаты можно объяснить:

- увеличением адгезионной прочности эмульсионной мастики;

- повышением плотности изоляционного материала за счет введения в него тонкомолотого минерального наполнителя.

Заявленное изобретение позволяет повысить качество и долговечность гидроизоляции, снизив издержки на содержание искусственных сооружений.

Гидроизоляционная полимербитумная эмульсионная мастика, включающая нефтяной битум, бутадиен-стирольный полимер, эмульгатор, тонкомолотый минеральный наполнитель и воду, отличающаяся тем, что она содержит эмульгатор Тамин Т4, в качестве бутадиен-стирольного полимера используют полимер ДСТ 30-01, а в качестве тонкомолотого минерального наполнителя содержит отход мокрой магнитной сепарации (ММС), предварительно измельченный, при следующем количественном содержании компонентов, мас.%:

битум нефтяной БНД 60/90 49-51
полимер ДСТ 30-01 6
эмульгатор Тамин Т4 2,5
минеральный наполнитель 10-13
вода остальное.



 

Похожие патенты:
Изобретение относится к промышленности дорожно-строительных материалов, а именно к составам смесей для изготовления асфальтобетона, который может быть использован при устройстве оснований и покрытий автомобильных дорог, аэродромов, мостов.

Изобретение относится к области химии и нефтехимического производства и может быть использовано для защиты магистральных трубопроводов от коррозии, в дорожном строительстве, для аккумуляторной промышленности, в машиностроении и гражданском строительстве.
Изобретение относится к промышленности дорожно-строительных материалов, а именно к составам смесей для изготовления асфальтобетона, который может быть использован при устройстве оснований и покрытий автомобильных дорог, аэродромов, мостов.

Изобретение относится к способу получения асфальтовой смеси, предназначенной для последующего промежуточного хранения и последующей укладки в виде дорожного покрытия или подобного применения.

Изобретение относится к асфальту и асфальто-минеральным композициям, приемлемым для дорожных покрытий или нанесения покрытий на поверхность сооружений. Асфальто-минеральная композиция содержит 100 мас.ч.
Изобретение относится к созданию защитных и гидроизоляционных материалов на основе битумов. Способ получения модифицированной битумно-латексной эмульсионной композиции включает смешение водно-битумной эмульсии, полученной из водной фазы, приготовленной добавлением в водный раствор щелочи эмульгатора на основе аддукта - продукта взаимодействия кислот растительных масел с ди-, три-полиолами нормального и/или изостроения в присутствии натриевых солей алкилбензолсульфокислот и битума.

Изобретение относится к лакокрасочному материалу, модифицированному нанодисперсными слоистыми силикатами, диспергированными в растворе высокомолекулярного соединения при помощи ультразвуковой обработки.
Изобретение относится к строительным материалам широкого спектра применения и может быть использовано для дорожных, кровельных, изоляционных, герметизирующих работ.
Изобретение относится к составам битумных композиций, используемых в строительстве для гидроизоляции и герметизации элементов конструкций и сооружений. .

Изобретение относится к получению битумных эмульсий и может быть использовано в дорожном строительстве и при защите от коррозии стали. .

Изобретение относится к созданию материалов, используемых при строительстве и ремонте автодорог, а именно к вяжущим материалам для асфальтобетонного дорожного покрытия на основе прямогонного гудрона.

Изобретение относится к созданию материалов, используемых при строительстве и ремонте автодорог, а именно - к вяжущим материалам для создания асфальтобетонного дорожного покрытия на основе прямогонного гудрона.

Изобретение относится к асфальтодорожному строительству и непосредственно касается способов обработки асфальтобетонных покрытий с применением композиций на основе битумполимерных вяжущих.
Изобретение относится к промышленности дорожно-строительных материалов, а именно к составам смесей для изготовления асфальтобетона, который может быть использован при устройстве оснований и покрытий автомобильных дорог, аэродромов, мостов.
Изобретение относится к области строительного производства в автодорожной отрасли и может быть применено при изготовлении дорожных покрытий при использовании щебеночно-кварцевых асфальтобетонов.
Изобретение относится к области нефтепереработки, в частности к пластификаторам, используемым в производстве битумов. Пластификатор представляет собой продукт взаимодействия 15,0-15,5 мас.% стирола, 2,4-4,0 мас.% пероксида циклогексанона, 3,1-6,0 мас.% 10%-ного раствора нафтената кобальта в стироле и переокисленного битума - остальное.
Изобретение относится к области дорожно-строительных материалов, в частности получению битумно-резиновых композиций связующего для дорожного покрытия на основе битума, и может быть использовано для строительства, ремонта и капитального ремонта дорожных асфальтобетонных покрытий, а также для устройства и ремонта слоев проезжей части мостов и путепроводов.

Изобретение относится к области химии и нефтехимического производства и может быть использовано для защиты магистральных трубопроводов от коррозии, в дорожном строительстве, для аккумуляторной промышленности, в машиностроении и гражданском строительстве.
Изобретение относится к дорожно-строительным материалам, в частности к горячим мелкозернистым асфальтобетонным смесям, и может быть использовано для изготовления плотного асфальтобетона темно-коричневого цвета, применяемого для устройства верхних слоев автомобильно-дорожных покрытий в районах I, II и частично III дорожно-климатических зон, характеризующихся холодным и влажным климатом.

Изобретение может быть использовано в создании дорожных покрытий. Битумная эмульсия включает битум, соляную кислоту, эмульгатор - циклический амин формулы , где R=СH3-С3H7, стабилизатор, в качестве которого используют блок-сополимер этиленоксида и пропиленоксида, и воду.

Изобретение относится к компаундам на основе термореактивных смол и может быть использовано для пропитки и герметизации конденсаторов, обмоток транзисторов, трансформаторов в различных отраслях промышленности.
Наверх