Способ определения механических напряжений в стальных трубопроводах

Изобретение относится к области оценки технического состояния трубопроводов и может быть использовано для определения механических напряжений в стальных трубопроводах подземной прокладки. Сущность изобретения заключается в том, что способ определения механических напряжений в стальных трубопроводах включает изготовление образца трубопровода, из материала, аналогичного материалу конструкции, пошаговое нагружение образца, измерение магнитных параметров металла на каждом шаге нагружения с определенным ориентированием датчика относительно образца, получение зависимости магнитных параметров от величины напряжений в образце, измерение магнитных параметров металла трубопровода, определение величины напряжения с помощью полученной зависимости, при этом в качестве магнитного параметра измеряют собственную напряженность магнитного поля металла труб, измерения выполняют при различных расстояниях от измерительного датчика до поверхности образца, строят графики зависимости магнитных параметров от величины напряжений в образце для каждого из расстояний, определяют расстояние от измерительного датчика до контролируемого трубопровода, определяют напряжения в трубопроводе по кривой зависимости, соответствующей измеренному расстоянию от датчика до трубопровода. Технический результат - расширение возможностей способа. 2 ил.

 

Изобретение относится к области оценки технического состояния трубопроводов и может быть использовано для определения механических напряжений в стальных трубопроводах подземной прокладки.

Известен способ определения напряженного состояния стальных конструкций, согласно которому растягивают образец материала, вырезанный из материала, аналогичного материалу конструкции, в процессе растяжения измеряют коэрцитивную силу. Получают зависимость коэрцитивной силы от приложенного напряжения для данного материала. Затем проводят измерения коэрцитивной силы металла конструкции и определяют напряженное состояние с помощью полученной зависимости. (В.Ф. Мужицкий, Б.Е. Попов, Г.Я. Безлюдько. Магнитный контроль напряженно-деформированного состояния и остаточного ресурса стальных металлоконструкций подъемных сооружений и сосудов, работающих под давлением. // Дефектоскопия. - 2001. - №1. - с.38-46).

Известен способ определения напряжений, основанный на получении при растяжении образцов металла с различной деградацией структуры, зависимостей анизотропии коэрцитивной силы от растягивающих напряжений в образцах и оценке напряжений в конструкции с помощью полученных зависимостей с учетом фактической структуры металла (патент РФ №2281468, опубл. 10.08.2006 г.).

Наиболее близким к заявляемому способу является способ определения механических напряжений в стальных трубопроводах, включающий изготовление образца в виде полого цилиндра из материала, аналогичного материалу конструкции, нагружение образца созданием в нем избыточного внутреннего давления жидкой или газовой среды или его изгибом, получение зависимости коэрцитивной силы от величины напряжений в образце. Далее измеряют коэрцитивную силу действующего трубопровода и определяют его напряженное состояние с помощью полученной зависимости (патент РФ №2439530, опубл. 10.01.2012 г.).

Основным недостатком известных способов является необходимость обеспечения локального доступа к поверхности металла трубы, что затруднительно при диагностировании подземных трубопроводов, а также надземных трубопроводов, имеющих тепло-вибро-шумо-изоляцию толщиной более 3-5 см.

Технической задачей изобретения является расширение возможностей способа.

Поставленная задача решается тем, что в способе определения механических напряжений в стальных трубопроводах, включающем изготовление образца трубопровода из материала, аналогичного материалу конструкции, пошаговое нагружение образца, измерение магнитных параметров металла на каждом шаге нагружения, с определенным ориентированием датчика относительно образца, получение зависимости магнитных параметров от величины напряжений в образце, измерение магнитных параметров металла трубопровода, определение величины напряжения с помощью полученной зависимости, согласно изобретения, в качестве магнитного параметра измеряют собственную напряженность магнитного поля металла труб, измерения выполняют при различных расстояниях от измерительного датчика до поверхности образца, строят графики зависимости магнитных параметров от величины напряжений в образце для каждого из расстояний, определяют расстояние от измерительного датчика до контролируемого трубопровода, определяют напряжения в трубопроводе по кривой зависимости, соответствующей измеренному расстоянию от датчика до трубопровода.

На фиг.1. представлен стенд с образцом для получения зависимости параметров магнитного поля от изгибных напряжений в образце.

На фиг.2 представлены графики зависимости приращения продольной компоненты напряженности магнитного поля трубопровода ΔНу от изгибных напряжений в образце трубопровода для расстояний между датчиком 2 и поверхностью образца 0,05; 0,1; 0,2; 0,5; 1,0; 1,3; 1,6; 2,0; 2,5 м.

Способ реализуют следующим образом. Из трубы, аналогичной по типоразмеру и материалу трубам, из которых изготовлен контролируемый трубопровод, изготавливают образец трубопровода 1 (фиг.1).

Образец 1 располагают горизонтально. Концы образца жестко закрепляют. В центре образца, в его верхней части, через проставку 3 из немагнитного материала устанавливают датчик 2 измерителя компонент магнитного поля (на фиг. не показано). Ориентируют датчик таким образом, чтобы измеренная компонента Ну была параллельна оси образца.

При помощи домкрата 4, устанавливаемого в центре образца, пошагово увеличивают изгибные напряжения в образце. Для каждого шага нагружения определяют напряжения в образце расчетным или другим способом, например, с помощью электротензоизмерений.

На каждом шаге нагружения измеряют компоненту напряженности магнитного поля Ну. Проводят несколько этапов измерений для различных размеров проставок 3, которые обеспечивают определенное расстояние от датчика 2 до поверхности образца 1. Строят графики зависимости приращения компоненты напряженности магнитного поля трубопровода Ну от изгибных напряжений в образце трубопровода для каждого из расстояний между датчиком и поверхностью образца (фиг.2).

Определяют расстояние от поверхности грунта до контролируемого подземного трубопровода. На поверхности грунта проводят измерения компоненты напряженности магнитного поля Ну, устанавливая датчик над осью трубопровода. Определяют точки трубопровода, в которых имеется прирост измеренного значения компоненты напряженности магнитного поля относительно среднего значения. Используя полученную на образце зависимость, определяют продольные напряжения в трубопроводе с учетом расстояния от датчика до трубопровода (глубины заложения трубопровода).

Пример.

Необходимо определить продольные изгибные напряжения на участке подземного газопровода, расположенном в слабонесущих грунтах. Координаты участка 0-5,000 км. Трубопровод выполнен из труб марки стали 09Г2САФ. Диаметр труб газопровода 1220 мм, толщина стенки трубы - 13 мм.

Из аналогичной трубы длиной 11 м изготавливают стенд. Трубу (образец) 1 устанавливают горизонтально на бетонные блоки 5. Для исключения перемещения образец фиксируют к блокам с помощью гибких неметаллических лент 6 (фиг.1).

Для измерения магнитного поля применяют магнитометр МАГ-01 (производства ОАО «Гипрогазцентр», г.Н.Новгород).

Под центром образца устанавливают домкрат 4.

В центре образца вертикально вверх устанавливают проставку 3, обеспечивающую расстояние между датчиком 2 и образцом 1 5,0 см. На проставку 3 устанавливают датчик 2 магнитометра МАГ-01 (на фиг. не показано), ориентируя его таким образом, чтобы измеряемая датчиком компонента напряженности поля Ну была ориентирована вдоль оси образца.

При помощи домкрата 4 создают пошагово напряжения с шагом 10,0 МПа, до создания изгибных напряжений 250 МПа. Уровень напряжений определяют, например, путем измерения прогиба образца или определения усилия перемещения домкрата и последующего расчета.

На каждом шаге испытания измеряют компоненту напряженности магнитного поля Ну. Повторяют измерения с проставками 0,1; 0,2; 0,5; 1,0; 1,3; 1,6; 2,0 и 2,5 м.

Рассчитывают приращение значения компоненты напряженности магнитного поля ΔНу на каждом шаге нагружения образца.

Строят кривые зависимости приращения продольной компоненты напряженности магнитного поля трубопровода ΔНу от изгибных напряжений в образце трубопровода для расстояний между датчиком 2 и поверхностью образца 0,05; 0,1; 0,2; 0,5; 1,0; 1,3; 1,6; 2,0 и 2,5 м (фиг.2).

На контролируемом участке газопровода с помощью прибора БИТА (производства ОАО «Гипрогазцентр», г.Н.Новгород), определяют, что расстояние от поверхности грунта до верхней образующей трубопровода составляет 1,0 м.

С помощью прибора МАГ-01 выполняют измерения компоненты магнитного поля вокруг трубопровода Ну, устанавливая датчик прибора над осью газопровода с шагом 1 м.

Устанавливают, что на участке трубопровода имеются две точки №1 и №2 с приростом напряженности магнитного поля ΔНу 350 А/м (координата точки №1 - 2,123 км) и 300 А/м (координата точки №2 - 3,236 км). Согласно построенной зависимости (фиг.2) приращения напряженности поля 300-350 А/м характерны для изгибных напряжений порядка 200 МПа при расстоянии от датчика до трубы 1,0 м. Наличие напряжений такого уровня повышает риск аварийного разрушения трубопровода.

Откапывают трубопровод в указанных точках. Методами неразрушающего контроля оценивают состояние металла труб.

В точке №1 обнаруживают локальное коррозионное утонение стенки трубы глубиной до 30% от номинальной толщины стенки. Определяют, что изгибные продольные напряжения, измеренные ультразвуковым измерителем напряжений ИН - 5101 А (производства «Инкотес», Н.Новгород) или коэрцитиметром КРМ-Ц-К-2М, составляют не более 100 МПа. Таким образом, выявленное изменение магнитного поля вызвано преимущественно локальным утонением стенки.

В точке №2, дефектов металла стенки не обнаружено. Продольные напряжения стенки трубы, измеренные в шурфе прибором ИН - 5101А и коэрцитиметром КРМ-Ц-К-2М, составили около 200 МПа, что удовлетворительно согласуется с результатами, полученными на основе построенной зависимости для расстояния между датчиком и трубой 1 м (фиг.2).

Способ определения механических напряжений в стальных трубопроводах, включающий изготовление образца трубопровода, из материала, аналогичного материалу конструкции, пошаговое нагружение образца, измерение магнитных параметров металла на каждом шаге нагружения с определенным ориентированием датчика относительно образца, получение зависимости магнитных параметров от величины напряжений в образце, измерение магнитных параметров металла трубопровода, определение величины напряжения с помощью полученной зависимости, отличающийся тем, что в качестве магнитного параметра измеряют собственную напряженность магнитного поля металла труб, измерения выполняют при различных расстояниях от измерительного датчика до поверхности образца, строят графики зависимости магнитных параметров от величины напряжений в образце для каждого из расстояний, определяют расстояние от измерительного датчика до контролируемого трубопровода, определяют напряжения в трубопроводе по кривой зависимости, соответствующей измеренному расстоянию от датчика до трубопровода.



 

Похожие патенты:

Изобретение относится к верхнему строению пути, к рельсам, а именно к способам определения механических напряжений путем измерения изменений магнитных свойств металла.

Изобретение относится к области измерений и может быть использовано в машиностроении. Способ заключается в измерении магнитоупругим датчиком, оснащенным угломерным устройством, в заданных точках на поверхности изделия углов наклона площадок наибольших главных напряжений, в подготовке пластин-образцов из материала исследуемого изделия, контроле в них изменения углов наклона площадок наибольших главных напряжений в ходе нагружения.

Изобретение относится к областям измерительной техники и неразрушающего контроля и предназначено для определения компонентов тензора механических напряжений в изделиях из ферромагнитных материалов при двухмерном напряженно-деформированном состоянии.

Изобретение относится к электротехнике, в частности к устройствам для измерения давления щетки на коллектор электрических машин, и может быть использовано в ремонтном хозяйстве электротехнической, железнодорожной и других отраслях.

Изобретение относится к измерительной технике и предназначено для измерения деформации грунта, горных пород, зданий, сооружений и железобетонных конструкций. .

Изобретение относится к измерительной технике и может быть использовано для измерения деформации грунта, горных пород, зданий, сооружений и железобетонных конструкций.

Изобретение относится к области неразрушающего измерения двухосных механических напряжений магнитоупругим методом и может быть использовано в машиностроении. .

Изобретение относится к измерительной технике, в частности для контроля состояния элементов инженерных конструкций из ферромагнитных материалов в условиях циклического нагружения, и может найти применение в машиностроении и на транспорте.

Изобретение относится к электротехнике, в частности к устройствам для измерения нажатий щетки на коллектор непосредственно на электрической машине в рабочем режиме.

Изобретение относится к измерительной технике и может быть использовано для измерения механических напряжений в деталях конструкций из ферромагнитных материалов.
Изобретение относится к измерительной технике и представляет собой датчик механических напряжений. Датчик включает прямоугольную пластину из полимерного материала, на верхней поверхности которой сделано углубление, в котором помещается детектор, при этом внутри прямоугольной пластины вдоль продольной оси располагается предварительно напряжённый аморфный ферромагнитный микропровод, изготовленный из обогащённых кобальтом сплавов, помещённый внутрь измерительной катушки в виде встречно соединённый соленоидов из медной проволоки. Микропровод соединён с первой парой контактных площадок, а указанная дифференциальная измерительная катушка - со второй парой контактных площадок. Контактные площадки в свою очередь соединены с детектором, включающим источник переменного тока, соединённый с источником магнитного поля, источник постоянного тока, соединённый с первой парой контактных площадок, и усилитель сигнала измерительной катушки, вход которого соединён со второй парой контактных площадок, а выход соединён с аналого-цифровым преобразователем, подключенным к персональному компьютеру. 10 з.п. ф-лы, 5 ил.

Изобретение относится к системе и способу для определения механического напряжения компонента самолета, изготовленного из намагниченного материала. Техническим результатом изобретения является упрощение определения механического напряжения на различной глубине компонента. Система для определения значимой величины (σ) механического напряжения компонента, изготовленного из намагничиваемого материала, содержит: ступень генерирования магнитного поля с изменяющейся амплитуды и ступень захвата для приема сигнала шума Баркгаузена (MBN) при изменениях амплитуды (H) магнитного поля. Причем система содержит блок обработки данных для вычисления обратной величины (1/MBNmax) от максимального значения (MBNmax) сигнала (MBN) при изменениях амплитуды (H) магнитного поля. Блок обработки данных имеет ступень памяти, которая сохраняет данные о линейном соотношении между обратной величиной (1/MBNmax) от максимального значения и значимой величиной (σ) механического напряжения. 2 н. и 12 з.п.ф-лы, 9 ил., 3 табл.

Изобретение относится к способам неразрушающего контроля остаточных напряжений в сварных соединениях и изделиях из ферромагнитных и парамагнитных материалов. Способ позволяет повысить точность контроля действующих и остаточных напряжений в изделии, определить предельное состояние изделия перед его разрушением и ресурс его эксплуатации. Для достижения указанного технического результата в точках поверхности контролируемого изделия, отстоящих друг от друга на равные расстояния, измеряют величину по меньшей мере одной составляющей напряженности магнитного поля. Далее определяют значение градиента магнитного поля для каждой пары соседних точек контроля и по полученным значениям градиентов находят зону концентрации напряжений (ЗКН). Для ЗКН рассчитывают значение магнитного показателя mпр, характеризующего предельное напряженное состояние изделия перед разрушением, и значение магнитного показателя mф, характеризующего фактическое напряженное состояние изделия. Используя полученные значения mпр и mф, оценивают предельное время эксплуатации изделия: Тпр=(mпр/mф)·Тф, где Tф - фактическое время эксплуатации изделия. Остаточный ресурс Tост эксплуатации изделия определяют по формуле: Тост=Тпр-Тф. 3 з.п. ф-лы, 11 ил.

Изобретение относится к неразрушающему контролю материалов, технической диагностике, предназначено для определения остаточных механических напряжений в деформированных ферромагнитных сталях и может применяться в лабораторных, цеховых и полевых условиях. Устройство содержит намагничивающую, подмагничивающую и измерительную системы. Намагничивающая система выполнена в виде П-образного магнитопровода из магнитомягкого материала с намагничивающими обмотками на двух его полюсах. Контакты подмагничивающей системы выполнены подпружиненными, закреплены на П-образном магнитопроводе и расположены в межполюсном пространстве в единой с торцами полюсов П-образного магнитопровода плоскости, обращенной к поверхности контролируемого изделия. Катушка измерительной системы размещена на одном из полюсов П-образного магнитопровода, измерительная система снабжена датчиком Холла, расположенным в центральной части межполюсного пространства П-образного магнитопровода, соединенным с П-образным магнитопроводом и устройством оцифровки сигнала. Технический результат: повышение точности и достоверности контроля за счет измерения внутреннего магнитного поля в контролируемом изделии, увеличение локальности контроля, расширение области применения устройства за счет контроля остаточных напряжений в различных направлениях крупногабаритных ферромагнитных изделий при снижении массогабаритных размеров устройства и упрощении подготовительных операций перед проведением контроля. 3 ил., 1 табл.

Способ определения механических напряжений стальных конструкций основан на определении действительного направления напряжения в точке контроля на основании полученной зависимости анизотропии коэрцитивной силы от величины напряжения. Для этого измеряют значение коэрцитивной силы в точке контроля не менее 8 раз в разных направлениях. По результатам измерений строят круговую диаграмму зависимости значений коэрцитивной силы от угла ориентации, определяют направления экстремальных значений коэрцитивной силы, по ним определяют направление напряжений. По экстремальным значениям коэрцитивной силы определяют значения действующих напряжений в точке контроля. Технический результат: повышение точности определения напряженного состояния стальных конструкций. 2 ил.
Наверх