Способ определения теплового импеданса сверхбольших интегральных схем - микропроцессоров и микроконтроллеров



Способ определения теплового импеданса сверхбольших интегральных схем - микропроцессоров и микроконтроллеров
Способ определения теплового импеданса сверхбольших интегральных схем - микропроцессоров и микроконтроллеров

 


Владельцы патента RU 2521789:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" (RU)

Способ предназначен для использования на выходном и входном контроле качества сверхбольших интегральных схем (СБИС) - микропроцессоров и микроконтроллеров - и оценки их температурных запасов. В контролируемую СБИС, установленную на теплоотводе и подключенную к источнику питания, загружают специальный «разогревающий» тест и программу управления и включают в режим периодического нагрева путем переключения контролируемой СБИС из режима выполнения специального теста в режим паузы с частотой Ω и скважностью 2. На частоте модуляции Ω выделяют и измеряют амплитуду I m 1 п о т ( Ω ) первой гармоники тока, потребляемого контролируемой СБИС, амплитуду U m 1 Т П ( Ω ) первой гармоники температурочувствительного параметра с известным отрицательным температурным коэффициентом KT, например, напряжения на встроенном в ядро СБИС р-n переходе или напряжения логической единицы на одном из нагруженных резистивной нагрузкой выводов СБИС, логическое состояние которого не изменяется при переключении СБИС из одного режима в другой, и сдвиг фазы φ(Ω) между первой гармоникой тока, потребляемого контролируемой СБИС, и первой гармоникой температурочувствительного параметра. Модуль теплового импеданса контролируемой СБИС на частоте Ω определяют по формуле:

| Z T ( Ω ) | = U m 1 Т П ( Ω ) K T U п и т I m 1 п о т ( Ω ) ,

где Uпит - напряжение питания контролируемой БИС, а фазу φT(Ω) теплового импеданса контролируемой СБИС определяют как уменьшенную на 180° разность фаз между первой гармоникой температурочувствительного параметра и первой гармоникой тока, потребляемого контролируемой СБИС. 2 ил.

 

Изобретение относится к технике измерения тепловых параметров интегральных микросхем и может быть использовано для контроля качества сверхбольших интегральных схем (СБИС) - микропроцессоров и микроконтроллеров и определения их температурных запасов.

Известен способ измерения теплового сопротивления переход-корпус микропроцессоров (см., например, Криницин В. Тепловой режим процессоров Pentium 4 и Athlon ХР// или Температура процессоров. - Режим доступа: Intel // ), заключающийся в том, что контролируемую СБИС (микропроцессор или микроконтроллер), размещенную на монтажной плате, включают в режим нагрева путем запуска специального «разогревающего» теста, при выполнении которого электрический ток и, соответственно, электрическая мощность, потребляемые СБИС, существенно возрастают, через некоторое время, необходимое для выхода СБИС в стационарный тепловой режим, измеряют ток, потребляемый СБИС от источника питания, и температурочувствительный параметр (ТЧП), в качестве которого используют прямое падение напряжения на специально сформированном в ядре современных микропроцессоров и микроконтроллеров p-n переходе при малом прямом токе. Умножая величину тока потребления СБИС на напряжение питания, рассчитывают потребляемую СБИС мощность в режиме выполнения специального «разогревающего» теста, а по изменению ТЧП находят приращение температуры кристалла СБИС, а тепловое сопротивление СБИС определяют как отношение приращения температуры к рассеиваемой СБИС мощности. В современных микропроцессорах и микроконтроллерах постоянное напряжение на датчике температуры (р-n переходе) преобразуется встроенным аналого-цифровым преобразователем (АЦП) в цифровой код, который может быть выведен на ЖК-индикактор или компьютер.

Недостатком указанного способа является большая погрешность измерения, обусловленная относительно небольшим изменением греющей мощности СБИС и малым полезным изменением ТЧП на уровне большого квазистатического значения этого параметра (обычно изменение напряжения на р-n переходе в результате разогрева кристалла СБИС составляет десятки милливольт, а падение напряжения, например, на кремниевом р-n переходе порядка 700 мВ, на арсенидгаллиевом p-n переходе порядка 3,0 B), а также небольшой (не более 8 разрядов) разрешающей способностью встроенного АЦП. Кроме того, измерение теплового сопротивления переход-корпус не позволяет определить вклад в теплоотвод отдельных слоев конструкции СБИС и оценить качество их сборки.

Более адекватным тепловым параметром СБИС, как и других классов интегральных микросхем, является тепловой импеданс или полное комплексное тепловое сопротивление, модуль которого на заданной частоте Q определяется как отношение амплитуды изменения температуры активной области интегральной микросхемы к амплитуде переменной составляющей, потребляемой интегральной микросхемой мощности, при изменении потребляемой мощности по гармоническому закону с частотой Ω, а фаза - как сдвиг фазы между переменной составляющей температуры и переменной составляющей потребляемой мощности. Частотная зависимость этого параметра позволяет оценить вклад каждого слоя конструкции интегральной микросхемы в общее тепловое сопротивление и оценить динамические тепловые свойства интегральной микросхемы.

Наиболее близким к заявленному изобретению является способ определения теплового импеданса КМОП цифровых интегральных схем (см. Сергеев В.А., Ламзин В.А., Юдин В.В. Способ определения теплового импеданса КМОП цифровых интегральных микросхем. - Заявка №2011114924/28 (020765) от 08.04.2011), состоящий в том, что контролируемую микросхему включают в режим периодического нагрева, при котором логическое состояние одного или нескольких логических элементов (ЛЭ) контролируемой микросхемы изменяют путем подачи на их входы последовательности высокочастотных переключающих импульсов и измеряют изменение ТЧП того ЛЭ, состояние которого не изменяется, при этом частоту переключающих импульсов изменяют (модулируют) периодической последовательностью прямоугольных импульсов с заданной частотой Ω и скважностью, равной 2, на частоте модуляции Ω, измеряют амплитуду переменной составляющей тока потребления I m 1 п о т и ТЧП I m 1 Т П и сдвиг фазы между ними, по которым и определяют модуль и фазу теплового импеданса контролируемой микросхемы на частоте модуляции Ω.

Недостатком данного способа является то, что он требует наличия двух импульсных генераторов и не может быть применен для СБИС, поскольку доступ к отдельным ЛЭ в СБИС невозможен.

Технический результат - снижение аппаратных затрат и повышение точности измерения теплового импеданса СБИС - микропроцессоров и микроконтроллеров.

Технический результат достигается тем, что в контролируемую СБИС, установленную на теплоотводе и подключенную к источнику питания, загружается специальный («разогревающий») тест и программа управления режимом работы СБИС, по команде «запуск» по соответствующему входу контролируемая СБИС включается в режим периодического нагрева путем ее переключения с заданной частотой Q из режима выполнения специального теста в режим паузы, при этом время выполнения специального теста задают равным длительности паузы, то есть равным половине периода T=1/27πΩ переключения, через некоторое время, необходимое для выхода СБИС в установившийся тепловой режим, на частоте переключения измеряют амплитуду переменной составляющей тока потребляемого контролируемой СБИС и переменной составляющей температурочувствительного параметра , в качестве которого используют либо прямое падения напряжения на встроенном в ядро контролируемой СБИС р-n переходе либо напряжение логической единицы на одном из нагруженных резистивной нагрузкой выходов контролируемой СБИС, логическое состояние которого остается неизменным при переключении контролируемой СБИС из режима выполнения специального теста в режим паузы; модуль теплового импеданса контролируемой БИС на частоте переключения Ω определяют по формуле

| Z T ( Ω ) | = U m 1 Т П ( Ω ) K T U п и т I m 1 п о т ( Ω ) , ( 1 )

где KT - известный отрицательный температурный коэффициент температурочувствительного параметра, Unum- напряжение питания контролируемой СБИС, а фаза φT(Ω) теплового импеданса контролируемой СБИС на частоте модуляции определяется как сдвинутая на 180° разность фаз между первой гармоникой тока, потребляемого контролируемой СБИС, и первой гармоникой температурочувствительного параметра.

Сущность предлагаемого изобретения поясняется эпюрами на фиг.1 и состоит в следующем. При переключении контролируемой СБИС из режима выполнения специального теста в режим паузы будет изменяться потребляемый контролируемой СБИС ток, а значит, и потребляемая контролируемой СБИС мощность: в течение паузы СБИС потребляемая мощность относительно невелика, а в режиме выполнения специального теста - существенно (во много раз) больше (фиг.1, a); то есть контролируемая СБИС будет разогреваться импульсной мощностью, периодически изменяющейся со скважностью 2. Амплитуду первой гармоники греющей мощности (фиг.1, б) на частоте переключения можно определить, измерив первую гармонику I m 1 п о т тока, потребляемого контролируемой СБИС:

P m 1 = U п и т I m 1 п о т . ( 2 )

Если контролируемая СБИС размещена на массивном теплоотводе, то через некоторое время, превышающее три тепловых постоянных времени переход-корпус τTn-к контролируемой СБИС (t>3τТп-к), после начала периодического нагрева в контролируемой СБИС установится регулярный тепловой режим и температура θ(t) активной области СБИС будет пульсировать относительно среднего значения (фиг.1, в) с частотой Ω переключения СБИС из режима нагрева в режим паузы.

ТЧП контролируемой микросхемы UТП линейно связан с температурой θ(t) активной области СБИС: UТП(t)=KТθ(t), где КТ - известный температурный коэффициент ТЧП. Если в качестве ТЧП использовать напряжение на встроенном в ядро СБИС р-n переходе или напряжение логической единицы U в ы х 1 ( t ) на одном из выходов контролируемой СБИС, логическое состояние которого остается неизменным, то напряжение ТЧП будет пульсировать в противофазе с температурой θ(t), поскольку и напряжение на р-n переходе, и напряжение логической единицы имеют отрицательный температурный коэффициент. При этом амплитуда переменной составляющей ТЧП на частоте Ω будет пропорциональна амплитуде первой гармоники переменной составляющей температуры U m 1 Т П ( Ω ) = K T θ m 1 ( Ω ) (фиг.1, г). Соответственно амплитуда первой гармоники ТЧП с учетом (2) будет равна:

U m 1 Т П ( Ω ) = K T U п и т I m 1 п о т ( Ω ) | Z T ( Ω ) e j ϕ T ( Ω ) | . ( 3 )

Откуда и получаем выражение для теплового импеданса:

Z ( Ω ) = | Z T ( Ω ) | e j ϕ T ( Ω ) = U m 1 Т П ( Ω ) K T U п и т I m 1 п о т ( Ω ) e j ϕ T ( Ω ) , ( 4 )

где φТ(Ω) - разность фаз между первой гармоникой температуры рабочей поверхности кристалла контролируемой СБИС (фиг.1, д) и первой гармоникой греющей мощности (фиг.1, б).

На фиг.2 представлена структурная схема одного из вариантов устройства, реализующего предложенный способ. Устройство содержит источник 1 питания, контролируемую СБИС 2, размещенную на теплоотводе (монтажной плате), токосъемный резистор 3 с сопротивлением RI; резистор нагрузки 4 с сопротивлением RH, два селективных вольтметра 5 и 6 и измеритель 7 разности фаз. При этом положительный полюс источника 1 питания соединен с соответствующим контактным выводом контролируемой СБИС 2, а отрицательный полюс источника питания соединен с общей шиной устройства, при этом между общей шиной и контактным выводом контролируемой СБИС 2, предназначенным для подключения отрицательного полюса источника питания, включают токосъемный резистор 3 с сопротивлением RI, к выходу одного их выводов контролируемой СБИС, логическое состояние которого не изменяется при переключении контролируемой СБИС из режима нагрева в режим паузы, подключен резистор нагрузки 4 и первый селективный вольтметр 5, а вход второго селективного вольтметра 6 соединяют с контактным выводом контролируемой СБИС, предназначенным для подключения отрицательного полюса источника питания, при этом линейные выходы селективных вольтметров соединены со входами измерителя разности фаз.

Способ осуществляется следующим образом. По сигналу «Запуск» контролируемая СБИС начинает работать в режиме периодического переключения из режима выполнения специального теста в режим паузы; на вход первого селективного вольтметра 5, настроенного на частоту переключения Ω, подается напряжение логической единицы с нагруженного резистивной нагрузкой выхода контролируемой СБИС, логическое состояние которого остается неизменным, а напряжение с токосъемного резистора 3, пропорциональное току, потребляемому контролируемой СБИС, подается на вход второго селективного вольтметра 6, также настроенного на частоту переключения; сигналы с линейных выходов первого селективного вольтметра 5 и второго селективного вольтметра 6 подаются на первый и второй входы измерителя разности фаз соответственно; через некоторое время после начала периодического переключения контролируемой СБИС из режима выполнения специального теста в режим паузы регистрируются показание UCB1 первого селективного вольтметра 5, которое равно амплитуде первой гармонике ТЧП U C B 1 = U m 1 Т П ( Ω ) , и показание UCB2 второго селективного вольтметра 6, которое пропорционально первой гармонике тока, потребляемого контролируемой СБИС U C B 1 = R I I m 1 п о т и по показаниям селективных вольтметров вычисляют модуль теплового импеданса:

| Z T ( Ω ) | = R I U C B 2 K T U п и т U C B 1 ; ( 5 a )

а показания измерителя разности фаз Δφ после вычитания 180 равны фазе теплового импеданса:

ϕ T ( Ω ) = Δ ϕ 180 . ( 5 б )

Для исключения влияния токосъемного резистора на результат измерения ТЧП сопротивление токосъемного резистора необходимо выбирать как можно меньше, исходя из порога чувствительности селективного вольтметра, либо проводить измерение ТЧП при закороченном токосъемном резисторе.

Для повышения чувствительности метода контролируемую СБИС можно нагрузить различными периферийными устройствами, обращение к которым в режиме выполнения специального теста повышает ток, потребляемый СБИС.

Способ определения теплового импеданса сверхбольших интегральных схем (СБИС) - микропроцессоров и микроконтроллеров, состоящий в том, что в контролируемую СБИС, установленную на теплоотводе и подключенную к источнику питания, загружают «разогревающий» тест и программу управления, затем контролируемую СБИС включают в режим периодического нагрева путем переключения из режима выполнения «разогревающего» теста в режим паузы с частотой Ω и скважностью 2, на частоте переключения Ω измеряют амплитуду I m 1 п о т ( Ω ) первой гармоники потребляемого контролируемой СБИС тока, амплитуду U m 1 Т П ( Ω ) первой гармоники температурочувствительного параметра с известным отрицательным температурным коэффициентом KT, например, напряжения на встроенном в ядро контролируемой СБИС p-n переходе или напряжения логической единицы на одном из нагруженных резистивной нагрузкой выводов контролируемой СБИС, логическое состояние которого не изменяется при переключении контролируемой СБИС из одного режима в другой, и разность фаз φ(Ω) между первой гармоникой тока, потребляемого контролируемой СБИС, и первой гармоникой температурочувствительного параметра; модуль теплового импеданса контролируемой СБИС на частоте Ω определяют по формуле:
| Z T ( Ω ) | = U m 1 Т П ( Ω ) K T U п и т I m 1 п о т ( Ω ) ,
где Uпит - напряжение питания контролируемой БИС, а фазу φT(Ω) теплового импеданса контролируемой СБИС определяют как уменьшенную на 180° разность фаз между первой гармоникой температурочувствительного параметра и первой гармоникой тока, потребляемого контролируемой СБИС.



 

Похожие патенты:

Изобретение относится к измерительной технике и может применяться для исследования измерительных характеристик и контроля точности работы измерительного устройства многоточечных измерительных систем с входной коммутацией датчиков.

Изобретение предназначено для использования на выходном и входном контроле качества цифровых КМОП интегральных микросхем и оценки их температурных запасов. Сущность: на входы одного или нескольких логических элементов контролируемой микросхемы подают последовательность высокочастотных переключающих греющих импульсов частотой Fгр, модулированных последовательностью прямоугольных видеоимпульсов с постоянным периодом следования Тсл, длительность τр которых изменяется по гармоническому закону с частотой ΩМ.

Изобретение относится к способам испытаний полупроводниковых приборов на стойкость к воздействию тяжелых заряженных частиц различных энергий космического пространства.
Изобретение относится к полупроводниковой микроэлектронике и может быть использовано при создании и многократном регулировании сопротивления металлических перемычек, соединяющих электроды твердотельных приборов, работа которых основана на полярнозависимом электромассопереносе в кремнии (ПЭМП).

Изобретение относится к технике измерения параметров интегральных микросхем и может быть использовано для контроля качества цифровых интегральных микросхем на основе КМОП логических элементов (ЛЭ).

Изобретение относится к области приборостроения и может быть использовано в контрольно-поверочной аппаратуре, для измерения технических параметров аварийных радиомаяков и радиобуев.

Изобретение относится к области электронной техники, в частности предназначено для разбраковки КМОП микросхем, изготовленных на КНД ("кремний на диэлектрике") структурах, по радиационной стойкости.

Изобретение относится к испытательной технике и может быть использовано для диагностики функционирования микросхем оперативной памяти во всех отраслях микроэлектроники и радиотехники.

Изобретение относится к контрольно-измерительной технике. .

Изобретение относится к области электротехники и может использоваться в источниках питания для исключения в них коротких замыканий при «пробое» тиристоров и сохранения выходного напряжения.

Изобретение относится к области приборостроения и может быть использовано для измерения температуры активной области светоизлучающих диодов. Заявлен cпособ измерения переходных тепловых характеристик светоизлучающих диодов (СИД), при котором инжекционный ток подают в виде последовательности импульсов нарастающей длительности с периодом между импульсами, достаточными для остывания активной области и не менее времени считывания сигнала с выхода фотоприемной линейки. Далее на СИД подают постоянный инжекционный ток и измеряют спектр излучения в заданные моменты времени в течение цикла измерения вплоть до полного разогрева СИД. В устройстве для реализации способа последовательно соединены генератор инжекционного тока, светоизлучающий диод, электрооптический затвор, монохроматор и приемно-преобразовательный блок, включающий в качестве фотоприемного устройства многоэлементную фотоприемную линейку, первый и второй генераторы импульсов, АЦП и микроконтроллер. Управляющие выходы микроконтроллера соединены с входом генератора инжекционного тока и с входом первого генератора импульсов, выход которого соединен с управляющими входами электрооптического затвора и второго генератора импульсов, выходы которого соединены с управляющими входами фотоприемного устройства и АЦП. Технический результат - повышение точности определения переходных тепловых характеристик светоизлучающих диодов. 2 н.п. ф-лы, 2 ил.

Изобретение относится к микроэлектронике, а именно к способам испытаний интегральных схем (ИС) на коррозионную стойкость. Сущность: перед испытанием ИС проводят проверку внешнего вида, электрических параметров и проверку герметичности, нагревают до температуры плюс 125°С со скоростью не более 100°С/мин, выдерживают при этой температуре 1 ч, резко охлаждают до минус 55°С со скоростью не более 100°С/мин, выдерживают при данной температуре 0,5 ч, плавно нагревают до плюс 2°С в течение 1 ч. и выдерживают в течение 0,5 ч. Проводят не менее 16 непрерывно следующих друг за другом циклов по 3 ч каждый. Технический результат: повышение объективности оценки наличия влаги внутри корпуса ИС. 1 ил.

Изобретение относится к технике испытаний и может быть использовано при наземной экспериментальной отработке радиоэлектронной аппаратуры космических аппаратов в диапазоне давлений окружающей среды от атмосферного до соответствующего глубокому вакууму. Технический результат - повышение достоверности испытаний элементов радиоэлектронной аппаратуры на стойкость к дугообразованию при выходе из строя электрорадиотехнического изделия внутри радиоэлектронной аппаратуры, приводящего к инициированию первичного дугового разряда и способного приводить к вторичным самоподдерживающимся дугам при недостаточной стойкости испытываемого элемента аппаратуры. Питание первичного дугового разряда, горящего в промежутке между электродами, осуществляется с использованием напряжения, равного напряжению бортовой кабельной сети космического аппарата, а инициирование разряда осуществляется путем электрического пробоя промежутка высоковольтным импульсом напряжения, длительность которого не превышает времени прохождения плазменным фронтом расстояния от места инициирования разряда до крайней точки электродов, обращенной в сторону испытываемого элемента. 2 ил.

Изобретение относится к области тестирования дискретных объектов большой размерности. Техническим результатом является повышение глубины локализации неисправностей. Устройство содержит m n-разрядных многовходовых сигнатурных анализаторов (СА строк), входы которых соединены со всеми mn выходами одновыходных блоков проверяемого объекта, n m-разрядных многовходовых сигнатурных анализаторов (СА столбцов), входы которых соединены со входами СА строк так, что j-e входы (j=1,…, n) всех m СА строк соединены со всеми m входами j-го СА столбцов. 1 ил.

Изобретение относится к измерительной технике, представляет собой устройство для определения исправности полупроводниковых диодов и может быть использовано для автоматического бесконтактного контроля технического состояния мостовых диодных выпрямителей. Устройство содержит два датчика напряженности внешнего магнитного поля, размещенных на токопроводе первичной обмотки трансформатора выпрямителя и на токопроводе нагрузки выпрямителя соответственно, два узкополосных фильтра, настроенные на частоты 2ω и ω соответственно, три компаратора, настроенные на разные уровни срабатывания, логические элементы И-НЕ и И, индикаторы «обрыв» и «пробой». Техническим результатом является повышение надежности работы устройства за счет исключения влияния положения оси чувствительности датчика напряженности внешнего магнитного поля и исключения возможности ложных срабатываний устройства. 1 ил., 1 табл.

Изобретение относится к технике измерения параметров элементов электрических цепей и может быть использовано для измерения параметров элементов многоэлементных двухполюсников, в том числе параметров элементов эквивалентных схем замещения полупроводниковых приборов. На контролируемый n-элементный двухполюсник подают напряжение в виде случайного сигнала, имеющего равномерный амплитудный спектр в диапазоне частот, перекрывающем диапазон частот, за пределами которого модуль импеданса двухполюсника можно считать не зависящим от частоты с заданной погрешностью. На образцовом резисторе, включенном последовательно с двухполюсником, измеряют напряжение, пропорциональное току двухполюсника. По двум параллельным каналам записывают в память ЭВМ временные реализации сигналов, подаваемого на двухполюсник и снимаемого с образцового резистора, после чего рассчитывают спектральные плотности напряжения и тока, рассчитывают частотные зависимости модуля и фазы импеданса двухполюсника, определяют характерные частоты. Составляют и решают систему из n уравнений относительно параметров эквивалентной схемы замещения n-элементного линейного двухполюсника. Технический результат заключается в сокращении времени измерения параметров эквивалентных схем замещения многоэлементных линейных двухполюсников. 2 ил.

Использование: для контроля качества цифровых интегральных микросхем КМОП логическими элементами и оценки их температурных запасов. Сущность изобретения заключается в том, что способ включает подачу напряжения на контролируемую микросхему, переключение логического состояния греющего логического элемента последовательностью периодических импульсов, измерение изменения температурочувствительного параметра, определение теплового сопротивления, при этом греющий логический элемент переключается высокочувствительными импульсами, а в качестве температурочувствительного параметра используют длительность периода следования низкочастотных импульсов, генерируемых мультивибратором, и мультивибратор состоит из логического элемента контролируемой микросхемы и логического элемента образцовой микросхемы, работающей вместе с пассивными элементами мультивибратора при неизменной температуре. Технический результат: обеспечение возможности уменьшения времени измерения и погрешности измерения температурочувствительного параметра. 2 ил.

Изобретение относится к технике измерения тепловых параметров полупроводниковых приборов и интегральных микросхем и может быть использовано для контроля качества и оценки температурных запасов цифровых интегральных микросхем на выходном и входном контроле. Сущность: нечетное число (n>1) логических элементов контролируемой микросхемы соединяют по схеме кольцевого генератора. Замыкая цепь обратной связи кольцевого генератора на некоторое время цикла измерения, включают режим генерации высокочастотных импульсов, что приводит к нагреву микросхемы. В качестве температурочувствительного параметра измеряют частоту следования импульсов кольцевого генератора в начале fнач и в конце fкон цикла измерения. Измеряют средний ток, потребляемый микросхемой от источника питания. Определяют тепловое сопротивление переход-корпус по формуле: , где Δf=fнач-fкон - изменение частоты следования импульсов кольцевого генератора; - средний ток, потребляемый контролируемой микросхемой за время цикла измерения; Епит - напряжение питания микросхемы, Кf - температурный коэффициент частоты следования импульсов кольцевого генератора. Технический результат: уменьшение погрешности измерения. 2 ил.

Использование: для выяснения причин отказов устройства или для оценки качества процесса производства внутренней части электронного устройства. Сущность изобретения заключается в том, что способ, в котором выполняют анализ образца электронного устройства посредством замера некоторого свойства в нескольких точках указанного образца и подвергают, до выполнения анализа, указанные несколько точек, по меньшей мере, одной обработке, увеличивающей различие указанного свойства, по меньшей мере, в двух элементах образца электронного устройства, представляющих собой, по меньшей мере, два слоя пакета слоев, включенного в электронное устройство, при этом указанная обработка включает резку пакета слоев таким образом, что создается различие морфологии в поверхности среза, по меньшей мере, между двумя из указанных слоев пакета. Технический результат: обеспечение возможности облегчения исследования качества электронного устройства. 3 з.п. ф-лы, 1 ил.

Изобретение относится к встроенному логическому анализатору и, в частности, к программируемому встроенному логическому анализатору для анализа электронной схемы. Устройство для тестирования и отладки электронной схемы, содержащее логический анализатор, имеющий первый вход, принимающий множество сигналов, и выход для обеспечения индикации обнаружения, с помощью логического анализатора, по меньшей мере одного запускающего события; и блок со встроенным самотестированием (BIST), имеющий первый вход для приема одного или более сигналов, появляющихся на первом входе логического анализатора, второй вход, соединенный с выходом логического анализатора для избирательного задействования блока BIST, причем блок BIST генерирует и поддерживает сигнатуру на основании первого и второго его входов. Технический результат заключается в расширении функциональных возможностей. 3 н. и 16 з.п. ф-лы, 17 ил.
Наверх