Флажковый ветрогенератор



Флажковый ветрогенератор
Флажковый ветрогенератор
Флажковый ветрогенератор
Флажковый ветрогенератор
Флажковый ветрогенератор
Флажковый ветрогенератор
Флажковый ветрогенератор
Флажковый ветрогенератор

 


Владельцы патента RU 2522126:

Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук (RU)

Изобретение относится к области ветроэнергетики. Флажковый ветрогенератор содержит ветроприемник, выполненный в виде струн, расположенных в ветровом потоке между стойками, преобразователь колебаний струн в полезную энергию. Струны, натянутые между стойками, содержат навешанные на них полотнища в виде флажков, так что они делят струну между стойками на равные половины. Преобразователь энергии колебаний в полезную энергию установлен между центром струн и точкой поверхности, на которой расположены стойки для их крепления, являющейся проекцией центра струн на указанную поверхность. Изобретение позволяет повысить КПД и надежность ветрогенератора. 13 з.п. ф-лы, 8 ил.

 

Изобретение относится к области ветроэнергетики, а точнее к безлопастным ветряным преобразователям, и может быть использовано в автономных источниках, преобразующих энергию ветрового потока в полезную энергию.

Известен безлопастной преобразователь ветрового потока в полезную энергию, в частности в электрическую, содержащий ветроприемники, выполненные в виде упруго натянутых лент, соединенных посредством тяг с подпружиненной подвижной частью, и линейные электрогенераторы, преобразующие колебания лент в электроэнергию (см. патент RU № 2391556 С1, 10.06.2010).

Недостаток известного безлопастного преобразователя заключается в том, что его КПД невысок. Кроме того, его конструкция сложна, а для его работы необходимо учитывать направление ветра.

В качестве прототипа выбран безлопастной преобразователь ветрового потока в полезную энергию, в частности в электрическую, описанный в патенте RU 2244850 С2, (20.01.2005).

Известный безлопастной преобразователь энергии, содержит ветроприемник, выполненный из струн-проводников, размещенных в магнитном поле, а энергия преобразования получается за счет электромагнитной индукции путем воздействия на проводники набегающего потока воздуха и магнитного поля.

Достоинством прототипа является относительная простота конструкции.

Его недостаток заключается в невысоком КПД. Кроме того, для генерации сигнала необходимо учитывать направление ветра, что приводит к усложнению устройства.

Задачей данного изобретения является создание простого и надежного безлопастного преобразователя ветровой энергии в полезную энергию, в частности в электрическую, генерирующего энергию, достаточную для промышленного применения.

Техническим результатом является повышение КПД и надежности преобразователя ветровой энергии в полезную энергию, в частности в электрическую, а также обеспечение универсальности и упрощение конструкции.

Технический результат достигается за счет того, что в безлопастном преобразователе ветровой энергии в электрическую, содержащем ветроприемник, выполненный в виде струн, расположенных в ветровом потоке, и преобразователь колебания струн в полезную энергию, согласно изобретению струны, натянутые между стойками, содержат навешанные на них на равном расстоянии друг от друга полотнища в виде флажков, так что они делят струну между стойками на равные половины, а преобразователь энергии колебаний в полезную энергию установлен между центром струн и точкой поверхности, на которой расположены стойки для их крепления, являющейся проекцией центра струн на указанную поверхность.

Струны флажкового ветрогенератора могут образовывать общий центр за счет пересечения их в одной точке.

Струны флажкового ветрогенератора могут располагаться по диаметру окружности, деля окружность на равные дуги.

Полотнища могут содержать кулисы, в которые вздеваются струны.

Полотнища могут быть навешаны на струну наподобие сушащегося белья.

В качестве материала полотнищ могут быть использованы легкие синтетические ткани, например нейлон.

В качестве материала полотнищ могут быть использованы плотные синтетические ткани.

В качестве материала полотнищ могут быть использован жесткий материал, например пластмасса.

Жесткий материал полотнищ может быть выполнен из поперечных полос, соединенных между соседними полосами гибкими связями.

В центре нижних кромок полотнищ могут быть выполнены отверстия, через которые проложен корд, соединяющий полотнища, расположенные на равном расстоянии от центра

Нижние кромки полотнищ могут содержать твердые накладки, в центре которых выполнены отверстия, и через отверстия полотнищ, расположенные на равном расстоянии от центра окружности, проложен корд, свободно свисающий между полотнищами.

Преобразователь колебаний струн в полезную энергию может быть выполнен в виде гидравлического насоса, создающего перепад давлений между приемной емкостью и напорной емкостью.

Между напорной емкостью и приемной емкостью может быть установлен электрический генератор, работающий на перепаде давлений между емкостями.

Преобразователь колебаний струн в полезную энергию может быть выполнен в виде линейного электрогенератора, установленного на подпружиненных растяжках.

Линейный генератор может быть выполнен в виде инерционного магнитного генератора с обращенными навстречу друг другу одноименными электромагнитами.

Изготовление ветроприемника в виде струн, на которые на равном расстоянии друг от друга навешаны полотнища, позволяет повысить чувствительность системы. Установка преобразователя энергии колебаний в полезную энергию между центром струн и поверхностью, на которой расположены стойки для крепления струн, повышает удельную мощность преобразователя энергии колебаний и упрощает конструкцию устройства.

Образование общего центра за счет пересечения струн флажкового ветрогенератора в одной точке позволяет использовать ветровой поток, идущий с любого направления. Установка в центре окружности на подпружиненных растяжках между центром струн и фундаментом преобразователя энергии колебаний в электрическую энергию способствует повышению удельной мощности преобразователя энергии и ведет к упрощению конструкции ветроприемника.

Струны флажкового ветрогенератора могут располагаться по диаметру окружности, деля окружность на равные дуги. Расположение струн по диаметру обруча позволяет использовать ветровой поток, идущий с любого направления. Установка в центре окружности на подпружиненных растяжках между центром струн и фундаментом преобразователя энергии колебаний в электрическую энергию способствует повышению удельной мощности преобразователя энергии и ведет к упрощению конструкции ветроприемника.

Наличие кулис в полотнищах, в которые вздеваются струны, позволяет относительно легко формировать ветроприемник.

Набрасывание полотнищ на струны дает возможность до предела упростить формирование ветроприемника и облегчить его ремонт.

Использование в качестве материала полотнищ легких синтетических тканей обеспечивает работу ветроприемника даже при легком дуновении ветра.

Использование в качестве материала полотнищ плотных синтетических тканей повышает долговечность работы ветроприемника.

Использование в качестве материала полотнищ жесткого материала, например пластмассы, также способствует долговечности ветряного преобразователя.

Выполнение полотнищ из жесткого материала, изготовленного из поперечных полос, соединенных между соседними полосами гибкими связями, повышает чувствительность ветроприемника.

Наличие твердых накладок на кромки полотнищ, в центре которых выполнены отверстия, с кордом, свободно свисающим между полотнищами, повышает долговечность полотнищ и также предотвращает забрасывание полотнищ на струны.

Наличие в центре нижних кромок отверстий, через которые проложен корд, соединяющий полотнища, расположенные на равном расстоянии от центра, предотвращает возможность забрасывания полотнищ на струны.

Выполнение преобразователя энергии колебания струн в полезную энергию в виде гидравлического насоса, создающего перепад давлений между приемной емкостью и напорной емкостью, обеспечивает универсальность предлагаемого ветрогенератора.

Между напорной емкостью и приемной емкостью может быть установлен электрический генератор, работающий на перепаде давлений между емкостями.

Выполнение преобразователя энергии колебаний в полезную энергию в виде линейного электрогенератора ведет к упрощению конструкции машины.

Выполнение линейного генератора в виде инерционного магнитного генератора с обращенными навстречу друг другу одноименными электромагнитами до предела снижает металлоемкость конструкции.

Флажковый ветрогенератор иллюстрируется восемью фигурами.

На фиг.1 представлен общий вид ветроприемника с полотнищами, навешанными на струны.

На фиг.2 изображен преобразователь энергии колебаний в полезную энергию, выполненный в виде гидравлического насоса.

Фиг.З имеется вид структурной схемы с гидравлическим преобразователем для получения электрической энергии.

На фиг.4 нарисован преобразователь энергии, выполненный в виде линейного электрогенератора.

На фиг.5 имеется чертеж электрогенератора, выполненного в виде инерционного магнитного генератора с обращенными навстречу друг другу одноименными электромагнитами.

На фиг.6 начерчена принципиальная электрическая схема для электрогенераторов.

На фиг.7 изображен ветроприемник, струны которого расположены по диаметрам окружности обруча, вид сверху.

На фиг.8 представлен общий вид ветроприемника с полотнищами, по краю которых вставлены твердые накладки, с отверстиями для корда.

Флажковый ветрогенератор выполнен следующим образом. На поверхности 1 (фиг.1) установлены стойки 2. Между стойками 2 натянута струна 3, на которую навешаны полотнища 4 в виде флажков. Полотнища 4 навешивают равномерно с таким расчетом, чтобы они делили струну между стойками 2 на равные половины. Между центром струн 3 и поверхностью 1 расположен преобразователь энергии колебаний в полезную энергию 5, крепящийся с помощью пружинных растяжек 6 и 7. Растяжка 6 в верхней своей точке прикреплена к центральной точке струны 3. Растяжка 7 в нижней точке сочленена с поверхностью в месте, являющимся проекцией центральной точки струны на фундамент.

В полотнищах 4 могут быть выполнены кулисы (на фиг. не показаны), в которые вздеваются струны.

Полотнища 4 могут быть навешаны на струну 3 наподобие сушащегося белья. В этом случае нижние кромки полотнищ должны быть сочленены между собой.

В качестве материала полотнищ 4 могут быть использованы легкие синтетические ткани, например нейлон.

В качестве материала полотнищ 4 могут быть использованы плотные синтетические ткани.

В качестве материала полотнищ 4 может быть использован жесткий материал, например пластмасса.

Жесткий материал полотнищ 4 может быть выполнен из поперечных полос, шарнирно соединенных между соседними полосами гибкими связями, выполненными, например, в виде петлевых шарниров (на фиг. не показан).

Во всех вариантах исполнения полотнища 4 должны быть жестко зафиксированы в своем положении во избежание их возможного смещения вдоль струны 3. Методы фиксации выбираются в зависимости от материала полотнищ и струн.

Если струны 3 расположены несколькими параллельными рядами, то каждая такая струна должна иметь собственный преобразователь энергии колебаний.

В свою очередь преобразователь энергии колебаний может быть выполнен в виде гидравлического насоса 8 (фиг.2). Корпус насоса 8 сочленен с шарниром 9, установленным на поверхности 1, а шток 10 сочленен с центром струны 3. Шарнир 9 сочленен с поверхностью в точке, являющейся проекцией центральной точки струны на эту поверхность 1.

На фиг.2 изображен насос двухстороннего действия с обратными клапанами 11, 12 и 13, 14. Для преобразования энергии колебаний поршня (на фиг. не обозначен) насоса применены баки 15 и 16. Бак 15 является приемным, а бак 16 - напорным. В напорном баке имеется датчик напора 17. Между баками 16 и 17 проложен трубопровод 18, в котором установлен электрический гидрогенератор 19. Напорный бак 16 связан с гидравлическим насосом 8 с помощью шлангов 20 и 21, а приемный бак связан с насосом с помощью шлангов 22 и 23. При этом в шланге 20 установлен клапан 13, в шланге 21 клапан 12, в шланге 22 клапан 11, а в шланге 23 клапан 14. В трубопровод 18 вставлен управляемый вентиль 25, сигнал на включение и отключение которого поступает от датчика напора 17.

Преобразователь энергии может быть выполнен в виде линейного электрогенератора 26 (фиг.4), который содержит статор 27, сочлененный с шаровым шарниром 9, и вторичное тело - бегун 28. Бегун подвешен на пружинных растяжках 6 и 7.

Линейный электрогенератор может быть выполнен в виде инерционного магнитного генератора 29 (фиг.5) с обращенными навстречу друг другу одноименными электромагнитами 30, 31, 32, 33. Генератор подвешен на растяжках 6 и 7, так же как и вторичное тело 28.

Все виды перечисленных генераторов соединены по принципиальной электрической схеме (фиг.6), на которой выходные зажимы генератора переменного тока 34 подключены к двухполупериодному мостовому выпрямителю 35. Параллельно цепи постоянного тока выпрямителя подключены конденсатор 36 и аккумулятор 37. На выходе схемы установлен преобразователь 38 постоянного тока в переменный промышленной частоты.

В варианте исполнения струны 3 расположены по диаметру окружности обруча 39 (фиг.7), деля окружность на равные дуги, так, чтобы они пересекались в ее центре, где они скреплены. При этом требуется только один преобразователь энергии колебаний (на фиг. не показан), помещаемый в центре окружности обруча 39. В качестве преобразователя может быть использовано одно из перечисленных выше устройств. Преобразователь установлен так же, как это показано на фиг.2, 3, 4, 5 или 6. Полотнища также должны быть навешаны равномерно с таким расчетом, чтобы они делили каждую струну между стойками 2 на равные половины и должны быть зафиксированы на струне во избежание их продольного перемещения.

В центре нижних кромок полотнищ могут быть выполнены отверстия, через которые проложен корд, свободно свисающий и соединяющий полотнища, расположенные на равном расстоянии от центра (не показано). Корд необходим для того, чтобы предотвратить забрасывания краев полотнищ на струны.

Нижние кромки полотнищ могут содержать твердые накладки 40 (фиг.8), в центре которых выполнены отверстия 41, и через эти отверстия полотнищ, расположенных на равном расстоянии от центра окружности, проложен корд, свободно свисающий между полотнищами (на фиг. не показан).

Флажковый ветроприемник, преобразующий энергиию ветра в полезную энергию, работает следующим образом. Под воздействием ветра на конструкцию, показанную на фиг.1, полотнища-флажки 4 начинают колыхаться. Их движение передается на струну 3, и последняя приводит в возвратно-поступательное движение преобразователь энергии механических колебаний в полезную энергию 5. Если в качестве такого преобразователя использован гидравлический насос 8 (фиг.2), то его шток, сочлененный с центром струны 3, приходит в движение и насос начнет качать жидкость из приемного бака 15 в напорный бак 16. При некотором перепаде давления по сигналам датчика давления 17 открывается управляемый клапан 25 и жидкость по трубопроводу 18 потечет обратно в приемный бак, приводя во вращение генератор 19. Этот генератор при соответствующем перепаде давлений будет вырабатывать электроэнергию промышленной частоты. Насос может быть использован и просто как нагнетатель жидкости в водопроводной системе.

Энергия, вырабатываемая преобразователем энергии, выполненным в виде линейного электрогенератора 26 (фиг.4) или в виде инерционного магнитного генератора 29 (фиг.5), выпрямляется выпрямителем 35, аккумулируется в аккумуляторе 37 и после преобразователя 38 поступает потребителю. По этой же схеме может быть включен и генератор 19. В этом случае требования к выходным параметрам гидравлической схемы (фиг.3) могут быть снижены, а схема упрощена.

Если в качестве материала полотнищ 4 использованы легкие синтетические ткани, например нейлон, то ветроприемник способен реагировать даже на легкое дуновение ветра.

Если в качестве материала полотнищ 4 использованы плотные синтетические ткани, то чувствительность ветроприемника снижается, но повышается его долговечность.

Жесткий материал полотнищ 4 будет несколько сложнее в изготовлении, но способен работать при различной силе ветра. При этом его долговечность повышается.

Если материал полотнищ выполнен из поперечных полос жесткого материала, гибко соединенных между соседними полосами, то такой ветроприемник рассчитан на длительный период работы и способен реагировать даже на слабые колебания ветра.

Наибольшей удельной мощностью обладает ветроприемник, в котором струны 3 расположены по диаметру окружности обруча 39 (фиг.7). Этот ветроприемник работает вне зависимости от направления ветра. При этом требуется только один преобразователь энергии колебаний, помещаемый в центре окружности обруча 39. В качестве преобразователя может быть использовано одно из перечисленных выше устройств. Для предупреждения забрасывания полотнищ на струны при сильных порывах ветра нижние кромки полотнищ снабжены отверстиями, через которые проложен корд, свободно свисающий и соединяющий полотнища, расположенные на равном расстоянии от центра. Такую же роль выполняют и твердые накладки 40 (фиг.8).

Представленный ветроприемник легко монтируется, не требует больших капитальных затрат и способен генерировать электрическую энергию в течение длительного времени.

1. Флажковый ветрогенератор, содержащий ветроприемник, выполненный в виде струн, расположенных в ветровом потоке между стойками, и преобразователь колебаний струн в полезную энергию, отличающийся тем, что струны, натянутые между стойками, содержат навешанные на них на равном расстоянии друг от друга полотнища в виде флажков, так что они делят струну между стойками на равные половины, а преобразователь энергии колебаний в полезную энергию установлен между центром струн и точкой поверхности, на которой расположены стойки для их крепления, являющейся проекцией центра струн на указанную поверхность.

2. Флажковый ветрогенератор по п.1, отличающийся тем, струны образуют общий центр за счет пересечения их в одной точке.

3. Флажковый ветрогенератор по п.2, отличающийся тем, что струны расположены по диаметру окружности, деля окружность на равные дуги.

4. Флажковый ветрогенератор по п.2, отличающийся тем, что полотнища содержат кулисы, в которые вздеваются струны.

5. Флажковый ветрогенератор по п.2, отличающийся тем, что полотнища навешаны на струну наподобие сушащегося белья.

6. Флажковый ветрогенератор по п.2, отличающийся тем, что в качестве материала полотнищ использованы легкие синтетические ткани, например нейлон.

7. Флажковый ветрогенератор по п.2, отличающийся тем, что в качестве материала полотнищ использованы плотные синтетические ткани.

8. Флажковый ветрогенератор по п.2, отличающийся тем, что в качестве материала полотнищ использован жесткий материал, например пластмасса.

9. Флажковый ветрогенератор по п.2, отличающийся тем, что материал полотнищ выполнен из поперечных жестких полос, соединенных между соседними полосами гибкими связями.

10. Флажковый ветрогенератор по п.2, отличающийся тем, что в центре нижних кромок полотнищ выполнены отверстия, через которые проложен корд, соединяющий полотнища, расположенные на равном расстоянии от центра.

11. Флажковый ветрогенератор по п.2, отличающийся тем, что нижние кромки полотнищ содержат твердые накладки, в центре которых выполнены отверстия, и через отверстия полотнищ, расположенных на равном расстоянии от центра окружности, проложен корд, свободно свисающий между полотнищами.

12. Флажковый ветрогенератор по п.2, отличающийся тем, что преобразователь энергии колебаний в полезную энергию выполнен в виде гидравлического насоса, создающего перепад давлений между приемной емкостью и напорной емкостью, а между напорной емкостью и приемной емкостью установлен генератор, преобразующий энергию перепада давлений в электрическую энергию.

13. Флажковый ветрогенератор по п.2, отличающийся тем, что преобразователь энергии колебаний в полезную энергию выполнен в виде линейного электрогенератора, установленного на подпружиненных растяжках.

14. Флажковый ветрогенератор по п.2, отличающийся тем, что преобразователь энергии выполнен в виде инерционного магнитного генератора с обращенными навстречу друг другу одноименными электромагнитами.



 

Похожие патенты:

Изобретение относится к ветроэнергетике и может быть использовано в качестве автономного источника электроснабжения. Циклоидный ветродвигатель содержит опорную мачту, полые овальные трубы с установленными на их концах поворотными вертикальными лопастями, планетарный редуктор с заторможенной центральной конической шестерней, генератор, реверсивный электропривод, флюгер с контактной группой переключателей для самоориентации лопастей на ветер, противобуревый эксцентриковый флажок с подвижной конусной втулкой и размыкатели кинематических связей лопастей.

Изобретение относится к области энергетики, а именно к осевым ветроэнергетическим установкам. Ветроэнергетическая установка с пониженным уровнем шума содержит неподвижно закрепленные на оси передний и задний обтекатели, расположенный между ними ротор в виде втулки с лопатками основной ветротурбины и кольцевой диффузорный ускоритель.

Изобретение относится к оптимизированной структуре для привода и ускоренного (принудительного) взлета аэродинамических поверхностей для тропосферного эолового генератора.

Изобретение относится к области ветроэнергетики и может быть использовано для преобразования энергии ветра в другие виды энергии. .

Изобретение относится к области энергетики и может быть использовано для преобразования энергии, содержащейся в горизонтальных потоках естественных текучих сред, в полезную механическую или электрическую энергию.

Изобретение относится к области ветроэнергетики. .

Изобретение относится к возобновляющимся источникам энергии. .

Изобретение относится к энергетике, а именно к энергетическим установкам, преобразующим кинетическую энергию ветрового потока в другие виды энергии, и может быть использовано в промышленности, жилищно-коммунальном хозяйстве или в качестве автономного источника энергии.

Система (20) генерирования электроэнергии содержит воздушный электрогенератор (30), узел (40) страховочного фала, сконфигурированный с возможностью передачи электроэнергии от воздушного электрогенератора на землю. Узел страховочного фала содержит первый конечный участок (42), связанный с воздушным электрогенератором, и узел (50) лебедки, включающий барабан (52), стол и переходный узел. В первом варианте способ управления страховочным фалом содержит этапы, на которых набирают высоту воздушного электрогенератора, пилотируют воздушный электрогенератор вниз, генерируют электроэнергию воздушным электрогенератором так, что электроэнергия пропускается по страховочному фалу к наземной станции, и пилотируют воздушный электрогенератор на землю. Во втором варианте способ управления страховочным фалом содержит этапы, на которых развертывают воздушный электрогенератор, подматывают страховочный фал, зажимают страховочный фал зажимным узлом, отслеживают первые положения вдоль страховочного фала и зажимают страховочный фал во вторых положениях вдоль страховочного фала. Группа изобретений направлена на оптимизацию аэродинамического сопротивления. 3 н. и 12 з.п. ф-лы, 14 ил.

Представлена препятствующая перекручиванию трансмиссионная и направляющая система, содержащая по меньшей мере один первый и второй трос, проходящие взаимно параллельно вдоль оси (X-X) и натянутые между соответствующей сматывающей и разматывающей системой и по меньшей мере одним выходным направляющим и трансмиссионным узлом таких тросов, при этом по меньшей мере один препятствующий перекручиванию направляющий и трансмиссионный узел тросов установлен между сматывающей и разматывающей системой и выходным направляющим и трансмиссионным узлом. Вращение препятствующего перекручиванию направляющего и трансмиссионного узла вокруг оси (Х-Х) вращения обеспечивает сматывание тросов в виде спирального цилиндра вдоль оси (Х-Х) вращения без точек контакта или трения между тросами. 7 з.п. ф-лы, 8 ил.

Изобретение относится к ветроэнергетическим установкам и способам производства электроэнергии. Основным элементом ветроэнергетической установки является аэродинамическая поверхность в форме крыла, в теле которого выполнен канал, соединяющий противоположные поверхности крыла. Засасываемый в этот канал воздух приводит во вращение турбину и связанный с ней электрогенератор. Установка может быть стационарной или мобильной. 2 н. и 7 з.п. ф-лы, 10 ил.

Изобретение относится к возобновляемой энергетике и может быть использовано при разработке новых типов ветроустановок разной мощности, работающих в свободных воздушных потоках. Для создания компактной конструкции и компенсации образуемых лопастями больших опрокидывающих усилий генератор с мультипликатором и узел крепления поворотной консоли с лопастями смещены относительно дополнительного неподвижного несущего корпуса в сторону набегающего воздушного потока и установлены на верхней площадке наклонной поворотной рамы. При этом рама жестко связана внизу с размещенным в несущем корпусе на подшипниках центральным вертикальным валом, заторможенным червячным редуктором, который кинематически связан через пару конических шестерен с реверсивным электродвигателем постоянного тока, управляемым флюгером и контактной группой переключателей, размещенных на верхнем конце центрального вала. Изобретение способствует созданию компактных, устойчивых к опрокидыванию, бесшумных и безопасных ветроустановок, позволяющих размещать их на крышах зданий и палубах несамоходных плавсредств, способных при этом плавать неограниченное время без потребления углеводородного топлива и без парусной оснастки, а также дополнительно использоваться в качестве малых мобильных и автономных электростанций. 4 з.п. ф-лы, 5 ил.

Изобретение относится к ветроэнергетическим установкам с главным валом ветротурбины, параллельным ветровому потоку. Цилиндрическая ветротурбина установлена на валу ветроэнергетической установки и содержит лопасти, размещенные на радиальных штангах. Каждая лопасть имеет аэродинамический профиль. Ветротурбина выполнена в виде цилиндра и установлена на главном горизонтальном валу. На этом же валу расположен конический редуктор, втулки с подшипниками, обеспечивающими вращение главного вала. Поверхность цилиндра примыкает к переднему и заднему колесам. Колеса состоят из ободов, ступиц, радиальных штанг. Ступицы закреплены на главном горизонтальном валу ветроэнергетической установки. Радиальные штанги выполнены плоскими. Радиальные штанги соединяют обода колес со своими ступицами. Колеса имеют по N>2 симметрично расположенных штанг. Положение штанг заднего колеса сдвинуто относительно штанг переднего на угол β. Угол β задает угол атаки α для всех N лопастей и фиксируется ступицей заднего колеса. На штангах находятся точки крепления ближайших боковин всех N лопастей. К одноименным точкам крепления штанг на ободах обоих колес крепятся N ребер. К ребрам подсоединены противоположные боковины соответствующих лопастей. К задней кромке N лопастей на шарнире прикреплены закрылки с нагрузочными планками на их нижней кромке и ограничителями, совпадающими по направлению с нижней плоскостью лопастей. Технический результат заключается в простоте и надежности конструкции и отсутствии вибрационных шумов. 1 з.п. ф-лы, 8 ил.

Изобретение относится к способу получения вторичного энергоносителя - водорода посредством преобразования энергии ветра. Способ получения вторичного энергоносителя - водорода посредством преобразования энергии ветра включает преобразование посредством парусного движителя кинетической энергии ветра в кинетическую энергию движения судна, движущегося в районах открытого океана с мощными воздушными потоками, и затем посредством гидравлической турбины и электрогенератора в электрическую энергию, которую используют для разложения воды на водород и кислород с ожижением и накоплением водорода в криогенных резервуарах. В качестве плавающего судна используют катамаран с парусным движителем, работающим по физическому принципу подъемной силы крыла. Гидротурбину и электрогенератор используют одновременно в качестве балласта, перемещая их по вертикали, обеспечивая и требуемую остойчивость катамарана при сильных порывах ветра. Изобретение направлено на повышение коэффициента использования энергии ветра и мощности парусного движителя. 2 ил.

Изобретение относится к ветроэнергетическим установкам. Аэроплавательный виндротор содержит ортогональную турбину из лопастей крыловидного профиля и совмещенный с ней генератор, поднятые над землей плоско-выпуклой аэростатной оболочкой положительной плавучести, имеющей жесткое горизонтальное днище и гибкие тросовые связи с наземной лебедкой. Днище аэростатной оболочки выполнено овальным, большая продольная ось которого совпадает с направлением ветра. Гибкие тросовые связи при неизменном центрально-осевом положении трос-кабеля отходят вверх веером через разъемы от полки Т-образного кронштейна, соединенного шарнирно с вертикальным валом, свободно вращающимся внутри причальной тумбы. Верхние концы всех гибких связей прикреплены к овальному днищу аэростатной оболочки равномерно по линии, перпендикулярной большой продольной оси овального днища, и ближе к его наветренной кромке. Крепление трос-кабеля совпадает с упомянутой осью. Наземная лебедка установлена на тележке, передвигаемой вокруг причальной тумбы. Изобретение направлено на уменьшение потерь мощности. 3 ил.

Изобретение относится к ветроэлектрогенераторам. Ветроэлектрогенератор содержит ряд установленных в вертикальной плоскости прямоугольных ячеек, каждая из которых снабжена подпружиненным горизонтальным магнитным сердечником с возможностью осевого перемещения внутри соленоида и двумя вертикальными ветровыми щитками, установленными на концах сердечника, при этом ветровые щитки образуют две вертикальные стенки по обе стороны от плоскости ячеек. Изобретение направлено на получение электроэнергии за счет энергии ветра. 1 з.п. ф-лы, 1 ил.

Изобретение относится к ветряным двигателям. Ветряный двигатель состоит из электрогенератора, установленного на вращающейся опоре. Вал, имеющий по обе стороны от своего электрогенератора лопатки, установлен в ободе, расположенном на колесах на цилиндрическом кожухе и скрепленном с лопастью, поверхность которой расположена перпендикулярно длине вала. Изобретение направлено на увеличение мощности ветряного двигателя. 2 ил.

Изобретение относится к энергетическим установкам с ветряным ротором. Аэростатно-плавательный ветрогенератор содержит силовой блок в составе ветряного ротора и генератора, аэростатный модуль положительной плавучести из двух идентичных газонаполненных оболочек в одном уровне, причальный узел с тросами, трос-кабелем, двумя лебедками на свободно поворачивающейся платформе. Оболочки выполнены в виде параллельных полуцилиндров, их жесткие днища связаны между собой при помощи по меньшей мере одной поперечной мостовой фермы. Мостовая ферма имеет опускающиеся вертикально вниз центральные балки с подшипниковыми опорами. Ось ветряного ротора, оснащенного поднятыми над мостовой фермой ортогональными лопастями, вращается перпендикулярно воздушному потоку. Генератор подвешен к центральным балкам снизу. На свободно поворачивающейся платформе причального узла диаметрально лебедкам располагается бухта трос-кабеля. Изобретение направлено на устойчивое получение электроэнергии и повышение пространственной стабильности ветрогенератора. 3 ил.
Наверх