Способ оценки потока газа



Способ оценки потока газа

 


Владельцы патента RU 2522169:

Федеральное государственное бюджетное учреждение науки Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения Российской академии наук (ТОИ ДВО РАН) (RU)

Изобретение относится к области гидроакустики и может быть использовано для оценки потока газа, например, для оценки потока метана газовых «факелов». Сущность: излучают в направлении дна акустический сигнал. Принимают сигналы обратного излучения звука от каждого из пузырьков, пересекающих за время наблюдения озвученную зону на исследуемом горизонте. Обрабатывают полученные сигналы, определяя расстояние от акустического преобразователя до исследуемого горизонта, число пузырьков, пересекающих данный горизонт за время наблюдения, высоту всплытия пузырьков над исследуемым горизонтом. Строят калибровочную кривую зависимости высоты всплытия пузырьков от их размеров. По полученным параметрам с использованием калибровочной кривой вычисляют значения потока газа. Технический результат: расширение возможностей использования. 1 ил.

 

Изобретение относится к геофизике, а именно к методам определения потоков газа, переносимых всплывающими в текучих средах пузырьками, и может быть использовано, например, для оценок потока метана газовых «факелов», обусловленного пузырьковым переносом метана со дна океанов, морей и озер.

На многих участках Мирового океана со дна поднимаются пузырьки газа, которые могут образовывать в водной толще устойчивые области их повышенной концентрации - газовые «факела» (ГФ). В большинстве случаев основным компонентом этого газа является метан. Оценка потока метана, переносимого пузырьками в водную толщу и атмосферу, имеет большое практическое значение, поскольку метан является важным тепличным газом.

Известен способ, позволяющий определять поток газа, основанный на том, что над источником пузырьков устанавливают ловушку газа в виде купола (Walter К.М., Zimov S.A., Chanton J.P., Verbyla D., Chapin F.S. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming // Nature, 2006. V. 443. P. 71-75). Величину потока газа оценивают по объему v накопившегося за некоторое время газа как V/t. Такой способ в основном применяют для оценки потока газа со дна мелководных водоемов, поскольку в условиях глубокого моря постановка подобной ловушки над источником газовыделения и последующее снятие ее для замера скопившегося газа требует больших затрат времени и средств.

Известен способ, позволяющий определять поток газа, основанный на оптическом наблюдении за всплывающими пузырьками (Blanchard D.C., Woodcock А.Н. Bubble formation and modification in the sea and its meteorological significance // Tellus. 1957. V. 9. P. 145-158). Для этого в водоеме размещают погружаемый блок, в состав которого входят источник света и регистратор в виде видео/кинокамеры или фотоаппарата, и производят фото или видео/киносъемку. Величину потока газа оценивают по суммарному объему пузырьков, пересекающих горизонтальную плоскость в единицу времени. Объем каждого пузырька при этом оценивается по размеру пузырька на его изображении с учетом масштаба.

Недостатком способа, основанного на оптическом наблюдении, является то, что для его реализации необходимо поместить погружаемый блок в непосредственной близости от всплывающих пузырьков, при этом он должен быть так ориентирован и стабилизирован в пространстве, чтобы всплывающие пузырьки попали в поле зрения фото или видео/кинокамеры. При исследовании всплывающих пузырьков на глубинах, превышающих десятки метров, это условие выполнить затруднительно, а в ряде случаев невозможно.

Указанного недостатка лишен наиболее близкий к заявляемому метод оценки потока газа, основанный на регистрации сигнала обратного рассеяния звука (ОРЗ) от пузырьков (Саломатин А.С., Юсупов В.И. Акустические исследования газовых «факелов» Охотского моря // Океанология, 2011. Т.51, №5. С.911-919).

Известный способ заключается в том, что с помощью погруженного в воду акустического преобразователя эхолота в направлении морского дна излучается акустический сигнал. Диаграмма направленности акустического преобразователя и характеристики акустического сигнала, такие как периодичность посылок, длительность посылок, частота и мощность, определяются стандартным образом в зависимости от расстояния между акустическим преобразователем и исследуемым горизонтом, поставленной задачи, уровнем шума и размеров пузырьков. Тем же акустическим преобразователем принимаются сигналы ОРЗ от каждого из пузырьков, пересекающих за время наблюдения Т озвученную зону на исследуемом горизонте. По этим сигналам определяют расстояние от акустического преобразователя сигнала до исследуемого горизонта L, скорости всплытия пузырьков на исследуемом горизонте v и число пузырьков N, пересекающих за время наблюдения Т исследуемый горизонт. Далее, из калибровочной кривой, которая описывает зависимость скорости всплытия пузырьков от размеров, для каждого i-го пузырька оценивается его эквивалентный радиус r, по которому определяется его объем Vi. Поток газа F, переносимого всплывающими пузырьками через исследуемый горизонт единичной площади в единицу времени, определяется с помощью выражения:

F = 1 V М T S i = 1 N V i ,                              (1)

где VМ - молярный объем газа при температуре и давлении на данном горизонте, S -площадь озвученной зоны на исследуемом горизонте, которая определяется стандартным образом по расстоянию от акустического преобразователя сигнала до исследуемого горизонта L и по диаграмме направленности акустического преобразователя. В случае если через исследуемый горизонт всплывают пузырьки одного размера с эквивалентным радиусом r, поток газа определяют с помощью выражения:

F = 4 N π r 3 3 V М T S .                                    (2)

Данный метод позволяет производить оценку потока газа в различных водоемах при маленькой плотности пузырьков, когда сигналы ОРЗ от каждого из пузырьков на исследуемом горизонте не перекрываются между собой. Основным недостатком известного метода является то, что он не позволяет производить оценку потока газа в условиях плохой погоды и большого водного волнения. В этом случае из-за большого поглощения звука в приповерхностном взволнованном водном слое и сильных помехах не удается достаточно точно измерить скорость всплытия пузырьков.

Задача изобретения состоит в расширении возможностей способа оценки потока газа, переносимого пузырьками.

Технический результат - оценка потока газа в условиях сильных внешних помех, плохой погоды и большого водного волнения за счет определения потока газа не по скорости всплытия пузырьков на исследуемом горизонте, а по высоте всплытия пузырьков над исследуемым горизонтом .

Поставленная задача решается способом оценки потока газа, включающим излучение в направлении дна акустического сигнала, прием и обработку сигнала обратного рассеяния звука от пузырьков, включающую определение расстояния от акустического преобразователя сигнала до исследуемого горизонта, число пузырьков, пересекающих данный горизонт за время наблюдения, высоты всплытия пузырьков над исследуемым горизонтом и вычисление по этим данным значения потока газа с использованием калибровочной кривой зависимости высоты всплытия пузырьков от их размеров.

Способ осуществляют следующим образом.

С помощью погруженного в воду акустического преобразователя, эхолота или гидролокатора в направлении морского дна излучают акустический сигнал. Диаграмма направленности акустического преобразователя и характеристики акустического сигнала, такие как периодичность посылок, длительность посылок, частота и мощность, определяют стандартным образом в зависимости от расстояния между акустическим преобразователем и исследуемым горизонтом, поставленной задачи, уровня шума и размеров пузырьков.

Тем же акустическим преобразователем принимают сигналы ОРЗ от каждого из пузырьков, пересекающих за время наблюдения Т озвученную зону на исследуемом горизонте. По этим сигналам стандартным способом определяют расстояние от акустического преобразователя сигнала до исследуемого горизонта L, высоту всплытия пузырьков над исследуемым горизонтом h и число пузырьков N, пересекающих за время наблюдения Т исследуемый горизонт. Затем по полученному значению h по калибровочной кривой зависимости высоты всплытия пузырьков от их размеров определяют эквивалентный радиус r пузырьков на исследуемом горизонте. Поток газа F, переносимого всплывающими пузырьками через исследуемый горизонт единичной площади в единицу времени, определяют по известной формуле (2).

Калибровочная кривая зависимости высоты всплытия пузырьков от их размеров может быть получена любым стандартным методом, например с использованием искусственных ГФ.

Для построения калибровочной кривой с использованием искусственных ГФ измерения проводят на частоте акустического сигнала в исследуемом месте при благоприятных погодных условиях, обеспечивающих необходимую точность оценки радиусов пузырьков на исследуемом горизонте и высоты их всплытия над исследуемым горизонтом. В качестве источника пузырьков используют установленные на исследуемом горизонте сопла различного диаметра, соединенные через редуктор с баллоном со сжатым газом. Радиус выходящих из сопла пузырьков r, измеряемый стандартным способом с помощью фото- или видеосъемки, изменяют путем изменения диаметра сопла и значения выходящего из сопла потока газа. Высоту всплытия пузырьков над исследуемым горизонтом h определяют по полученным сигналам ОРЗ. По полученным данным зависимости h от r строят калибровочную кривую.

На фиг.1 представлена калибровочная кривая, полученная с использованием искусственного ГФ на частоте 200 кГц.

Экспериментальная проверка предлагаемого способа была осуществлена с использованием искусственного газового факела. Использовался эхолот с частотой 200 кГц, акустический преобразователь которого, погруженный в воду на глубину 2 м, излучал в направлении морского дна акустические сигналы длительностью 1 мс. Первоначально в условиях штиля была построена калибровочная кривая с использованием искусственного ГФ, который был создан вышеописанным способом с помощью баллона со сжатым газом, соединенного через редуктор с соплом, через которые в воду на исследуемом горизонте 22 м выходили пузырьки газа. Радиус пузырьков, который контролировался с помощью анализа их изображений, записанных на цифровую видеокамеру, изменяли в диапазоне 0.5-1.5 мм путем изменения потока газа и использования сопел различного диаметра. Эхолот надежно регистрировал сигналы обратного рассеяния от всплывающих пузырьков. Измеренная глубина всплытия указанных пузырьков лежала в диапазоне 5-18 м, при этом пузырьки с r>1.3 мм выходили на поверхность. По полученным данным была построена калибровочная кривая (фиг.1). Затем провели измерение потока газа искусственного ГФ предлагаемым способом в условиях ветреной погоды, при которой из-за возникших шумов не удавалось определить скорость всплытия пузырьков на исследуемом горизонте с необходимой точностью. При этом высота всплытия пузырьков h и число пузырьков N, пересекающих за время наблюдения Т исследуемый горизонт, определялись надежно и составили h=14,1 м, N/T=0.12 с-1. С помощью построенной калибровочной кривой по h был определен радиус пузырьков на исследуемом горизонте, равный r=1.1 мм. Далее, подстановкой данных в (2) получен поток F=3.2·10-8 молей в секунду. Значение истинного потока, который оценивали с помощью анализа записанных на цифровую видеокамеру изображений, выходящих из сопла пузырьков, составило F=2.9·10-8 молей в секунду.

Данный способ был успешно использован для оценок потока метана на полигоне в море Лаптевых, когда на протяжении всего рейса сохранялись плохая погода и большое водное волнение, которые не позволяли проводить акустические измерения известным стандартным способом

Таким образом, заявленный способ за счет определения потока газа не по скорости всплытия пузырьков на исследуемом горизонте, а по высоте всплытия пузырьков над исследуемым горизонтом позволяет решить поставленную задачу, расширить возможности способа и оценить поток газа на исследуемом горизонте при сильных внешних помехах, в условиях плохой погоды и большого водного волнения.

Способ оценки потока газа, включающий излучение в направлении дна акустического сигнала, прием и обработку сигнала обратного рассеяния звука от пузырьков, включающую определение расстояния от акустического преобразователя сигнала до исследуемого горизонта, число пузырьков, пересекающих данный горизонт за время наблюдения, высоту всплытия пузырьков над исследуемым горизонтом, и вычисление по этим данным значения потока газа с использованием калибровочной кривой зависимости высоты всплытия пузырьков от их размеров.



 

Похожие патенты:

Изобретение относится к области геофизики и гидроакустики и может быть использовано для изучения структуры донных отложений в шельфовой зоне мирового океана, а также для изучения особенностей распространения звука в придонном слое мелкого моря.

Изобретение относится к области геофизики и гидроакустики и может быть использовано для изучения структуры донных отложений в шельфовой зоне мирового океана, а также для изучения особенностей распространения звука в придонном слое мелкого моря.

Изобретение относится к области сейсморазведки и может быть использовано для поиска углеводородов под дном морей и океанов, в том числе и в ледовых условиях на шельфе Северных морей.

Изобретение относится к области геофизики и может быть использовано при проведении морских прибрежных сейсморазведочных работ. Предлагаются способ и система для управления формой и расстояниями в схеме расположения сейсмических кос, буксируемых позади исследовательского судна (10).

Изобретение относится к области геофизики и может быть использовано для сейсмической разведки районов, покрытых водой. Система содержит приемники 1.i (i=1, 2, …, n) колебаний атмосферного давления (микробарографы), схему 2 сравнения, систему 3 оповещения, блок 4 памяти, первый 5 и второй 6 корреляторы, первый 3.1 и второй 3.2 преобразователи аналог-код, первый 3.3 и второй 3.4 ключи, формирователь 3.6 модулирующего кода, задающий генератор 3.6, фазовый манипулятор 3.7, усилитель 3.8 мощности, передающую антенну 3.0, перемножители 5.1 и 6.1, фильтры 5.2 и 6.2 нижних частот, экстремальные регуляторы 5.3 и 6.3, регулируемые линии задержки 5.4 и 6.4.

Система поиска подводных морских месторождений углеводородов, включающая в себя размещенные в среде излучающий и приемный акустические преобразователи, выполненные с возможностью формирования между ними параметрической антенны, соединенные с ними соответственно, тракт формирования и усиления излучаемых сигналов накачки среды, а также тракт приема усиления, обработки, выделения и регистрации информационных сигналов, отличается тем, что излучающий и приемный преобразователи акустических сигналов разнесены на противоположные границы контролируемого участка акватории, при этом излучающий преобразователь размещен на подвижном носителе и содержит низкочастотный и высокочастотный излучатели, первый из которых выполнен с возможностью горизонтального ориентирования его диаграммы направленности в сторону приемного преобразователя, при этом высокочастотный излучатель выполнен с возможностью ориентирования его диаграммы направленности на морское дно, кроме того, тракт формирования и усиления излучаемых сигналов накачки среды сформирован как двухканальный, содержащий низкочастотный и высокочастотный каналы, каждый из которых включает последовательно соединенные генератор стабилизированной частоты, усилитель мощности, блоки согласования выходов усилителей с подводными кабелями, которые подключены к соответствующим излучающим преобразователям, кроме того, приемный преобразователь включает два горизонтально разнесенных приемных блока, каждый из которых соединен с расположенным на поверхности моря радиомодулем, который по радиоканалу связан с приемным трактом системы, содержащим последовательно связанные с соответствующим каналом двухканального приемного радиоблока информационных сигналов, двухканальный широкополосный усилитель информационных сигналов, блок измерения разности фаз информационных сигналов, преобразователь временного масштаба информационных сигналов в высокочастотную область, блок узкополосного спектрального анализа и функционально связанный с ним региcтратор спектров выделяемых информационных сигналов, кроме того, система содержит средства определения местоположения излучающего преобразователя и приемных блоков приемного преобразователя в режиме реального времени, кроме того, она включает в себя блок спутниковой связи с центральным постом, выполненный с возможностью дистанционного управление ее работой. Изобретение обеспечивает мобильность поиска углеводородных залежей на шельфе, при повышении надежности поиска на протяженных акваториях.

Изобретение относится к области геофизики и может быть использовано для получения геологических данных морских донных осадков по измерению характеристик низкочастотных акустических полей в морской среде, не осуществляя предварительного бурения скважин.

Способ поиска месторождений углеводородов на морском шельфе, включающий генерирование лоцирующего сигнала в воде, регистрацию информационных волн в диапазоне инфразвуковых частот посредством подводного приемного акустического блока и обработку информационного сигнала с проверкой наличия поисковых признаков месторождений углеводородов, отличается тем, что в пределах обследуемого участка акватории формируют зоны нелинейного взаимодействия и параметрического преобразования лоцирующего сигнала с информационными сигналами, проявляющимися на акватории, при этом подводный приемный акустический блок формируют из двух горизонтально разнесенных приемников и размещают в центре обследуемого участка акватории, причем в составе излучающего блока используют низкочастотный и высокочастотный акустические излучатели, при этом излучающий блок размещают на подвижном носителе, который при поиске источников информационных сигналов перемещают по границе обследуемого участка акватории, в процессе которого формируют вертикальную и горизонтальную параметрические антенны, первая из которых направлена в направлении морского дна, а вторая в направлении приемного блока, при этом волны лоцирующего сигнала, взаимодействовавшие с измеряемыми информационными сигналами, принимают горизонтально разнесенными приемниками, двухканально усиливают в полосе частот параметрического преобразования, измеряют их разность фаз и переносят временной масштаб в высокочастотную область, выделяют их узкополосные спектры, определяют в них и регистрируют параметрические составляющие нижней и верхней боковых полос, по которым с учетом параметрического и частотно-временного преобразования волн накачки, а также направлений параметрических антенн восстанавливают и фиксируют характеристики измеряемых информационных полей, соответствующие поисковым признакам месторождений углеводородов, например частотный диапазон, интенсивность, пространственно-временную и спектральную структуру, а также определяют и фиксируют направления их максимального проявления, далее по этим направлениям излучающий блок перемещают в точку расположения приемного блока, затем проходят за него, при этом уточняют местоположения источников информационных сигналов по этой курсовой линии и фиксируют протяженность месторождения вдоль нее, подобным же образом, перемещая подвижный носитель по траекториям, пересекающим, по меньшей мере, первую курсовую линию, оконтуривают площадь месторождения углеводородов, выполняют наблюдение и измерение признаков пространственно-временной динамики их характеристик, а по ним осуществляют идентификацию волн на их принадлежность к водным гидрофизическим или донным геофизическим, при обнаружении геофизических волн и фиксации их спектральных характеристик полученные результаты сравнивают с обобщенными эталонными спектрами и выявляют принадлежность информационных волн к конкретным типам скоплений углеводородов, например газовым, газоконденсатным или залежам с притоком газа.
Использование: в способах морской разведки. Сущность: с целью получения сейсмоакустической информации в формате 3D при минимальных технических, временных и экономических затратах, а также для исключения помеховых отражений при акустическом зондировании донных осадков предлагается устанавливать линейно-протяженную сейсмоакустическую антенну на дне акватории, а импульсный излучатель буксировать на некотором расстоянии от указанной антенны перпендикулярно линии ее расположения.

Использование: изобретение относится к области приборостроения и может быть использовано в системах мониторинга акваторий для обеспечения сбора и передачи данных.

Изобретение относится к области геофизики и может быть использовано при разведочных мероприятиях в водной среде. Система содержит одно или несколько объединенных в комплекс автономных подводных транспортирующих средств, каждое из которых имеет один или несколько автономных морских источников акустических сигналов с самодвижущимися ударными поршнями. Система выполнена с возможностью использования как традиционных, так и нетрадиционных морских источников сейсмических сигналов. Предлагаемый в настоящем изобретении нетрадиционный морской источник сейсмических сигналов может выпускать волну сжатия высокой интенсивности, генерируемую системой двух ударных поршней, которая не потребляет воздух при работе, поскольку она не распространяет воздух или другой газ в воде и не создает изменения веса транспортирующего средства при его функционировании, и обеспечивает возможность регулирования амплитуды колебаний и длительности излучаемой звуковой волны и характеристик спектра излучения. Технический результат - повышение точности разведочных данных. 3 н. и 7 з.п. ф-лы, 28 ил.

Система параметрического приема гидрофизических и геофизических волн в морской среде отличается тем, что протяженность рабочей зоны системы соответствует половине протяженности обследуемой акватории, для чего излучающий преобразователь размещен в центре обследуемой акватории и содержит низкочастотный и инфранизкочастотный излучатели, первый из которых размещен в водной среде с возможностью горизонтального ориентирования его диаграммы направленности в сторону приемного преобразователя, а инфранизкочастотный излучатель размещен на дне с возможностью накачки морского грунта, причем тракт формирования и усиления излучаемых сигналов накачки водной среды и грунта сформирован как двухканальный, содержащий низкочастотный и инфранизкочастотный каналы, каждый из которых включает последовательно соединенные генератор стабилизированной частоты, усилитель мощности, блок согласования выходов усилителей с подводными кабелями, которые подключены к соответствующим излучающим преобразователям, при этом приемный преобразователь установлен на судне-носителе с возможностью перемещения по периметру акватории и включает два вертикально разнесенных приемных блока, каждый из которых соединен с приемным трактом системы, содержащим последовательно соединенные двухканальный широкополосный усилитель информационных сигналов, блок измерения разности фаз параметрически преобразованных просветных сигналов, преобразователь временного масштаба информационных сигналов в высокочастотную область, блок узкополосного спектрального анализа и функционально связанный с ним регистратор спектров выделяемых информационных сигналов. Кроме того, система содержит блок спутниковой связи и средства определения местоположения излучающих и приемных преобразователей. Изобретение обеспечивает оперативный поиск залежей УВ и прием сейсмических волн - предвестников землетрясений. 2 з.п. ф-лы, 10 ил.

Изобретение относится к области геофизики и может быть использовано при проведении морских сейсморазведочных работ. Заявлены способ и устройство для водной сейсморазведки. Способ предполагает позиционирование погруженного в воду передвижного сейсмического источника и формирование возмущений, передаваемых через водную среду в виде волн, отражающихся от дна водоема и различных расположенных ниже геологических слоев. Позиционируют, по меньшей мере, одну сейсмическую косу, предпочтительно ряд сейсмических кос, оснащенных рядом датчиков, улавливающих указанные отраженные волны, таким образом, что сейсмическая коса находится в состоянии натяжения при помощи присоединенных к обоим ее концам телеуправляемых аппаратов, а также удерживается на постоянной глубине при производстве замеров с помощью средств, удерживающих сейсмическую косу. Указанный сейсмический источник приводят в действие однократно или многократно, создавая возмущение или ряд возмущений. Принимают указанные отраженные волны, используя упомянутые датчики. Технический результат: повышение точности данных зондирования. 2 н. и 16 з.п. ф-лы, 14 ил.

Изобретение относится к области сейсморазведки подводных месторождений нефти и газа в арктических морях. Предложено судно с конструкцией, объединяющей преимущества надводного корабля (высокий уровень обитаемости, безопасность, большие площади палуб, позволяющие производить обслуживание и ремонт сейсмооборудования) и преимущества многоцелевой подводной станции в части применения гидроакустических излучателей и буксируемых в толще воды подо льдом сейсмокос для 2D технологии сейсморазведки. Выпуск буксируемой сейсмокосы и г/а излучателей осуществляется при помощи выдвижных конструкций, установленных в вертикальных шахтах в днищевой части судна вне зоны воздействия льда. Технический результат заключается в повышении надежности проведения сейсморазведки в ледовых условиях, уменьшении отрицательного влияния сейсморазведки на окружающую среду и экологию моря. 3 з.п. ф-лы, 1 ил.
Изобретение относится к области геофизики и может быть использовано для контроля разработки месторождений углеводородов на морском шельфе. Согласно заявленному способу проводят трехмерную сейсморазведку и строят по ее данным модель резервуара, прогнозируют ориентацию систем субвертикальных трещин и размещение эксплуатационных и нагнетательных скважин. Размещают на дне акватории над месторождением стационарные сейсмокосы, регистрируют сейсмотрассы с упругими колебаниями от искусственных источников и контролируют процесс разработки месторождения углеводородов по динамическим и кинематическим изменениям регистрируемых колебаний при обработке сейсмотрасс. При этом сейсмокосы размещают на дне акватории до начала бурения эксплуатационных скважин. В процессе их бурения регистрируются микросейсмические колебания, возбуждаемые долотом на забое скважины, при обработке которых по динамическим и кинематическим характеристикам определяют анизотропные свойства среды в зоне бурения, уточняют ориентацию систем субвертикальных трещин и корректируют трехмерные модели резервуара, размещение и траекторию бурения эксплуатационных скважин, зон перфорации и гидроразрыва пласта. Технический результат - повышение точности данных мониторинга. 1 з.п. ф-лы.
Изобретение относится к области геофизики и может быть использовано для контроля, оптимизации и повышения безопасности разработки месторождений углеводородов на акваториях Арктики и других морей. При реализации сейсмического мониторинга разработки месторождений углеводородов на акваториях проводят трехмерную сейсморазведку и строят по ее данным модель резервуара. Прогнозируют ориентацию систем субвертикальных трещин и размещают на дне акватории над месторождением стационарные сейсмокосы. Регистрируют сейсмотрассы с упругими колебаниями, возбуждаемыми искусственными источниками или группами источников, и контролируют процесс флюидозамещения в месторождении углеводородов и окружающей среде по динамическим и кинематическим изменениям регистрируемых колебаний при обработке сейсмотрасс. При этом источники упругих колебаний размещают в водной толще с буровых или эксплуатационных платформ, а также искусственных островов. При обработке сейсмотрасс в условиях, близких к реальному времени, при бурении скважин или в процессе эксплуатации месторождения определяют пространственную миграцию углеводородных флюидов и положение формирующихся техногенных залежей. Технический результат - повышение точности получаемых данных и ,как следствие, повышение эффективности разработки месторождений углеводородов на акваториях. 2 з.п. ф-лы.

Изобретение относится к области геофизики и может быть использовано для сейсмоакустических исследований на шельфе при выполнении разведочных работ нефтегазоносных месторождений. Заявлена малогабаритная автономная сейсмоакустическая станция (МАСАС), содержащая устанавливаемый на морском дне, всплывающий после отдачи балласта носитель аппаратуры (НА). НА включает в себя размещенные в герметичном сферическом контейнере бортовой вычислительный узел (БВУ), источник питания, трехкомпонентный сейсмоприемник, а также установленные снаружи герметичного контейнера гидрофон, ресивер для гидроакустической связи, устройство постановки и снятия НА с грунта. НА содержит также средства для поиска всплывшего НА, выполненные в виде проблескового маяка, спутниковой системы навигации типа «Глонасс», низкоорбитальной спутниковой системы связи типа «Гонец» и активного радиолокационного отражателя. Регистрирующий тракт состоит из четырехканального блока фильтрации и усиления. Из сигналов гидрофона и сейсмоприемников формируется массив отдельной выборки с длиной из шестнадцатиразрядных слов, подающихся на соответствующие каналы накопителя информации (НИ), представляющего собой твердотельную память из 4 флэш-карт с емкостью по 2 Гбайт каждая. Технический результат - обеспечение более достоверных данных площадных исследований. 5 ил.

Изобретение относится к области гидро- и геоакустики и может быть использовано в морях, океанах, пресноводных водоемах для проведения исследований и мониторинга сейсмоакустической эмиссии на шельфе в обеспечение инженерно-геофизических работ на морском дне. Техническим результатом изобретения является снижение времени и средств на установку сейсмокос и обеспечение возможности их многократного развертывания, свертывания и перемещения. Технический результат достигается за счет того, что устройство для укладки сейсмокос на морское дно для сейсмоакустического мониторинга, включающее якорные фиксаторы, обеспечивающие рабочее положение сейсмокос, прочный герметичный корпус с размещенным в нем коммуникационным оборудованием, к входам которого подключены выходы соответствующих сейсмокос, снабжено набором катушек с положительной плавучестью, на которых намотаны соответствующие сейсмокосы с закрепленными на их концах якорными фиксаторами, надводным блоком обработки сейсмоакустических сигналов, соединенным кабелем с оптической линией связи с выходом размещенного в прочном герметичном корпусе коммуникационного оборудования, при этом якорные фиксаторы оборудованы системой самовсплытия, а прочный герметичный корпус выполнен с отрицательной плавучестью с обеспечением выполнения функции дополнительного якорного фиксатора. 1 ил.

Изобретение относится к устройствам для подводных геофизических исследований морей и океанов. Заякоренная профилирующая подводная обсерватория сочленена с диспетчерской станцией и состоит из: подповерхностного буя, заякоренного с помощью стального буйрепа, который служит ходовым тросом для профилирующего носителя, содержащего комплект измерительных датчиков, модуль центрального микроконтроллера, электропривод, и передвигающегося по ходовому тросу; системы цифровой связи посредством бесконтактной индуктивной врезки в ходовой трос, поверхностного буя-вехи с модемами передачи данных и телеметрической информации по радиоканалу, гидроакустического размыкателя якорного балласта. На ходовом тросе над гидроакустическим размыкателем якорного балласта закреплена нижняя плавучесть шарообразной формы, внутри которой размещен модем гидроакустического канала связи, электропривод, сочлененный с телескопическим устройством, в оконечности которого установлен сейсмометр. Профилирующий носитель дополнительно содержит датчики содержания углеводородов, углекислого газа, альфа-, бета- и гамма-радиоактивности. Улучшаются условия эксплуатации, расширяются функциональные возможности подводной обсерватории. 2 ил.

Изобретение относится к области гидро- и геоакустики и может быть использовано в морях, океанах, пресноводных водоемах в качестве донной кабельной антенны для проведения исследований и мониторинга сейсмоакустической эмиссии на шельфе в обеспечение инженерно-геофизических работ на морском дне. Техническим результатом изобретения является увеличение помехозащищенности за счет исключения трения антенны о грунт. Технический результат достигается за счет того, что донная кабельная антенна для мониторинга сейсмоакустической эмиссии на шельфе, содержащая подводный кабель, гидрофонные модули, соединенные подводным кабелем через определенные интервалы расстояния между собой, надводную аппаратуру сбора и преобразования, соединенную с одним из концов подводного кабеля, снабжена якорным фиксатором, закрепленным на противоположном конце подводного кабеля, дополнительными грузами, закрепленными на подводном кабеле между соответствующими гидрофонными модулями, и поплавковыми подвесками, закрепленными на подводном кабеле к соответствующим гидрофонным модулям, при этом гидрофонные модули выполнены в виде приемников давления. Использование приемников давления вместо двух гидроакустических антенн существенно снижает стоимость донной антенны и одновременно снимает проблемы, связанные с качеством контакта датчика с грунтом, устраняя сопутствующие такому контакту шумы. При этом за счет большого числа таких датчиков решается проблема выделения волн различной поляризации по их кинематическим характеристикам. 1 ил.
Наверх