Катушки гельмгольца-ишкова



Катушки гельмгольца-ишкова
Катушки гельмгольца-ишкова
Катушки гельмгольца-ишкова
Катушки гельмгольца-ишкова
Катушки гельмгольца-ишкова
Катушки гельмгольца-ишкова
Катушки гельмгольца-ишкова
Катушки гельмгольца-ишкова
Катушки гельмгольца-ишкова
Катушки гельмгольца-ишкова
Катушки гельмгольца-ишкова
Катушки гельмгольца-ишкова
Катушки гельмгольца-ишкова
Катушки гельмгольца-ишкова

 


Владельцы патента RU 2522191:

Ишков Александр Петрович (KZ)

Изобретение относится к электротехнике и может быть использовано как в лабораторной практике, так и в технологических устройствах с применением однородных магнитных полей разных уровней. Технический результат состоит в повышении однородности магнитного поля. Катушки Гельмгольца помещены во внешний магнитопровод броневого типа, выполненный из верхней и нижней идентичных состыкованных торцами частей с цилиндрическими полостями для катушек Гельмгольца и исследуемых объектов, оси которых совмещены. Внешние торцы магнитопровода скруглены радиусом, равным радиусу катушек Гельмгольца. В результате снижения магнитного сопротивления пространства, окружающего катушки Гельмгольца, повышается уровень магнитной индукции в рабочем пространстве устройства. При этом происходит деформация линий магнитного поля в магнитопроводе так, что линии центральной приосевой части рабочего пространства сокращаются относительно больше, чем линии периферийной части рабочего пространства. Это способствует улучшению однородности магнитного поля в рабочем пространстве устройства. 6 ил., 7 табл.

 

Предлагаемое изобретение относится к электротехнике и может быть использовано для создания устройств с однородным магнитным полем, протяженность которого сравнима с радиусом возбуждающих обмоток. Технический результат состоит в повышении однородности магнитного поля и эффективности его создания. Устройство состоит из катушек Гельмгольца и внешнего магнитопровода. Катушки Гельмгольца типичные круглые. Внешний магнитопровод состоит из двух частей цилиндрической формы с цилиндрическими выемками для размещения катушек Гельмгольца и глухими торцовыми частями. Внешний магнитопровод уменьшает магнитное сопротивление внешней части магнитной цепи, благодаря чему повышается и уровень или однородность магнитного поля между его полосами.

Предлагаемое изобретение относится к области техники магнитных полей и может быть применено для создания эталонных магнитных полей заданного уровня однородности и величины.

Аналогом предлагаемого изобретения являются сами катушки Гельмгольца, которые представляют собой систему двух идентичных круглых катушек, которые размещены соосно на расстоянии радиуса катушек и включены согласно так, что образуются единые магнитные линии магнитного поля и величина магнитного поля на оси системы катушек между плоскостями катушек получается достаточно однородной.

Недостаток аналога состоит в ограниченности однородности поля и эффективности его создания. Для улучшения однородности магнитного поля в рабочей области применяют еще дополнительные пары катушек большого размера со встречным включением дополнительного поля. Это увеличивает габариты лабораторного оборудования и снижает эффективность энергетических затрат на питание, которое должно быть стабильным.

Прототипом предлагаемого изобретения является соленоид Ишкова по патенту RU 2364000. Он состоит из обмотки возбуждения прямоугольного сечения и вешнего магнитопровода в форме цилиндрической оболочки и двух торцевых фланцев, внутренние поверхности которых являются полюсами. Внутри соленоида между полюсами при пропускании электрического тока по обмотке возбуждения создается магнитное поле повышенной однородности.

Недостаток прототипа в свете поставленной цели предлагаемого изобретения состоит в том, что доступ во внутреннее пространство соленоида сопряжен с необходимостью демонтажа фланцев при аксиальном доступе в рабочее пространство соленоида. Особенно сложна проблема радиального доступа в рабочее пространство соленоида.

Техническим решением проблемы свободного доступа в область однородного магнитного поля по оси и радиусу является магнитопровод из двух цилиндрических половинок, из которых нижняя закреплена, а верхняя является съемной частью так, что при поднятой верхней части открывается доступ в рабочее пространство катушек Гельмгольца и по оси, и по радиусу. В качестве примера устройство показано на фиг.1.

Устройство состоит из катушек Гельмгольца 1 и внешнего магнитного провода цилиндрической формы 2, который сам состоит из верхней части 3 и нижней части 4. Торцы магниторовода 2 закреплены по радиусу катушек Гельмгольца 1. По периферии неявных полюсов 5 закреплены обмотки катушек Гельмгольца 1. Исследуемый объект 6 помещается в центральной части устройства. Конструктивно магнитопровод состоит из двух идентичных цилиндрических частей с цилиндрическими выемками для катушек Гельмгольца 1, которые стыкуются плоскими торцами. Отличие верхней подъемной части 3 состоит в наличии конической юбочки 7, которая сопрягается с коническим срезом 8 на нижней неподвижной части магнитопровода 4.

Подъем верхней части 3 и ее фиксация к нижней части 4 осуществляется известными способами.

Действует устройство следующим образом.

При поднятой верхней части 3 в центральную часть устройства помещается исследуемый объект 6, соединительные коммуникации с ним осуществляются через нижнюю часть 4 известными способами. При опускании верхней части 3 она однозначно фиксируется к нижней части 4 посредством конической юбочки 7 и конического среза 8.

При пропускании электрического тока по обмоткам катушек Гельмгольца 1 между полюсами 5 возникает необходимое магнитное поле 9. Величина магнитного поля определяется магнитодвижущей силой катушек, а однородность поля обеспечивается специфическим перераспределением структуры линий магнитного поля во внешнем магнитопроводе 2.

На фиг.2 представлен ход линий магнитного поля в предлагаемом изобретении. Самая длинная линия магнитного поля проходит в центральной части полюсов и имеет длину 2πR+2R(π+1).

Самая короткая линия поля проходит по периферии полюсов и имеет длину 2R, где R - радиус катушек Гельмгольца.

Для центральной линии магнитного поля отношение длин межполюсной части к магнитопроводной составляет величину 1 2 ( π + 1 ) 1 8 ,

для периферийной линии магнитного поля это отношение будет

R 2 R = 1 2 > 1 8 .

Из приведенных соотношений следует, что для центральных магнитных линий только восьмая часть проходит между полюсами, а для периферийных магнитных линий только половина. Следовательно, применение внешнего магнититопровода для катушек Гельмгольца деформирует линии магнитного поля так, что уменьшает магнитное сопротивление. Для центральных магнитных линий многократно, а для периферийных магнитных линий - лишь двукратно. Это существенно повысит однородность магнитного поля в предлагаемом изобретении и повысит его уровень при том же токе в катушках Гельмгольца.

В Табл.1 представлена радиальная зависимость отношений длины магнитной линии в магнитопроводе к длине магнитной линии между полюсами магнитопровода lF, которая определена по вышеприведенной методике. Для простоты записи принято R=1, а r - радиальное удлинение от центра полюсов. Это нелинейная зависимость.

Табл.1
r 0 0,2 0,4 0,6 0,8 1,0
F = 2 π ( 1 r ) + 1 o = 1 7,28 6,024 4,768 3,512 2,256 1,0

Аналитический расчет магнитиных полей, создаваемых тонким проводником с током, основывается на законе Био-Савара-Лапласа, см. Савельев В.И. «Курс общей физики», т. 2, М., Наука, 1970 с.132.

d B = μ o 4 π i d r 2 sin ( d ^ r )

где µо=4·10-7, Гн/м - магнитная постоянная;

i - сила электрического тока, А;

dl - элементарный участок с током I;

r - радиус-вектор из исследуемой точки к элементарному току;

d ^ r - угол между элементарным током d и радиус-вектором r , фиг.3.

Дифференциал магнитного поля в центре кругового тока на его оси,

где d B = μ o 4 π i d R 2

R - радиус кругового тока, м.

Величина магнитного поля в центре кругового тока определяется интегралом В = μ o 4 π i R 2 d = μ o 4 π i R 2 o 2 π d φ = μ o 2 i R 2 [ Т л ] ,

где dl=Rdφ.

Вне плоскости витка магнитное поле имеет две компоненты, фиг.4. Аксиальная компонента магнитного поля зависит от угла β.

Bz=Bsinβ, где sinβ= β = R R 2 + z 2 .

В конечном виде получается формула

B Z = μ o 2 R 2 ( R 2 + Z 2 ) 3 / 2

где Z - аксиальное расстояние исследуемой точки от центра кругового тока на его оси. Для случая R = z ˙ = 1 формула упрощается

B z ' = μ o 2 1 ( 1 + Z 2 ) 3 / 2 .

Для второй катушки Гельмгольца эта формула примет вид

B Z ' ' = μ o 2 1 ( 1 + ( 1 Z ) 2 ) 3 / 2

и в целом на оси катушек Гельмгольца будет

B Z = B z ' + B Z ' ' = μ o 2 ( 1 ( 1 + z 2 ) 3 / 2 1 ( 1 + ( 1 Z ) 2 ) 3 / 2 )

Расчеты по приведенным формулам представлены в табл.2.

Анализ табличных данных показывает, что аксиальное распределение уровня магнитной индукции представляется симметричной криволинейной зависимостью с прогрессивным спадом при удалении от центра кругового тока. Эта же зависимость для катушек Гельмгольца имеет максимум в центре системы катушек с пологим спадом при удалении от него. Поле в центре катушек превышает поля в центрах катушек на 5,3%.

Абсолютный уровень магнитного поля даже во многовитковых катушках невелик, потому что множитель, представляющий магнитную постоянную, имеет порядок 10-7. Для полей с уровнем Iтл=104 Гс требуются катушки с количеством ампервитков, измеряемых тысячами. Поэтому применение внешнего магнитопровода существенно повышает эффективность питания катушек и снижает энергозатраты на питание и охлаждение электромагнитных установок.

Радиальное распределение магнитного поля в плоскости кругового витка с током можно исследовать по схеме на фиг.5,

где а - радиальное смещение исследуемой точки по диаметру кругового тока,

r - расстояние исследуемой точки от элемента тока d , произвольного,

R - радиус кругового тока,

φ - азимут элемента тока d .

Для произвольной точки, лежащей на диаметре кругового витка, можно записать

{ d B = μ o 4 π i d r 2 sin ( d ^ r ) , r 2 = R 2 + а 2 2 R a cos φ

Действительно, h=a·sinφ, b=a·cosφ.

Следовательно, r2=h2+(R-b)2=R2+a2-2Racosφ.

Поскольку угол между элементом тока d и вектором r d ^ r = π 2 + α , то α = arc s i n a s i n φ r .

В результате подстановки полученного выражения в исходную формулу закона БСЛ и последующего интегрирования получаем закон радиального распределения магнитной индукции по диаметру кругового тока

B ( a ) = μ 0 2 π i R o π 1 r 2 s i n ( π 2 + a r c s i n a s i n ϕ r ) d ϕ

Для случая R=i=1 интеграл упрощается

{ B ( a ) = μ 0 2 π o π 1 r 2 s i n ( π 2 + a r c s i n a s i n ϕ r ) d ϕ r 2 = 1 ` + a 2 2 a c o s ϕ

В табл. 3 представлены результаты числового интегрирования и экспериментального исследования радиального распределения магнитной индукции в плоскости кругового витка с током.

В авторском эксперименте использовался круглый виток диаметром 100 мм из медной проволоки диаметром 1 мм при токе 35 А. При токах большего значения виток нагревался докрасна. Поле измерялось измерительной катушкой диаметром 5 мм и миливольтметром. В последней графе приведены результаты исследования сверхпроводящего короткого соленоида диаметром 1,8 м, см. Хоукинс С.Р. "Сверхпроводящие соленоиды", изд Мир, 1965, с.238-258.

Анализ табличных данных показывает, что теоретический расчет автора верен и подтвержден экспериментально с достаточной точностью.

Главный вывод состоит в том, что радиальное распределение магнитной индукции в плоскости кругового витка с током неоднородно и его неоднородность растет прогрессивно по мере удаления к периферии витка, где оно возрастает многократно. Эта величина аксиально убывает, а радиально в плоскости витка растет и на центр витка приходится условный максимум типа седла.

Величину магнитной индукции вне плоскости кругового тока можно определить, если исследуемую точку поместить на плоскости, совмещенной с осью симметрии кругового тока, фиг. 6. Координаты этой точки будут: a, z, φ,

где a - расстояние исследуемой точки от оси симметрии кругового тока,

z - расстояние исследуемой точки от плоскости кругового тока,

φ - азимутальный угол.

Теперь аксиальная составляющая магнитной индукции будет определяться углом β по формуле B z ( a , z ) = B ( a , z ) s i n β = B ( a , z ) r ρ ,

где r2=R2+a2-2Racosφ,

ρ2=R2+a2+z2-2Racosφ.

При R= i=1 расчетная формула примет вид

{ B z ( a , z ) = μ 0 2 π o π r ( r 2 + z 2 ) 3 / 2 s i n ( π 2 + a r c s i n a s i n ϕ r ) d ϕ . r = 1 ` + a 2 2 a c o s ϕ

В табл. 4 представлены результаты расчета по этой интегральной формуле. По горизонтали представлены относительные значения величины магнитной индукции при радиальном переведении расчетной точки, а по вертикали соответственно при аксиальном ее перемещении. За 1 принято значение магнитной индукции в центре кругового тока.

Анализ содержания табл. 4 показывает, что при перемещении расчетной точки только по оси симметрии кругового тока или только по радиусу в плоскости кругового тока числовые значении магнитной индукции повторяются в соответствии с таблицами 2 и 3. Вне плоскости кругового тока радиальном перемещении расчетной точки величина магнитной индукции монотонно убывает.

В табл. 5 в относительных единицах представлено распределение магнитной индукции в диаметральной плоскости катушек Гельмгольца. Анализ содержания этой таблицы показывает, что это поле симметрично относительно плоскости z=0,5. В геометрическом центре катушек Гельмгольца поле имеет условный максимум типа седла, от которого отходят линии хребтов к центрам сечении токовозбуждающих проводников, при приближении к которым расчетная величина магнитной индукции возрастает многократно.

Неоднородность магнитного поля в центре катушек Гельмгольца зависит от размеров выбранной области. Для цилиндра высотой и диаметром 0,5 R неоднородность составляет 1,5%.

В случае катушек конечного прямоугольного сечения закон БСЛ примет вид d B = μ o 4 π j d z d r d l r 2 sin ( d ^ r )

где jdzdr - элемент тока в катушке.

Величина магнитной индукции в точке, отстоящей на а от оси симметрии катушки и на z от медианной плоскости катушки, определится тройным интегралом

B ( a , z ) = μ o 2 π j R 1 R 2 Z 1 2 Z 1 2 o π r 1 ( r 1 2 + z 2 ) 3 2 sin ( π 2 + arcsin a sin ϕ r 1 ) d ϕ d z d r

где r 1 2 = r 2 + a 2 2 a r cos ϕ

R1 - внутренний радиус катушки,

R2 - внешний радиус катушки,

Z 1 2 - половина толщины катушки.

В табл. 6 представлены результаты вычислений для R1=1, R2=1, 2, j=30.

Анализ содержании табл. 6 показывает, что в медианной плоскости катушки конечного сечения величина магнитной индукции тоже возрастает при удалении от центра катушки, но крутизна роста слабее, чем в тонкой одновитковой катушке. Аксиальный спад величины магнитной индукции сохраняется, но он тоже слабее.

В табл. 7 представлено диаметральное распределение величины магнитной индукции толстых катушек Гельмгольца.

В центре толстых катушек Гельмгольца магнитная индукция имеет по-прежнему максимум, но он на 15 % выше, чем в тонких при той же магнитодвижущей силе. Общий характер вариации распределения величины магнитной индукции сохраняется. Неоднородность же существенно ухудшилась и для цилиндра высотой и диаметром 0,5 R составила по высоте 3%, а по радиусу 9%.

В качестве общих выводов следует сделать следующее.

Катушки с диаметром сечения обмотки менее 0,1 диаметра катушки можно считать тонкими с достаточной инженерной точностью.

Для катушек конечного сечения обмотки получена универсальная интегральная формула для расчета величины магнитной индукции во внутреннем пространстве катушки.

При создании магнитной системы с однородным магнитным полем не следует увлекаться толстыми катушками.

У Говоркова В.А. "Электрические и магнитное поля", М., Энергия, 1968 на стр. 205-207 приведен приближенный расчет напряженности магнитного поля внутри кругового тока, на стр. 207-210 приведен расчет аксиального распределения напряженности магнитного поля тонкого соленоида.

Устройство для создания однородного магнитного поля, содержащее катушки Гельмгольца и внешний магнитопровод броневого типа, отличающееся тем, что указанный магнитопровод выполнен из верхней и нижней идентичных состыкованных торцами частей с цилиндрическими полостями для катушек Гельмгольца и исследуемых объектов, оси которых совмещены, внешние торцы магнитопровода скруглены радиусом, равным радиусу катушек Гельмгольца.



 

Похожие патенты:

Соленоид // 2521867
Изобретение относится к электротехнике, к электромагнитам, создающим однородные магнитные поля, и может быть использовано в экспериментальной физике. Технический результат состоит в повышении равномерности, повышении однородности магнитного поля и мощности.

Соленоид // 2509386
Изобретение относится к электротехнике, к средствам создания однородного магнитного поля и может быть использовано в экспериментальной физике для создания рабочей области для авторезонансного ускорения или генерации.

Изобретение относится к электротехнике и может быть использовано для создания устройств с однородным полем, протяженность которого сравнима или превышает его поперечный размер.

Изобретение относится к электротехнике и может быть использовано, в частности, в качестве катушки зажигания двигателей внутреннего сгорания, установленной непосредственно на свече зажигания.

Изобретение относится к устройствам индикации и измерения электрических и магнитных полей. .

Изобретение относится к электротехнике и может быть использовано в бытовых электродвигателях, в системах передачи электроэнергии, а также в машиностроении. .

Изобретение относится к электротехнике и может быть использовано для создания однородного переменного магнитного поля. Технический результат состоит в снижении мощности питающего источника для получения заданного уровня магнитного поля в рабочем пространстве устройства. Устройство содержит верхнюю и нижнюю катушки Гельмгольца и снабжено шихтованным магнитопроводом, выполненным с двумя цилиндрическими полостями с верхним и нижним торцевыми полюсами, в которых установлены катушки Гельмгольца. К последовательно включенным катушкам Гельмгольца подключен конденсатор и питание образованного последовательного контура осуществляется током резонансной частоты образованного колебательного контура. 1 з.п. ф-лы, 4 ил.

Изобретение относится к электротехнике и может быть использовано, например, в вентильных преобразователях регулируемых электроприводов широкого класса производственных механизмов. Сущность изобретения состоит в том, что управляемый реактор содержит плоский трехстержневой магнитопровод, на каждом стержне которого размещены обмотки, включенные последовательно, имеющие равное число витков, а направления магнитодвижущих сил обмоток в двух крайних стержнях совпадают между собой. При этом согласно изобретению параллельно обмотке, размещенной на среднем стержне, подключен конденсатор. Технический результат, достигаемый данным изобретением, заключается в повышении коэффициента использования электротехнической стали и в упрощении конструкции и технологии изготовления реактора. 2 ил.

Изобретение относится к электротехнике. Технический результат состоит в обеспечении постоянства воздушного зазора. Индуктивный элемент содержит корпус катушки с сердечником и два выступающих в радиальном направлении фланца, образованных на противоположных торцах сердечника. Один из фланцев предназначен для крепления к печатной плате и по размерам больше, чем другой фланец. С наружной стороны корпус катушки окружен экранирующим кольцом, посаженным на больший из фланцев. Для этой цели экранирующее кольцо на нижнем торце имеет обращенную внутрь ступеньку, одна сторона которой образует опорную поверхность, помещаемую на внутреннюю сторону фланца. Другая сторона ступеньки образует опорную поверхность, упирающуюся в наружную периферию фланца. Ступенька предпочтительно проходит вдоль всей периферии экранирующего кольца. В результате воздушный зазор, образованный между верхним фланцем и внутренней стороной экранирующего кольца, фиксирован в отношении его размеров и положения. 4 з.п. ф-лы, 7 ил.

Изобретение относится к электротехнике и может быть использовано в муфтах вентиляторов транспортных средств. Технический результат состоит в упрощении конструкции. Оппозитный стальной сердечник содержит пазы (12; 13) стального сердечника, расположенные в осевом направлении аналогично обратными сторонами друг к другу на корпусе (11) электромагнитного стального сердечника. Способ изготовления оппозитного стального сердечника включает прямое вытягивание корпуса (11) стального сердечника с образованием пазов стального сердечника, расположенных аналогично обратными сторонами друг к другу, или прямое выдавливание корпуса (11) стального сердечника с образованием пазов стального сердечника, расположенных аналогично обратными сторонами друг к другу. Электромагнитная муфта вентилятора, выполненная с помощью оппозитного стального сердечника, содержит первый рабочий зазор (841) и второй рабочий зазор (842) соответственно на двух сторонах корпуса (11) электромагнитного стального сердечника устройства с оппозитным стальным сердечником. 4 н. и 19 з.п. ф-лы, 11 ил.
Наверх