Способ управления ветроэнергетической установкой с двумя ветроколесами и устройство для его реализации



Способ управления ветроэнергетической установкой с двумя ветроколесами и устройство для его реализации
Способ управления ветроэнергетической установкой с двумя ветроколесами и устройство для его реализации
Способ управления ветроэнергетической установкой с двумя ветроколесами и устройство для его реализации
Способ управления ветроэнергетической установкой с двумя ветроколесами и устройство для его реализации
Способ управления ветроэнергетической установкой с двумя ветроколесами и устройство для его реализации
Способ управления ветроэнергетической установкой с двумя ветроколесами и устройство для его реализации
Способ управления ветроэнергетической установкой с двумя ветроколесами и устройство для его реализации
Способ управления ветроэнергетической установкой с двумя ветроколесами и устройство для его реализации

 


Владельцы патента RU 2522256:

федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВПО "НИУ "МЭИ") (RU)

Изобретения относятся к ветроэнергетике и могут быть использованы при управлении ветроэнергетической установкой (ВЭУ) с двумя ветроколесами. Способ управления заключается в том, что формируют сигнал о скорости ветра на высоте оси вращения одновременно работающих двух соосных ветроколес с равными числами n лопастей, оба ветроколеса синхронно вращают в одну и ту же сторону, измеряют угол α между продольными осями, например, первых лопастей обоих ветроколес при скорости ветра, когда ВЭУ развивает мощность, равную или превышающую номинальную мощность, устанавливают второе ветроколесо по отношению к первому при угле α≈0 при скорости ветра, когда ВЭУ развивает мощность, меньшую номинальной мощности, по мере снижения скорости ветра пропорционально увеличивают значение угла α так, чтобы при минимальной рабочей скорости установилось значение α π n . Способ реализуется в ВЭУ с двумя ветроколесами, содержащей лопасти ветроколес, ступицы и общий вал, электрогенератор, энергосистему, датчик скорости ветра. ВЭУ дополнительно снабжена блоком управления углом между ветроколесами, расположенным на общем валу ветроколес, а управляющий вход блока управления соединен с выходом датчика скорости ветра. Кроме того, блок управления снабжен функциональным блоком формирования сигнала об угле между ветроколесами, вход которого соединен с выходом датчика скорости ветра через управляющий вход блока управления, а выход соединен с первым входом регулятора угла между ветроколесами, второй вход которого соединен с выходом датчика угла между ветроколесами, выход регулятора угла между ветроколесами соединен с управляющим входом полупроводникового преобразователя частоты, силовой вход которого соединен с источником питания, а силовой выход соединен со статорной обмоткой электродвигателя, вал которого соединен с системой передачи "винт - гайка", гайка которого соединена с подвижным элементом датчика угла между ветроколесами и через подшипниковый узел со ступицей второго ветроколеса, образующей с валом винтовую шлицевую пару. Изобретение обеспечит эффективность использования установленной мощности ВЭУ и, соответственно, увеличение выработки электроэнергии путем повышения использования энергии ветра со снижением его скорости. 2 н. и 1 з.п. ф-лы, 8 ил.

 

Предлагаемый способ может быть использован в области ветроэнергетики, конкретно - при управлении ветроэнергетической установкой.

Известен способ управления ветроэнергетической установкой (ВЭУ) и устройство для его реализации (Патент РФ 2444646 C1, МПК F03D 7/02, опубликовано: 10.03.2012 Бюл. №7). В известном способе-аналоге управления ветроэнергетической установкой, основанном на том, что формируют сигнал о скорости ветра на высоте оси вращения ветроколеса, сигнал задания общего угла установки лопастей ветроколеса и сигнал об угле установки каждой лопасти ветроколеса, формируют сигнал углового положения вала ветроколеса, по этим сигналам дополнительно формируют сигнал регулирования угла установки каждой лопасти в функции высоты ее расположения в течение каждого оборота ветроколеса. Кроме того, ветроэнергетическая установка дополнительно содержит по числу лопастей ветроколеса блоки управления углом установки лопасти, выход каждого из которых соединен с тягой своей лопасти, первый, второй и третий входы блока управления углом установки лопасти соединены соответственно с выходами датчика скорости ветра, задатчика угла установки лопасти и датчика углового положения вала, а четвертый вход указанного блока соединен с выходом блока контактных колец, вход которого соединен с энергосистемой.

При работе с таким способом-аналогом регулирования углов установки лопастей одного ветроколеса за один оборот ветроколеса удается в рабочем диапазоне скоростей ветра увеличит мощность, развиваемую, например, ветроэнергетической установкой "Радуга 1", на величину 1.4179 М В т 1.354 М В т 1.354 М В т 100 4.7 %

Недостатком этого способа-аналога является недоиспользование ветроэнергетической установкой с одним ветроколесом энергии ветра. Связано это с принципом работы ветроколеса традиционной конструкции, например, трехлопастного - со снижением скорости ветра меньше номинального значения (т.е. когда мощность ветроколеса становится меньше номинального значения), мощность, развиваемая ветроколесом, снижается в кубической зависимости от скорости ветра.

Известен способ-прототип (Твайделл Дж., Уэйр А. Возобновляемые источники энергии.: Пер. с англ. - М.: Энергоатомиздат.1990. На стр.241 задача 9.7 и ее решение на стр.242) управления ветроэнергетической установкой, основанный на том, что выполняют ветроэнергетическую установку с двумя ветроколесами и вращают их в разные стороны.

Согласно линейной теории при расположении двух идеальных ветроколес одного диаметра последовательно удается достичь максимального коэффициента мощности СР=0.64 (по сути это КПД двух идеальных ветроколес). Для одного идеального ветроколеса согласно той же теории максимальный коэффициент мощности равен критерию Жуковского-Бетца, т.е. равен СPмах=16/27=0.593 (по сути, это КПД одного идеального ветроколеса). Таким образом, выигрыш по мощности составляет примерно 5%, т.е. использование ветроэнергетической установкой энергии ветра увеличилось тоже на 5% - несколько больше, чем при регулировании способом-аналогом.

Недостатком этого способа-прототипа, как и аналога, также является недоиспользование ветроэнергетической установкой энергии ветра со снижением скорости ветра.

Известно устройство (Шефтер Я.И. Использование энергии ветра. - 2-е изд., перераб. и доп. М.: Энергоатомиздат, 1983. 200 с., ил. Стр.194 и Рис. 10.4 на стр.196), представляющее ветроэнергетическую установку, содержащую два соосных ветроколеса, вращающихся в противоположные стороны. При этом ротор генератора соединен с первым ветроколесом, а статор генератора выполнен вращаемым в специальных подшипниках и соединен жестко со вторым ветроколесом.

Известное устройство по сути является технической реализацией рассмотренного выше способа-прототипа, и обладает тем же недостатком, т.е. недоиспользование ветроэнергетической установкой энергии ветра со снижением скорости ветра. Кроме того, генератор с вращающимися в разные стороны ротором и статором усложняет конструкцию всей ветроэнергетической установки.

Техническая задача, решаемая изобретением, состоит в повышении использования ветроэнергетической установкой энергии ветра со снижением скорости ветра, что повышает эффективность использования установленной мощности ветроэнергетической установки и, соответственно, увеличение выработки электроэнергии.

Технический результат, заключающийся в увеличении мощности ветроэнергетической установки при скоростях ветра, меньших номинальной скорости ветра, достигается тем, что в известном способе управления ветроэнергетической установкой, основанном на том, что формируют сигнал о скорости ветра на высоте оси вращения одновременно работающих двух соосных ветроколес с равными числами n лопастей, оба ветроколеса синхронно вращают в одну и ту же сторону, измеряют угол α между продольными осями, например, первых лопастей обоих ветроколес при скорости ветра, когда ветроэнергетическая установка развивает мощность, равную или превышающую номинальную мощность, устанавливают второе ветроколесо по отношению к первому при угле α≈0 при скорости ветра, когда ВЭУ развивает мощность, меньшую номинальной мощности, по мере снижения скорости ветра пропорционально увеличивают значение угла α так, чтобы при минимальной рабочей скорости установилось значение α = π n .

Кроме того, поставленная техническая задача решается тем, что известная ветроэнергетическая установка с двумя ветроколесами, содержащая лопасти ветроколес, ступицы и общий вал ветроколес, электрогенератор, энергосистему, датчик скорости ветра, при этом вал ветроколес соединен с валом электрогенератора, статорная обмотка которого подсоединена к энергосистеме, дополнительно снабжена блоком управления углом между ветроколесами, расположенным на общем валу ветроколес, а управляющий вход блока управления углом между ветроколесами соединен с выходом датчика скорости ветра.

Кроме того, в ветроэнергетической установке блок управления углом между ветроколесами выполнен в виде функционального блока формирования сигнала об угле между ветроколесами, вход которого соединен с выходом датчика скорости ветра через управляющий вход блока управления углом между ветроколесами, а выход соединен с первым входом регулятора угла между ветроколесами, второй вход которого соединен с выходом датчика угла между ветроколесами, выход регулятора угла между ветроколесами соединен с управляющим входом полупроводникового преобразователя частоты, силовой вход которого соединен с источником питания, а силовой выход соединен со статорной обмоткой электродвигателя, вал которого соединен с системой передачи "винт - гайка", гайка которого соединена с подвижным элементом датчика угла между ветроколесами и через подшипниковый узел со ступицей второго ветроколеса, образующей с валом винтовую шлицевую пару.

Предлагаемое устройство схематично представлено на рисунках.

На Фиг.1 представлена общая схема ветроэнергетической установки с двумя ветроколесами.

На Фиг.2 представлен продольный разрез блока управления углом α между ветроколесами.

На Фиг.3 представлен поперечный разрез по А-А блока управления углом α между ветроколесами.

На Фиг.4 вида спереди показаны три лопасти ветроколеса 1, а лопасти ветроколеса 2 находятся в их тени.

На Фиг.5 вида спереди показаны три лопасти ветроколеса 1 и три лопасти ветроколеса 2 в положении, когда α π 3 .

На Фиг.6 вида сверху показаны положения, когда лопасть ветроколеса 2 находится в тени лопасти ветроколеса 1 (α≈0), и в положении, когда лопасть ветроколеса 2 перемещается (перемещение показано стрелкой) вперед с одновременным поворотом и занимает среднее положение между лопастями ветроколеса 1 ( α π 3 ) .

На Фиг.7 - графики зависимостей коэффициентов крутящего момента и мощности в функции быстроходности.

На Фиг.8 - графики зависимостей мощностей ветроэнергетической установки в функции скорости ветра.

Согласно Фиг.1, ветроэнергетическая установка с двумя ветроколесами 1 и 2, содержащая лопасти ветроколес, ступицу 3 ветроколеса 1 и общий вал 4 ветроколес, электрогенератор 5, энергосистему 6, датчик 7 скорости ветра, при этом вал 4 ветроколес 1 и 2 соединен с валом электрогенератора 5 через мультипликатор 8 (при необходимости). Статорная обмотка электрогенератора 5 подсоединена к энергосистеме 6. Ветроэнергетическая установка с двумя ветроколесами 1 и 2 дополнительно снабжена блоком 9 управления углом α между ветроколесами, расположенным на общем валу 4 ветроколес, а управляющий вход 10 блока 9 управления углом α между ветроколесами соединен с выходом датчика 7 скорости ветра, выполненного, например, в виде анемометра. Как указывалось, лопасти ветроколеса 1 подсоединены к ступице 3, а лопасти ветроколеса 2 подсоединены к ступице 20 (см. ниже Фиг.2), расположенной в блоке 9 управления углом α между ветроколесами.

Согласно Фиг.2, где показан блок 9 управления углом α между ветроколесами и продольный разрез всего механизма поворота и перемещения ветроколеса 2 относительно ветрокалеса 1, в ветроэнергетической установке блок 9 управления углом α между ветроколесами снабжен функциональным блоком 11 формирования сигнала об угле между ветроколесами, вход которого соединен с выходом датчика 7 скорости ветра через управляющий вход 10 блока 9 управления углом α между ветроколесами, а выход соединен с первым входом регулятора 12 угла между ветроколесами (выполненного, например, в виде пропорционально-интегрального регулятора), второй вход которого соединен с выходом датчика 13 угла между ветроколесами, выход регулятора 12 угла между ветроколесами соединен с управляющим входом полупроводникового преобразователя 14 частоты, силовой вход которого соединен с источником 15 питания, а силовой выход соединен со статорной обмоткой электродвигателя 16, вал которого соединен с системой передачи "винт - гайка", предназначенной для преобразования вращательного движения в поступательное движение. (1. Машиностроение. Энциклопедия. / Ред. совет: К.В. Фролов (пред.) и др. М.: Машиностроение. 2. Детали машин. Конструкционная прочность. Трение, износ, смазка. Т.IV-1 / Д.Н. Решетов, А.П. Гусенков и др. Под общ. ред. Д.Н. Решетова. 864 с: ил.). Гайка 17 винтовой передачи соединена с подвижным элементом 18 датчика 13 угла между ветроколесами, ход которого пропорционален углу α (например, в крайнем правом положении подвижного элемента 18 α≈0, т.е. лопасти ветроколеса 2 находятся в "тени" лопастей ветроколеса 1, а в крайнем левом положении подвижного элемента 18 α π 3 , т.е. лопасти ветроколеса 2 находятся между лопастями ветроколеса 1).

Гайка 17 винтовой передачи также соединена через подшипниковый узел 19 со ступицей 20 второго ветроколеса, образующей с валом 4 винтовую шлицевую пару 21 с большим шагом так, что при полном ходе системы передачи "винт - гайка" одновременно с поворотом ветроколеса 2 относительно ветроколеса 1 на угол α осуществляется перемещение ступицы 20 ветроколеса 2.

Винт 22 системы передачи "винт - гайка" соединен с опорно-упорным подшипником 23 скольжения, корпус которого закреплен на остове 24 механизма поворота и перемещения ветроколеса 2 относительно ветроколеса 1.

Согласно Фиг.3, где показан поперечный разрез по А-А механизма поворота и перемещения ветроколеса 2 относительно ветроколеса 1 (а также согласно Фиг.2), гайка 17 системы передачи "винт - гайка" и остов 24 механизма поворота и перемещения ветроколеса 2 относительно ветрокалеса 1 образуют шлицевую пару, в котором шлицы 25 выполнены с возможностью возвратно-поступательного перемещения в специальных пазах 26 в остове 24.

Рисунки на Фиг.4, 5 и 6 поясняют поворот и перемещение ветроколеса 2 относительно ветроколеса 1.

На Фиг.4 вида спереди показаны три лопасти 27, 28 и 29 ветроколеса 1, а лопасти ветроколеса 2 находятся в тени (их не видно, так как α≈0) лопастей ветроколеса 1.

На Фиг.5 вида спереди показаны три лопасти 27, 28 и 29 ветроколеса 1 и три лопасти 30, 31 и 32 ветроколеса 2 в положении, когда α π 3 .

На Фиг.6 вида сверху показаны положения, когда лопасть 30 ветроколеса 2 находится в тени лопасти 27 ветроколеса 1 (α≈0), и в положении, когда лопасть 30 ветроколеса 2 перемещается (перемещение показано стрелкой) вперед с одновременным поворотом и занимает среднее положение между лопастями 27 и 28 ветроколеса 1 ( α π 3 ) .

Устройство работает следующим образом.

Под действием потока ветра V (стрелки Фиг.1) ветроколеса 1 и 2 ветроэнергетической установки вращаются синхронно в одну и ту же сторону и через общий вал 4 и мультипликатор 8 приводят во вращение электрогенератор 5, электроэнергия которого передается в энергосистему 6. Датчика 7 скорости ветра на своем выходе формирует сигал, пропорциональный скорости ветра, который поступает на управляющий вход 10 блока 9 управления углом α между ветроколесами 1 и 2, расположенного на общем валу 4 ветроколес 1 и 2 и в котором находится ступица 20, к которой подсоединены лопасти ветроколеса 2. Далее сигнал о скорости ветра поступает в функциональный блок 11, формирующий сигнал задания угла αз между ветроколесами в функции скорости ветра αз=f(V) (в простейшем случае, например, в виде линейной зависимости αз=k·V). Сигнал αз поступает на первый вход регулятора 12 угла между ветроколесами (выполненного, например, в виде пропорционально-интегрального регулятора), на второй вход которого одновременно поступает сигнал о реальном значении угла α между ветроколесами с выхода датчика 13 угла между ветроколесами, перемещение подвижного элемента 18 которого пропорционально углу α. На своем выходе регулятор 12 угла между ветроколесами формирует управляющий сигнал, например, вида α y = ( k п р + k и н т 1 р ) ( α з α ) , поступающий на управляющий вход полупроводникового преобразователя 14 частоты, и тем самым приводит во вращение электродвигатель 16, вал которого соединен с системой передачи "винт - гайка", преобразующая вращательное движение винта 22 в поступательное движение гайки 17.

Так как гайка 17 винтовой передачи соединена с подвижным элементом 18 датчика 13 угла между ветроколесами, то одновременно формируется сигнал, пропорциональный реальному значению угла α.

Перемещение гайки 17 винтовой передачи, соединенной через подшипниковый узел 19 со ступицей 20 ветроколеса 2 и образующей с валом 4 винтовую шлицевую пару 21 с большим шагом, вызывает перемещение вдоль вала 4 и поворот ветроколеса 2 относительно ветроколеса 1, т.е. при полном ходе системы передачи "винт - гайка" одновременно с поворотом ветроколеса 2 относительно ветроколеса 1 на угол α осуществляется перемещение вдоль вала 4 ступицы 20 ветроколеса 2.

Таким образом, при работе ветроэнергетической установки с предлагаемым способом управления по мере снижения скорости ветра увеличивается угол между ветроколесами от α≈0 до α π n при одновременном перемещении ступицы ветроколеса 2 вперед. При этом, как следует из Фиг.7, изменяются графики зависимостей коэффициентов крутящего момента и мощности в функции быстроходности. График 1 представляет собой зависимость крутящего момента Сm(n=3)=f(Z) в функции быстроходности Z трехлопастного (n=3) ветроколеса ветроэнергетической установки "Радуга-1", снятого в аэродинамической трубе. При этом ветроколесо 2 находится "в тени" ветроколеса 1, так как α≈0. График 2 представляет собой зависимость коэффициента мощности того же ветроколеса, рассчитанного по известной формуле СP(n=3)=Z·Сm(n=3). График 3 представляет собой зависимость крутящего момента Сm(n=6)=f(Z) при условии, что лопасти ветроколеса 2 расположены между лопастями ветроколеса 1, т.е. при этом угол α π n .

График 4 представляет собой зависимость коэффициента мощности двух ветроколес при α π n , также рассчитанного по известной формуле СP(n=6)=Z·Сm(n=6). При этом важно подчеркнуть, что графики 3 и 4 построены с учетом критерия Глауэрта (Твайделл Дж., Уэйр А. Возобновляемые источники энергии.: Пер. с англ. - М.: Энергоатомиздат. 1990. Стр.214, там же см. Рис.9.11, где приведен критерий Глауэрта в виде графика 2). С учетом характеристик Фиг.7 на Фиг.8 приведены рассчитанные графики зависимостей мощностей ветроэнергетической установки в функции скорости ветра. При этом график 1 соответствует работе ветроэнергетической установки в режиме с углом α≈0, а график 2 соответствует работе в режиме с углом α π n .

При учете ограничения выдаваемой мощности, установленной мощностью электрогенератора, представленной на Фиг.8 линией FBCD, при работе ветроэнергетической установки с углом α≈0 график мощности будет представлен линией ABCD. При работе же ветроэнергетической установки с углом α π n график мощности будет представлен линией EFBCKN. Как видно, на участке CKN мощность резко падает. Чтобы этого не происходило, при начале работы при низких скоростях ветра ветроэнергетическая установка работает при угле α π n по графику мощности EFB. Затем на участке ВС ветроэнергетическая установка переходит в режим работы при угле α≈0. Зону EFBA повышения мощности можно оценить отношением площадей EFBCD и ABCD, что составляет 1.914 е 007 1.485 е 007 = 1.288 .

Таким образом, при предлагаемом управлении ветроэнергетической установкой с двумя ветроколесами переход из режима работы с углом между ветроколесами α π n при скоростях ветра, меньших номинального значения, в режим работы с углом α≈0 позволяет увеличить выработку энергии почти на 29%, что говорит о существенном повышении эффективности ветроэнергетической установки.

1. Способ управления ветроэнергетической установкой (ВЭУ), основанный на том, что формируют сигнал о скорости ветра на высоте оси вращения одновременно работающих двух соосных ветроколес с равными числами n лопастей, отличающийся тем, что оба ветроколеса синхронно вращают в одну и ту же сторону, измеряют угол α между продольными осями, например, первых лопастей обоих ветроколес при скорости ветра, когда ветроэнергетическая установка развивает мощность, равную или превышающую номинальную мощность, устанавливают второе ветроколесо по отношению к первому при угле α≈0 при скорости ветра, когда ВЭУ развивает мощность, меньшую номинальной мощности, по мере снижения скорости ветра пропорционально увеличивают значение угла α так, чтобы при минимальной рабочей скорости установилось значение α π n .

2. Ветроэнергетическая установка с двумя ветроколесами, содержащая лопасти ветроколес, ступицы и общий вал ветроколес, электрогенератор, энергосистему, датчик скорости ветра, при этом вал ветроколес соединен с валом электрогенератора, статорная обмотка которого подсоединена к энергосистеме, отличающаяся тем, что она дополнительно снабжена блоком управления углом между ветроколесами, расположенным на общем валу ветроколес, а управляющий вход блока управления углом между ветроколесами соединен с выходом датчика скорости ветра.

3. Ветроэнергетическая установка по пункту 2, отличающаяся тем, что блок управления углом между ветроколесами выполнен в виде функционального блока формирования сигнала об угле между ветроколесами, вход которого соединен с выходом датчика скорости ветра через управляющий вход блока управления углом между ветроколесами, а выход соединен с первым входом регулятора угла между ветроколесами, второй вход которого соединен с выходом датчика угла между ветроколесами, выход регулятора угла между ветроколесами соединен с управляющим входом полупроводникового преобразователя частоты, силовой вход которого соединен с источником питания, а силовой выход соединен со статорной обмоткой электродвигателя, вал которого соединен с системой передачи "винт - гайка", гайка которого соединена с подвижным элементом датчика угла между ветроколесами и через подшипниковый узел со ступицей второго ветроколеса, образующей с валом винтовую шлицевую пару.



 

Похожие патенты:

Изобретение относится к области ветроэнергетики. Ветроэлектроагрегат, содержащий поворотное основание, с неподвижной и подвижной частями, башню с противовесом, траверсу, поворотные стойки с магнитопроводами и ветроколесами со втулками и с роторными элементами, направляющий элемент.

Изобретение относится к области ветроэнергетики, в частности к регулируемым ветроколесам. Ветроколесо содержит основание с подшипниками, горизонтальный вал, лопасти, роторы, имеющие магнитный контакт со статорами, установленными на основании, редукторы.

Изобретение относится к области ветроэнергетики и может быть использовано в устройствах автоматического регулирования угла установки лопастей ветродвигателя. .

Изобретение относится к ветроэнергетике. .

Изобретение относится к области ветроэнергетики, в частности к регулируемым ветроколесам. .

Изобретение относится к ветроэнергетике и может быть использовано для регулирования работы ветродвигателя с быстроходным ветроколесом и для защиты лопастей ветроколеса от повреждения при сильном ветре.

Изобретение относится к способам воздействия движущегося потока на винт ветро- или гидродвигателя. .

Изобретение относится к ветроэнергетике и может быть использовано для преобразования энергии ветра в электроэнергию. .

Изобретение относится к устройству регулирования шага лопастей ветрогенератора. Устройство предназначено для регулирования шага лопастей 6, шарнирно закрепленных посредством концевых крепежных частей 7 в радиально-упорных подшипниках 5. Подшипники 5 неподвижно установлены на вращающейся головке 3 ротора ветрогенератора. Головка 3 включает линейный приводной механизм, такой как цилиндр, шток которого соединен с крестовиной 14. Крестовина 14 связана с промежуточными механизмами, присоединенными к концевым крепежным частям 7 лопастей 6 для изменения их шага при перемещении крестовины 14. Крестовина 14 приводится в движение штоком цилиндра. Изобретение направлено на создание устройства регулирования шага лопастей ветрогенератора в зависимости от необходимых параметров. 3 з.п. ф-лы, 2 ил.

Изобретение относится к области ветроэнергетики и может быть применено для выработки электроэнергии. Ветроэнергетическая установка содержит башню, выполненную в виде тетраэдра, имеющего ребра и углы, а также ветроколесо и генератор. Одно из ребер выполнено в виде оси автомобильного прицепа. Из четырех ребер, примыкающих к данному ребру, два выполнены в виде вертикальных стоек, а два - в виде дышла автомобильного прицепа с прицепным устройством. Колеса автомобильного прицепа снабжены поворотными основаниями, причем направления осей колес, повернутых в рабочее положение, пересекаются в точке закрепления прицепного устройства. Изобретение обеспечивает высокую мобильность установки при отсутствии специального механизма поворота мачты с хвостовой плоскостью, что делает ее незаменимой при энергоснабжении различных отдаленных объектов. Изобретение также направлено на уменьшение массы и габаритов установки. 4 ил.

Предлагаемое устройство управления ветроэнергетической установкой может быть использовано в области ветроэнергетики, конкретно - при управлении ветроэнергетической установкой. Техническая задача, решаемая предлагаемым изобретением, состоит в упрощении ветроэнергетической установки и в повышении ее надежности. Поставленная техническая задача решается тем, что известное устройство управления ветроэнергетической установкой дополнительно снабжено автоматом перекоса вертолета, блок управления лопастями содержит не менее трех блоков управления углом установки лопасти, третий вход блоков управления углом установки лопасти соединен с энергосистемой, при этом входы автомата перекоса вертолета соединены со вторыми тягами, выходы соединены с первыми тягами, а вал ветроколеса является и валом автомата перекоса вертолета. 6 ил.

Изобретение относится к ветроэнергетическим установкам с главным валом ветротурбины, параллельным ветровому потоку. Цилиндрическая ветротурбина установлена на валу ветроэнергетической установки и содержит лопасти, размещенные на радиальных штангах. Каждая лопасть имеет аэродинамический профиль. Ветротурбина выполнена в виде цилиндра и установлена на главном горизонтальном валу. На этом же валу расположен конический редуктор, втулки с подшипниками, обеспечивающими вращение главного вала. Поверхность цилиндра примыкает к переднему и заднему колесам. Колеса состоят из ободов, ступиц, радиальных штанг. Ступицы закреплены на главном горизонтальном валу ветроэнергетической установки. Радиальные штанги выполнены плоскими. Радиальные штанги соединяют обода колес со своими ступицами. Колеса имеют по N>2 симметрично расположенных штанг. Положение штанг заднего колеса сдвинуто относительно штанг переднего на угол β. Угол β задает угол атаки α для всех N лопастей и фиксируется ступицей заднего колеса. На штангах находятся точки крепления ближайших боковин всех N лопастей. К одноименным точкам крепления штанг на ободах обоих колес крепятся N ребер. К ребрам подсоединены противоположные боковины соответствующих лопастей. К задней кромке N лопастей на шарнире прикреплены закрылки с нагрузочными планками на их нижней кромке и ограничителями, совпадающими по направлению с нижней плоскостью лопастей. Технический результат заключается в простоте и надежности конструкции и отсутствии вибрационных шумов. 1 з.п. ф-лы, 8 ил.

Изобретение относится к энергетике, к ветроэнергетическим установкам. Технический результат состоит в упрощении регулирования и повышении надежности. Регулировочное устройство для регулирования угла установки роторной лопасти ветроэнергетической установки содержит серводвигатель для перемещения роторной лопасти с целью изменения угла установки, управляющий блок для управления серводвигателем с помощью электрического тока. Управляющий блок подключен к сети электроснабжения. Устройство аварийного электроснабжения для снабжения электрическим током и управления серводвигателем используется в случае выхода из строя сети электроснабжения. Устройство аварийного электроснабжения имеет электрический аккумулятор для накопления электрической энергии для обеспечения электрического тока для управления серводвигателем. Управляющий блок предназначен для зарядки электрической энергией электрического аккумулятора устройства аварийного электроснабжения. 3 н. и 6 з.п. ф-лы, 3 ил.

Настоящее изобретение относится к способу эксплуатации ветроэнергетической установки в условиях обледенения, к ветроэнергетической установке и к ветроэнергоцентру с множеством ветроэнергетических установок. Способ эксплуатации ветроэнергетической установки (1) с гондолой (2) с электрическим генератором и связанным с генератором аэродинамическим ротором (3) с одной или несколькими роторными лопастями (4) включает этапы эксплуатации ветроэнергетической установки (1), если осаждение льда на роторных лопастях (4) может быть надежным образом исключено, и остановки ветроэнергетической установки (1), если на роторных лопастях (4) распознано осаждение льда, и остановки или предотвращения повторного запуска с задержкой по времени ветроэнергетической установки (1), если осаждение льда не распознано, но его следует ожидать, и/или разрешения повторного запуска с задержкой по времени ветроэнергетической установки (1), если условие остановки, которое привело к остановке ветроэнергетической установки (1), вновь устранено, и осаждение льда не было распознано, и осаждения льда или образования осаждения льда не следует ожидать. Изобретение направлено на улучшение распознавания осаждения льда на роторных лопастях ветроэнергоустановок. 3 н. и 9 з.п. ф-лы, 4 ил.

Изобретение относится к способу управления ветроэнергетической установкой и к ветроэнергетической установке. Способ управления подключенной к электрической сети ветроэнергетической установкой с генератором с аэродинамическим ротором с регулируемой скоростью вращения включает этап эксплуатации ветроэнергетической установки в оптимальной относительно преобладающих условий ветра рабочей точке с оптимальной скоростью вращения и этап эксплуатации ветроэнергетической установки в переходный период времени или длительно в неоптимальной рабочей точке с неоптимальной скоростью вращения. При этом неоптимальная скорость вращения больше оптимальной скорости вращения. Изобретение направлено на улучшение поддержания электрической сети. 3 н. и 9 з.п. ф-лы, 3 ил.

Изобретение относится к области ветроэнергетической техники, в частности к конструкциям ветроустановок с горизонтальной осью вращения. Конструкция ветроэнергетической установки, содержащая мачту с горизонтальной поворотной платформой, на которой установлены электрогенератор и ветротурбина с лопастями, механическую передачу вращения от вала ветротурбины к валу электрогенератора. Аэродинамический профиль лопасти разделен на сегменты, которые имеют возможность независимо друг от друга изменять угол установки на основе информации, поступающей с датчиков давления, расположенных на каждом сегменте. Изобретение направлено на улучшение регулирования угла установки лопасти с учетом неравномерности ветрового потока. 2 ил.

Изобретение относится к группе двухроторных ветроэнергетических установок. Каждая из двухроторных ветроэнергетических установок включает размещенные на башне ветротурбину с двумя соосными роторами на поворотной платформе, трансмиссию, системы управления углами установки лопастей и положения платформы, электрогенератор. При этом каждый ротор ветротурбины имеет число лопастей более 3-х, которые спроектированы как вращающиеся крылья, суммарная лобовая площадь лопастей на номинальном режиме работы составляет 0,3÷0,5 от площади, ометаемой лопастями поверхности. Лопасти во втулке установлены на подшипниках скольжения, в которых применяется твердая смазка на основе дихалькогенидов металлов в сочетании с керамической втулкой. Электрогенератор с вертикальной осью вращения ротора размещен в верхней части неподвижной башни, статор генератора закреплен к башне, ось ротора электрогенератора расположена вертикально и совпадает с осью вращения поворотной платформы. Привод от ветротурбины к генератору выполнен с помощью конической зубчатой передачи. Мультипликатор представляет собой двухконтурный зубчатый механизм, размещенный в одном корпусе, каждый контур которого передает движение и крутящий момент от одного из роторов ветротурбины независимо от движения другого контура, а кинематическая схема контура представляет собой планетарный редуктор и зубчатый одноступенчатый перебор. Трехвальный соосный зубчатый редуктор установлен между мультипликатором и ротором электрогенератора, кинематическая схема которого выполнена по условиям Δω1=К·Δω2, где Δω1 - изменение угловой скорости входного внутреннего вала; Δω2 - изменение угловой скорости входного внешнего вала; К - постоянный коэффициент, который зависит только от кинематической схемы редуктора; число лопастей ветротурбины выбрано по условию: число лопастей одного ротора - Z, число лопастей другого ротора - (Z+1). На внешнем валу ветротурбины выполнена удлиняющая проставка, в конце которой установлен передний подшипник внутреннего вала. Алгоритм управления углами поворота лопастей одного ротора β1=f(υ), т.е. угол установки лопасти есть функция только скорости ветра, а другого ротора nген=const, β2=υar, т.е. обороты генератора поддерживаются постоянными за счет изменения углов установки лопастей другого ротора, где β1 - угол установки одного ротора; υ - скорость ветра; nген - обороты электрогенератора; β2 - угол установки другого ротора; υar - переменная величина. Изобретение направлено на расширение арсенала двухроторных ветроэнергетических установок. 9 н.п. ф-лы, 12 ил., 3 табл.

Изобретение относится к способу эксплуатации ветроэнергетической установки, к ветроэнергетической установке и ветряному парку из ветроэнергетических установок. Способ эксплуатации ветроэнергетической установки заключается в том, что ветроэнергетическую установку по выбору эксплуатируют в первом или во втором рабочем режиме. Ветроэнергетическая установка в первом рабочем режиме вырабатывает столько электрической мощности, сколько это возможно при преобладающем ветре и расчетных параметрах ветроэнергетической установки, и ветроэнергетическая установка во втором рабочем режиме вырабатывает меньше электрической мощности, чем в первом рабочем режиме, причем ветроэнергетическую установку в первом рабочем режиме регулируют с помощью первого набора установочных параметров, а во втором рабочем режиме регулируют с помощью второго набора установочных параметров, который отличается от первого набора установочных параметров. Если ветроэнергетическая установка эксплуатируется во втором рабочем режиме, то мощность или разность мощностей, максимально производимую при первом наборе установочных параметров, определяют как разницу между этой максимально производимой мощностью и мощностью, производимой в данный момент во втором рабочем режиме, в зависимости от второго набора установочных параметров, и/или второй набор установочных параметров выбирают в зависимости от требуемого снижения мощности. Изобретение направлено на максимально точное и надежное поддержание, регулирование и/или определение разницы в мощности. 3 н. и 6 з.п. ф-лы, 5 ил.
Наверх