Способ изготовления кварцевых тиглей


 


Владельцы патента RU 2522328:

Открытое акционерное общество "Обнинское научно-производственное предприятие "Технология" (RU)

Изобретение относится к огнеупорной промышленности, а именно к производству крупногабаритных кварцевых тиглей для плавления кремния, применяемого в полупроводниковой промышленности. Техническим результатом изобретения является упрощение технологии получения кварцевых тиглей с защитными покрытиями на внутренней поверхности. Способ получения кварцевого тигля включает получение высококонцентрированной суспензии кварцевого стекла, ее стабилизацию, формование заготовки тигля, сушку и обжиг. При этом сушку заготовки тигля осуществляют при температурах 150-300°C с выдержкой не менее 1-3 ч, после чего внутреннюю поверхность заготовки пропитывают метилфенилспиросилоксаном на глубину 1-5 мм. Затем на внутреннюю поверхность наносят покрытие из того же полимера с наполнителем из нитрида кремния в количестве от 30 до 70 % с последующей его полимеризацией, а обжиг проводят при температуре 950-1000°C. 2 пр.

 

Изобретение относится к огнеупорной промышленности, а именно к производству крупногабаритных кварцевых тиглей для плавления кремния, применяемого в полупроводниковой промышленности.

Известен способ изготовления крупногабаритных кварцевых тиглей из кварцевой керамики (патент РФ №2264365 от 20.11.2005, бюл. №32), включающий получение высококонцентрированной суспензии кварцевого стекла плотностью 1,88-1,92 г/см3, ее стабилизацию, введение зернистого заполнителя (50-400 мкм), формование литьем в пористые формы, сушку и обжиг при 1100-1200 °С или гидротермальную обработку при температуре 150-200 °С в течение 4-12 часов.

К недостаткам известного способа следует отнести то, что расплавленный кремний реагирует с диоксидом кремния, в результате чего образуется монооксид кремния и кислород. Кислород загрязняет кремний. Монооксид кремния является летучим и реагирует с компонентами графита в печи с образованием карбида кремния и монооксида углерода. Монооксид углерода в свою очередь при контакте с расплавленным кремнием загрязняет его углеродом. Как правило, с целью защиты кремния от загрязнения на внутреннюю поверхность кварцевых тиглей наносят защитный слой толщиной приблизительно 0,1 мм, после чего производят отжиг тигля с нанесенным покрытием при температурах 1000 °С. Нанесение покрытия на стенки тигля значительно увеличивает себестоимость продукции.

Наиболее близким техническим решением является способ получения кварцевых тиглей (патент РФ № 2333900 от 20.09.08, бюл. №26), включающий получение высококонцентрированной суспензии кварцевого стекла, ее стабилизацию, формование литьем в пористую форму, нанесение на внутреннюю поверхность тигля методом шликерного литья суспензии синтетического диоксида кремния, полученного путем гидролиза тетрахлорида кремния, сушку и обжиг. К недостаткам этого способа относится невозможность получения методами шликерного литья равнотолщинного покрытия из синтетического диоксида кремния. Кроме того, к недостаткам способа можно отнести необходимость проведения операций сушки при 120 °С в течение 12 часов, отжиг заготовки при температурах 550-750 °С без покрытия и при температурах 1100-1200 °С с покрытием, что приводит к большим энергозатратам при изготовлении единицы продукции.

Задачей настоящего изобретения является упрощение технологии получения кварцевых тиглей с защитными покрытиями на внутренней поверхности.

Поставленная задача достигается тем, что предложен способ получения кварцевого тигля, включающий получение высококонцентрированной суспензии кварцевого стекла, ее стабилизацию, формование заготовки тигля, сушку и обжиг, отличающийся тем, что сушку заготовки тигля осуществляют при температурах 150-300 °С с выдержкой не менее 1-3 ч, после чего внутреннюю поверхность заготовки пропитывают метилфенилспиросилоксаном на глубину 1-5 мм, затем на внутреннюю поверхность наносят покрытие из того же полимера с наполнителем из нитрида кремния в количестве от 30 до 70 % с последующей его полимеризацией, а обжиг проводят при температуре 950-1000 °С.

Авторами установлено, что выполнение кварцевого тигля описанным выше способом позволяет получать на внутренней поверхности тигля прочное защитное покрытие на основе нитрида кремния, которое препятствует реагированию расплавленного кремния с кварцевым тиглем. Данное покрытие сохраняет свою целостность при транспортировке и эксплуатации тигля и исключает необходимость проведение дополнительных операций потребителями тиглей.

Кроме того, установлено, что благодаря пропитки отформованной заготовки тигля метилфенилспиросилоксаном (продукт МФСС-8) и нанесению покрытия на отформованную заготовку, происходит активирование процесса спекания и температура обжига может быть снижена до 950-1000 °С. При этом тигель приобретает необходимую для транспортировки прочность (прочность при статическом изгибе σизг≥35 МПа). Снижение температуры ниже указанного интервала нецелесообразно.

Авторы установили, что содержание нитрида кремния в полимере должно находится в пределах от 30 до 70 %. Снижение содержания ниже минимального значения не обеспечивает равномерного распределения нитрида кремния по внутренней поверхности тигля, а превышение указанного интервала затрудняет сам процесс нанесения покрытия. Кроме того, превышение указанного предела может привести к нарушению целостности покрытия.

Установлено, что в результате пропитки заготовки по внутренней поверхности метилфенилспиросилоксаном происходит закрытие пор, благодаря чему обеспечивается высокая адгезия покрытия из нитрида кремния. Экспериментально определено, что глубина пропитки должна быть не меньше 1 мм. Превышение глубины пропитки более 5 мм приводит к излишнему расходу полимера.

Установлено, что для более эффективной пропитки внутренней поверхности заготовки необходимо произвести ее сушку в интервалах температур 150-300 °С с выдержкой не менее 1-3 ч, в результате которой происходит полное удаление свободной воды из порового пространства заготовки.

Реализация предложенного технического решения представлена на следующих примерах.

Пример 1

Из высококонцентрированной суспензии кварцевого стекла плотностью 1,9 г/см3, методом шликерного лития в гипсовые формы отформовали пластины размером 140x70x14 мм.

Отформованные пластины сушили в сушильном шкафу при температуре 275 °С в течение 2 часов. После чего с одной стороны методом частичного погружения образца произвели его пропитку полимером метилфенилспиросилоксана (продуктом МФСС-8) на глубину 4 мм.

На пропитанную поверхность нанесли покрытие, состоящее из смеси нитрида кремния и продукта МФСС-8 в соотношении 50:50.

Произвели полимеризацию полимера.

Обожгли образцы при температуре 1000°С.

В результате был получен образец кварцевой керамики с нанесенным на одну сторону покрытием на основе нитрида кремния. Покрытие обладает высокой адгезионной способностью. Предел прочности на изгиб образцов, изготовленных из полученного материала, составляет 41 МПа.

Пример 2

Аналогично способу, описанному в примере 1, были получены образцы с нанесенным покрытием, состоящим из смеси нитрида кремния и продукта МФСС-8 в соотношениях 25:75; 30:70; 40:60; 60:40; 70:30; 75:25.

Визуальная оценка образцов показала, что покрытие, состоящее из смеси нитрида кремния и продукта МФСС-8 в соотношениях менее 30:70, имеет неоднородный характер, т.е. не достигнуто равномерное распределение нитрида кремния по поверхности образцов, что при эксплуатации тигля может привести к загрязнению кремния. В то же время покрытие с соотношением более 70:30 имеет трещиновидный характер, что в результате транспортировки тигля может привести к частичному осыпанию покрытия, и, как следствие, к невозможности эксплуатации тигля.

Таким образом, предложенное изобретение позволяет получать кварцевые тигли с защитными покрытиями на внутренней поверхности непосредственно в процессе изготовления тигля, что существенно упрощает технологию его изготовления.

Источники информации

1. Патент РФ № 2264365 от 20.11.2005, бюл. №32.

2. Патент РФ № 2333900 от 20.09.08, бюл. №26.

Способ получения кварцевого тигля, включающий получение высококонцентрированной суспензии кварцевого стекла, ее стабилизацию, формование заготовки тигля, сушку и обжиг, отличающийся тем, что сушку заготовки тигля осуществляют при температурах 150-300°C с выдержкой не менее 1-3 ч, после чего внутреннюю поверхность заготовки пропитывают метилфенилспиросилоксаном на глубину 1-5 мм, затем на внутреннюю поверхность наносят покрытие из того же полимера с наполнителем из нитрида кремния в количестве от 30 до 70 % с последующей его полимеризацией, а обжиг проводят при температуре 950-1000°C.



 

Похожие патенты:
Изобретение относится к способу получения керамического стеклянного материала в форме листов больших размеров, пригодных для использования в строительстве для обшивки панелями и для изготовления настилов.
Изобретение относится к производству керамических изделий радиотехнического назначения типа стеклокерамической оболочки головного антенного обтекателя скоростных зенитных и авиационных ракет.
Изобретение относится к производству прозрачных в видимой области спектра стеклокристаллических материалов (ситаллов). .
Изобретение относится к производству изделий радиотехнического назначения из стеклокристаллических материалов -сподуменового состава, получаемых по керамической технологии.
Изобретение относится к производству керамических изделий. .
Изобретение относится к производству изделий радиотехнического назначения из стеклокристаллических материалов -сподуменового состава, получаемых по керамической технологии.
Изобретение относится к производству изделий из стеклокерамики литийалюмосиликатного состава и может быть использовано в керамической и авиационной промышленности, в частности для изготовления крупногабаритных, сложнопрофильных керамических изделий типа носовых диэлектрических конусов летательных аппаратов.

Изобретение относится к производству изделий радиотехнического назначения из стеклокристаллического материала, полученных по керамической технологии, и может быть использовано в керамической и авиационной промышленности.

Изобретение относится к производству радиопрозрачных крупногабаритных изделий сложной формы из стеклокерамики литийалюмосиликатного состава и может быть использовано в керамической и авиационной промышленности, в частности для изготовления антенных обтекателей.

Изобретение относится к керамической промышленности и может быть использовано при изготовлении стеклокерамических изделий типа антенных обтекателей, валов стеклоформующих машин и других изделий методом шликерного литья в пористые формы.
Изобретение относится к производству керамических изделий радиотехнического назначения типа стеклокерамической оболочки головного антенного обтекателя скоростных зенитных и авиационных ракет. Техническим результатом изобретения является снижение диэлектрической проницаемости и усадки материала при обжиге до нулевых значений водопоглощения с сохранением других физико-технических свойств на высоком уровне. Способ изготовления стеклокерамического материала включает получение водного шликера литийалюмосиликатного стекла, формование заготовок в пористые формы, сушку и обжиг. При этом сушку заготовок осуществляют при температуре 150°C в течение 2-3 ч, затем их пропитывают раствором олигометилфенилспиросилоксана в ацетоне и обжигают при 1250°C в течение 2-3 ч. 1 табл.

Изобретение относится к материалам для ювелирной промышленности. Прозрачный, полупрозрачный или непрозрачный композиционный нанокристаллический материал на основе наноразмерных оксидных и силикатных кристаллических фаз содержит одну из кристаллических фаз: шпинель, кварцеподобные фазы, сапфирин, энстатит, петалитоподобную фазу, кордиерит, виллемит, циркон, рутил, титанат циркония, двуокись циркония с содержанием ионов переходных, редкоземельных элементов и благородных металлов от 0,001 до 4 мол. %. В качестве одной из кристаллических фаз материал дополнительно содержит кварцеподобные твердые растворы литиевомагниевоцинковых алюмосиликатов со структурой виргилита следующего состава, в мол. %: SiO2 - 45-72; Al2O3 - 15-30; MgO - 0,1-23,9; ZnO - 0,1-29; Li2O - 1-18; PbO - 0,1-7,0; ZrO2 - 0,1-10; TiO2 - 0,1-15; NiO - 0,001-4,0; CoO - 0,001-3,0; CuO - 0,001-4,0; Cr2O3 - 0,001-1,0; Bi2O3 - 0,001-3,0; Fe2O3 - 0,001-3,0; MnO2 - 0,001-3,0; CeO2 - 0,001-3,0; Nd2O3 - 0,001-3,0; Er2O3 - 0,001-3,0; Pr2O3 - 0,001-3,0; Au - 0,001-1,0. Изобретение позволяет повысить термостойкость и понизить коэффициент термического расширения. 2 табл.
Изобретение касается стеклокерамических материалов на основе системы дисиликата лития, которые применяются в качестве стоматологического материала. Техническим результатом изобретения является получение материалов с улучшенными механическими и оптическими свойствами, а также химической стабильностью. Стеклокерамический материал имеет следующий состав: от 55 до 70 вес.% SiO2, от 10 до 15 вес.% LiO2, от 10 до 20 вес.% стабилизатора, выбираемого из группы, состоящей из ZrO2, HfO2 или их смеси, от 0.1 до 5 вес.% K2O, от 0.1 до 5 вес.% Al2O3,от 0 до 10 вес.% добавок, выбираемых из группы, состоящей из оксида бора, оксида фосфора, фтора, оксида натрия, оксида бария, оксида стронция, оксида магния, оксида цинка, оксида кальция, оксида иттрия, оксида титана, оксида ниобия, оксида тантала, оксида лантана и их смесей, а также от 0 до 10 вес.% красителей. Изобретение также касается способа изготовления указанных стеклокерамических материалов. 4 н. и 6.з.п. ф-лы, 2 табл.

Изобретение относится к производству высокотермостойких радиопрозрачных керамических материалов в бесщелочной магнийалюмосиликатной системе, используемых в изделиях радиотехнического назначения. Способ включает измельчение закристаллизованного стекла магнийалюмосиликатного состава мокрым способом до получения водного шликера, формование заготовок в пористые формы и их термообработку со скоростью подъема и снижения температуры не выше 500°С в час. На стадии измельчения вводят диспергатор в виде натриевой соли полиакриловой кислоты в количестве 1,6-2,0% от объема загружаемой дисперсионной среды, причем измельчение стекла осуществляют до получения водного шликера плотностью ρ=2,06-2,20 г/см3, рН=8,0-9,5 и тониной с остатком на сите 0,063 мм Т63=6-12%. Технический результат заключается в получении отливок плотностью более 2,00 г/см3 и пористостью не выше 25%, что обеспечивает получение плотного спеченного стеклокерамического материала кордиеритового состава плотностью до 2,60 г/см3 и пористостью не более 0,06%. 1 табл., 3 пр.

Изобретение относится к производству радиопрозрачных антенных обтекателей ракет из высокотермостойкого стеклокристаллического материала литийалюмосиликатного состава. Технический результат изобретения заключается в снижении длительности формования, водопоглощения и повышения прочности стеклокристаллического материала обтекателей. Предварительно закристаллизованное стекло измельчают мокрым способом до получения высококонцентрированного шликера с плотностью 2,10-2,13 г/см3, тониной помола (остатком на сите 0,063 мм) 5,0-7,5% и содержанием частиц размером менее 5 мкм 30-35%. Формуют заготовки произвольной формы, которые подвергают повторной переработке в шликер с плотностью 2,10-2,14 г/см3, тониной помола 5,5-6,9% и содержанием частиц размером менее 5 мкм 30-39%. Далее формуют изделия и подвергают термообработке. 2 табл.

Изобретение относится к области оптического материаловедения, в частности к оптически прозрачным стеклокристаллическим материалам литийалюмосиликатной системы. Техническим результатом изобретения является получение оптически прозрачного в видимой области спектра ситалла со стабильной близкой к нулю величиной ТКЛР в широком интервале температур от -100 до +200°C при температурах, не превышающих 1600°C. Состав исходного стекла включает SiO2, P2O5, Al2O3, Li2O, MgO, ZnO, CaO, BaO, TiO2, ZrO2, As2O3 и дополнительно Sb2O3 в количестве 1-3 мас.%. Способ получения ситалла включает предварительную термообработку смеси сырьевых материалов при температуре 1200-1250°С в течение 4-6 часов с последующим помолом образовавшегося спека в шаровой мельнице до образования однородной мелкодисперсной смеси. Варка исходного стекла проводится в электрических печах в корундовых тиглях при температурах, не превышающих 1590±2°С. Ситаллизация материала проводится по двухступенчатому режиму: разогрев и выдержка при температуре образования зародышей кристаллизации 620-660°С в течение 4-5 часов и выдержка при температуре роста кристаллов при температуре 700-770°С в течение 10-20 часов. 3 пр., 2 ил.
Наверх