Солнечный модуль с параболоторическим концентратором в составе с двигателем стирлинга

Фотоэлектрический модуль солнечного концентрированного излучения относится к гелиотехнике и касается создания солнечных модулей с фотоэлектрическими и тепловыми приемниками и концентраторами солнечного излучения в виде параболоидов. Солнечный модуль с параболоторическим концентратором с двигателем Стирлинга содержит цилиндрический фотоприемник двигателя Стирлинга, установленный в фокальной области с цилиндрическим устройством охлаждения, расположенным ниже параболоторического концентратора, согласно изобретению, концентратор выполнен составным в виде тела вращения с зеркальной внутренней поверхностью отражения, состоящей из трех зон a-b, b-c, c-d, причем форма отражающей поверхности концентратора X(У) определена системой уравнений, соответствующей условию освещенности различных частей поверхности фотоприемника в виде цилиндра длиной H и радиусом ro, а значения координат X, У в зоне рабочего профиля концентратора a-b определяются выражением:

( X + r o ) 2 = 4 f 2 ( Y + Δ Y ) , в котором

Δ У = X b 2 4 f 1 ( X b r 0 ) 2 4 f 2 ,

где фокусное расстояние f2 рассчитывается по формуле:

f 2 = ( H 1 Y b h 0 2 ) ( 1 ± 1 sin ζ ) ,

при этом угол ζ в зоне рабочего профиля концентратора a-b между поверхностью цилиндра и отраженным от поверхности в точке координат Xb, Уb или падающим на поверхность параболоторического концентратора лучом, приходящим в фокальную область цилиндрического фотоприемника двигателя Стирлинга на уровне H1-h0/2, расположенной на радиусе ro, рассчитывается по формуле:

t g ζ = H 1 Y b h 0 / 2 X b r 0 ,

где фокусное расстояние f1 рассчитывается по формуле:

f 1 = m R t g β + H 1 r 0 t g β 1 + 2 t g β

значения коэффициента m - изменяющегося в пределах от 0 до 1, высоты H1 между координатной осью ОХ и торцевой поверхностью цилиндрического фотоприемника двигателя Стирлинга, радиуса миделя концентратора R, угла β между отраженным от поверхности в точке координат ХC, УС параболоторического концентратора лучом, приходящим на уровне h0 в фокальную область, расположенную на радиусе r0 цилиндрического фотоприемника двигателя Стирлинга, и перпендикуляром к падающему лучу, выбираются в соответствии с граничными условиями, причем значения координат X, У в зоне рабочего профиля концентратора b-с, в пределах значений угла α+β определяет в соответствии с выражением:

X = 2 f 1 [ 1 cos ( α + β ) t g ( α + β ) ] ,

где α - угол в зоне рабочего профиля концентратора b-с между перпендикуляром к падающему лучу и отраженным от поверхности в точке координат X, У параболоторического концентратора лучом, приходящим на уровне h, изменяющимся в пределах от 0 до ho, в фокальную область, расположенную на радиусе ro цилиндрического фотоприемника двигателя Стирлинга и определяется формулой:

t g α = H 1 Y ( h 0 h ) X ,

γ - угол в зоне рабочего профиля концентратора c-d между отраженным от поверхности в точке координат Xd, Уd параболоторического концентратора лучом, приходящим в центр торцевой части фокальной области цилиндрического фотоприемника, и уровнем высоты H цилиндрического фотоприемника двигателя Стирлинга, определяется из соотношения:

t g ( γ β ) = Y f 1 X = r 1 + r 0 H 1 + f 1 ,

при этом значения координат X, У в зоне рабочего профиля концентратора с-d определяются в соответствии с формулой:

X2=4f1*Y,

геометрическая концентрация освещенности фотоэлектрического приемника K определяется выражением:

K=(X-r1)2/ro(ro+2ho),

где ro - радиус цилиндра, r1 - расстояние между осью симметрии 0, У цилиндра и фокусным расстоянием f1, ho - размер фокальной области на боковой поверхности цилиндрического фотоприемника. В результате использования изобретения на эффективной поверхности фотоэлектрического приемника формируется освещенность концентрированного излучения. 4 ил.

 

Изобретение относится к гелиотехнике и конструкции солнечных модулей с фотоэлектрическими и тепловыми приемниками солнечного излучения и концентраторами. В частности, изобретение относится к солнечной энергетической системы, которая использует двигатель Стерлинга для управления средствами производства электроэнергии.

Известны солнечные модули с фотоэлектрическими преобразователями (ФЭП) и концентраторами солнечного излучения в виде параболоида (Стребков Д.С., Росс М.Ю., Джайлани А.Т., Митина И.В. «Солнечная установка с концентратором». Патент РФ №2396493, Бюл. №22, 2010).

Известные солнечные модули имеют концентраторы, создающие в плоскости фотоэлектрического преобразователя высокие концентрации в фокальной области, достигающие 2000 крат и более, которые могут быть использованы для нагрева рабочих тел.

Известно устройство (прототип) преобразования солнечной энергии в тепловую энергию нагрева рабочего тела, за счет работы которого двигатель Стерлинга посредством электрического генератора производит электроэнергию. (Джек Э. Нильсон, Stonegate Ct, Чарльз Д. Cochran, Andover Rd. «Солнечная энергия для производства электроэнергии системы» Патент США, №4586334, 06.05.1986.

Недостатками известного технического решения являются:

- снижение эффективности нагрева всей поверхности фотоприемника при высоких концентрациях солнечного излучения;

- концентрическое распределение освещенности только на боковой поверхности фотоприемника ограничивают конфигурацию и тип применяемых двигателей Стерлинга (возможно применение рабочих тел только с фазовыми переходами);

Задачей предлагаемого изобретения является обеспечение работы солнечного модуля при высоких концентрациях и эффективном освещении фотоприемника двигателя Стирлинга, повышение КПД преобразования и снижения стоимости вырабатываемой энергии.

В результате использования предлагаемого изобретения - на эффективной поверхности фотоэлектрического приемника формируется освещенность концентрированного излучения.

Вышеуказанный технический результат достигается тем, что солнечный модуль с параболоторическим концентратором в составе с двигателем Стирлинга содержащий цилиндрический фотоприемник двигателя Стирлинга, установленный в фокальной области с цилиндрическим устройством охлаждения расположенного ниже параболоторического концентратора; отличающийся тем, что концентратор выполнен составным в виде тела вращения с зеркальной внутренней поверхностью отражения, состоящего из трех зон a-b, b-c, c-d, причем форма отражающей поверхности концентратора Х(Y) определена системой уравнений соответствующей условию освещенности различных частей поверхности фотоприемника в виде цилиндра длиной Н и радиусом ro,

а значения координат X, Y в зоне рабочего профиля концентратора а-b определяются выражением:

(X+ro)2=4f2*(Y+ΔY), в котором

,

где фокусное расстояние f2 рассчитывается по формуле:

,

при этом угол ξ в зоне рабочего профиля концентратора а-b между поверхностью цилиндра и отраженным от поверхности в точке координат Хb, Yb или падающим на поверхность параболоторического концентратора лучем, приходящим в фокальную область цилиндрического фотоприемника двигателя Стерлинга на уровне H1-h0/2, расположенной на радиусе ro рассчитывается по формуле:

,

где фокусное расстояние f1 рассчитывается по формуле:

значения коэффициента m - изменяющегося в пределах от 0 до 1, высоты H1 между координатной осью ОХ и торцевой поверхностью цилиндрического фотоприемника двигателя Стирлинга, радиуса миделя концентратора R, угла β между отраженным от поверхности в точке координат Хc, Yc параболоторического концентратора и лучом приходящим на уровне ho в фокальную область расположенной на радиусе ro цилиндрического фотоприемника двигателя Стирлинга, и перпендикуляром к падающему лучу, выбираются в соответствии с граничными условиями, причем значения координат X, Y в зоне рабочего профиля концентратора b-с, в пределах значений угла α+β определяет в соответствии с выражением:

,

где α - угол в зоне рабочего профиля концентратора b-с между перпендикуляром к падающему лучу и отраженным от поверхности в точке координат Х, Y параболоторического концентратора лучом, приходящим на уровне h изменяющегося в пределах от 0 до ho в фокальную область, расположенной на радиусе ro цилиндрического фотоприемника двигателя Стирлинга и определяется формулой:

,

γ - угол в зоне рабочего профиля концентратора c-d между отраженным от поверхности в точке координат Хd, Yd параболоторического концентратора лучем, приходящим в центр торцевой части фокальной области цилиндрического фотоприемника и уровнем высоты Н цилиндрического фотоприемника двигателя Стирлинга, определяется из соотношения:

,

при этом значения координат Х, Y в зоне рабочего профиля концентратора с-d определяются в соответствии с формулой:

X2=4f1*Y,

геометрическая концентрация освещенности фотоэлектрического приемника К определяется выражением:

K=(X-r1)2/ro(ro+2ho),

где ro - радиус цилиндра, r1 - расстояние между осью симметрии 0, Y цилиндра и фокусным расстоянием f1, ho - размер фокальной области на боковой поверхности цилиндрического фотоприемника.

Сущность изобретения поясняется фиг.1, 2, 3, 4.

На фиг.1 представлена схема конструкции фотоэлектрического модуля с составным параболоторическим концентратором и двигателем Стирлинга, обеспечивающим осевое распределение концентрированного излучения на различных частях поверхности цилиндрического фотоприемника.

На фиг.2 представлен ход лучей от параболоторического концентратора до фокальной области цилиндрического фотоприемника двигателя Стирлинга.

На фиг.3 представлена форма отражающей поверхности параболоторического концентратора - график зависимости Х(Y).

На фиг.4 представлен график распределения концентрации освещенности на боковой поверхности цилиндрического фотоприемника двигателя Стирлинга от ширины фокальной области (от 0 до ho) в относительных единицах (от 0 до 1).

Фотоэлектрический модуль фиг.1 состоит из: параболоторического концентратора 1, который создает фокальную область 2 на поверхности цилиндрического фотоприемника 3 длиной Н, радиусом ro и расположенного ниже устройством охлаждения 4, входящие в состав двигателя Стирлинга 5.

Параболоторический концентратор 1 фотоэлектрического модуля фиг.2 состоит из трех зон с рабочими профилями: - зона а-b концентрирует солнечное излучение в фокальной области 2 на боковую поверхность цилиндрического фотоприемника 3 на уровне H1-ho/2; - зона b-с концентрирует солнечное излучение в фокальной области 2 на всю боковую поверхность цилиндрического фотоприемника 3 высотой ho, расположенной на радиусе ro; - зона c-d концентрирует солнечное излучение в фокальной области 2 на торцевую поверхность цилиндрического фотоприемника 3.

На основании приведенных формул произведен расчет формы отражающей поверхности концентратора - график зависимости Х(Y) (фиг.3)

На фиг.4 представлен график распределения концентрации освещенности на боковой поверхности цилиндрического фотоприемника двигателя Стирлинга от ширины фокальной области (от 0 до ho) в относительных единицах (от 0 до 1).

При уменьшении высоты ho освещаемой поверхности цилиндрического фотоприемника двигателя Стирлинга 3 происходит увеличение геометрической концентрации фотоэлектрического модуля К.

Таким образом, можно изменять геометрическую концентрацию и тем самым температуру нагрева рабочей части поверхности цилиндрический фотоприемник двигателя Стирлинга, не меняя габаритных размеров концентратора 1.

На основании приведенной характеристики видно, что изменение концентрации освещенности по высоте фотоэлектрического преемника h способствует увеличению температуры нагрева наиболее активной части рабочего тела, находящегося внутри цилиндрического фотоприемника двигателя Стирлинга.

Пример выполнения солнечного модуля с параболоторическим концентратором.

Концентратор 1 радиусом R=228 мм выполнен из алюминиевого листа с зеркально отражающей внутренней поверхностью с рабочим профилем обеспечивающим необходимую концентрацию лучей на рабочей поверхности цилиндрического фотоприемника 3 двигателя Стирлинга, выполненного в виде цилиндра высотой ho=40 мм шириной Δr=10 мм и с внутренним радиусом ro=60 мм, закрепленного на цилиндрическом устройстве охлаждения 4. Концентрация освещенности на всей поверхности цилиндрическиого фотоприемника 3 двигателя Стирлинга составит К=10 крат.

Таким образом, предложенный солнечный модуль с параболоторическим концентратором 1 обеспечивает: распределение освещенности в наиболее активной части цилиндрического фотоприемника 3 двигателя Стирлинга, повышая эффективность рабочего тела двигателя Стирлинга 5 и КПД преобразования солнечной энергии в электрическую.

Работает солнечный модуль с параболоторическим концентратором и составе с двигателем Стирлинга следующим образом.

Солнечное излучение попадает на поверхность параболоторического концентратора 1 и отражается под углами наклона α, β, γ, ζ ориентированные в своих зонах a-b, b-c, c-d таким образом, чтобы они обеспечивали концентрацию солнечного излучения в фокальной области 2 на различных частях поверхности фотоэлектрического приемника 3. Так, лучи отраженные от параболоторического концентратора в зоне а-b концентрируются в фокальной области на поверхности цилиндрического фотоприемника 3 двигателя Стирлинга радиусом ro на уровне H1-ho/2 с гауссовским распределением освещенности; лучи отраженные от параболоторического концентратора в зоне b-с концентрируются в фокальной области 2 на поверхности цилиндрического фотоприемника 3 размером ho радиусом ro с распределением освещенности показанном на рис.4; лучи отраженные от параболоторического концентратора в зоне c-d концентрируются в фокальной области на торце цилиндрического фотоприемника с гауссовским распределением освещенности от центра к периферии радиусом ro.

Солнечный модуль с параболоторическим концентратором в составе с двигателем Стирлинга, содержащий цилиндрический фотоприемник двигателя Стирлинга, установленный в фокальной области с цилиндрическим устройством охлаждения, расположенным ниже параболоторического концентратора, отличающийся тем, что концентратор выполнен составным в виде тела вращения с зеркальной внутренней поверхностью отражения, состоящей из трех зон a-b, b-c, c-d, причем форма отражающей поверхности концентратора X(У) определена системой уравнений, соответствующей условию освещенности различных частей поверхности фотоприемника в виде цилиндра длиной H и радиусом ro, а значения координат X, У в зоне рабочего профиля концентратора a-b определяются выражением:
( X + r o ) 2 = 4 f 2 ( Y + Δ Y ) , в котором
Δ У = X b 2 4 f 1 ( X b r 0 ) 2 4 f 2 ,
где фокусное расстояние f2 рассчитывается по формуле:
f 2 = ( H 1 Y b h 0 2 ) ( 1 ± 1 sin ζ ) ,
при этом угол ζ в зоне рабочего профиля концентратора a-b между поверхностью цилиндра и отраженным от поверхности в точке координат Xb, Уb или падающим на поверхность параболоторического концентратора лучом, приходящим в фокальную область цилиндрического фотоприемника двигателя Стирлинга на уровне H1-h0/2, расположенной на радиусе ro, рассчитывается по формуле:
t g ζ = H 1 Y b h 0 / 2 X b r 0 ,
где фокусное расстояние f1 рассчитывается по формуле:
f 1 = m R t g β + H 1 r 0 t g β 1 + 2 t g β
значения коэффициента m - изменяющегося в пределах от 0 до 1, высоты H1 между координатной осью ОХ и торцевой поверхностью цилиндрического фотоприемника двигателя Стирлинга, радиуса миделя концентратора R, угла β между отраженным от поверхности в точке координат ХC, УС параболоторического концентратора лучом, приходящим на уровне h0 в фокальную область, расположенную на радиусе r0 цилиндрического фотоприемника двигателя Стирлинга, и перпендикуляром к падающему лучу, выбираются в соответствии с граничными условиями, причем значения координат X, У в зоне рабочего профиля концентратора b-с, в пределах значений угла α+β определяет в соответствии с выражением:
X = 2 f 1 [ 1 cos ( α + β ) t g ( α + β ) ] ,
где α - угол в зоне рабочего профиля концентратора b-с между перпендикуляром к падающему лучу и отраженным от поверхности в точке координат X, У параболоторического концентратора лучом, приходящим на уровне h, изменяющимся в пределах от 0 до ho, в фокальную область, расположенную на радиусе ro цилиндрического фотоприемника двигателя Стирлинга и определяется формулой:
t g α = H 1 Y ( h 0 h ) X ,
γ - угол в зоне рабочего профиля концентратора c-d между отраженным от поверхности в точке координат Xd, Уd параболоторического концентратора лучом, приходящим в центр торцевой части фокальной области цилиндрического фотоприемника, и уровнем высоты H цилиндрического фотоприемника двигателя Стирлинга, определяется из соотношения:
t g ( γ β ) = Y f 1 X = r 1 + r 0 H 1 + f 1 ,
при этом значения координат X, У в зоне рабочего профиля концентратора с-d определяются в соответствии с формулой:
X2=4f1*Y,
геометрическая концентрация освещенности фотоэлектрического приемника K определяется выражением:
K=(X-r1)2/ro(ro+2ho),
где ro - радиус цилиндра, r1 - расстояние между осью симметрии 0, У цилиндра и фокусным расстоянием f1, ho - размер фокальной области на боковой поверхности цилиндрического фотоприемника.



 

Похожие патенты:

Изобретение относится к гелиотехнике, в частности к солнечным модулям с концентраторами для получения электрической и тепловой энергии. В солнечном модуле с концентратором, содержащем прозрачные фокусирующие призмы с треугольным поперечным сечением, с углом входа лучей β0 и углом полного внутреннего отражения α = arcsin 1 n , где n - коэффициент преломления призмы, имеющей грань входа и грань переотражения излучения, образующие общий двугранный угол φ, грань выхода концентрированного излучения с приемником излучения и устройство отражения в виде зеркального отражателя, образующего с гранью переотражения острый двугранный угол ψ, который расположен однонаправленно с острым двугранным углом φ фокусирующей призмы.

Изобретение относится к устройствам преобразования солнечной энергии в электрическую, в частности к конструкциям солнечных энергетических установок, которые могут использоваться в быту, например, в усадьбах индивидуальных жилых домов (коттеджей, сельских жилых домов), на садовых участках, в парках, городских скверах, остановках транспорта (особенно загородом, где нет централизованного электроснабжения) и т.д. Солнечная фотоэлектрическая станция состоит из опорной конструкции с подвесными качелями и гибким каркасом для установки тента над качелями с устройством для регулирования угла наклона каркаса к горизонту, при этом в качестве тента использована изогнутая солнечная батарея, приближающая по форме к фрагменту цилиндрической поверхности, которая состоит, по крайней мере, из одного одностороннего фотоэлектрического модуля, обращенного выпуклой поверхностью к солнцу, при этом на вогнутой поверхности установлены светодиоды и она покрыта светоотражающим материалом. В результате использования изобретения уменьшается материалоемкость солнечной фотоэлектрической станции, так как не требуется отдельной конструкции для размещения солнечной батареи и светодиодного светильника, а также расширяются функциональные возможности совместного использования фотоэлектрических модулей и светодиодного светильника. 4 з.п.ф-лы, 5 ил.

Изобретение относится к возобновляемым источникам энергии и, в частности, к устройству для производства электроэнергии из возобновляемого источника энергии, включающего шарнирное сочленение, имеющее подшипник. Энергогенерирующее устройство для вырабатывания электроэнергии из возобновляемых источников энергии включает основание, устройство преобразования энергии, соединенное с основанием, и шарнирное сочленение между основанием и устройством преобразования энергии, включающее подшипниковый элемент, имеющий корпус, включающий композитный материал, имеющий жесткий материал и снижающий трение материал, покрывающий жесткий материал, при этом жесткий материал содержит материал, выбранный из группы, состоящей из алюминия и нержавеющей стали, а также промежуточный материал, расположенный между жестким материалом и снижающим трение материалом, при этом промежуточный материал содержит по меньшей мере один функциональный термопластичный полимер, имеющий функциональные группы с такими формулами , , , -COOH и/или -COOR, где радикалы R являются циклическими или линейными органическими радикалами, имеющими от 1 до 20 атомов углерода, и включает сополимер этилен-тетрафторэтилена (ETFE), перфтороалкоксиэтилен (PFA), сополимер тетрафторэтиленаперфтора /метилвиниловый эфир (MFA) и их комбинации. По второму варианту энергогенерирующее устройство дополнительно содержит вкладыш, по третьему варианту подшипниковый элемент, присоединенный к шарнирному сочленению, имеет корпус, включающий композитный материал, содержащий жесткий материал и снижающий трение материал, покрывающий жесткий материал, при этом подшипниковый элемент имеет степень атмосферного износа не более чем приблизительно 0,99 микрон/ч в течение по меньшей мере приблизительно 15000 циклов движения шарнирного сочленения, по четвертому варианту снижающий трение материал практически не имеет видимых дефектов после испытания на стойкость к солевому туману в течение по меньшей мере 150 часов в соответствии со стандартным коррозионным испытанием ISO 9227:2006, по пятому варианту композитный материал подшипникового элемента имеет среднюю силу трения не более чем приблизительно 300 Н в течение по меньшей мере 15000 циклов в вибрационном испытании. Изобретение должно повысить надежность и долговечность подшипникового элемента. 5 н. и 8 з.п. ф-лы, 2 табл., 14 ил.

Изобретение относится к регулирующей/контрольной аппаратуре автоматического отслеживания солнечной энергии системы генерирования солнечной энергии. Заявленная регулирующая/контрольная аппаратура содержит опорный узел, опорное седло, расположенное на одном конце опорного узла; несущую платформу, закрепленную на опорном седле посредством шарнирного узла вращения с возможностью поворота в двух направлениях, по меньшей мере, один модуль генерирования солнечной энергии, расположенный на несущей платформе для преобразования солнечной энергии в электрическую энергию. По меньшей мере, один узел привода расположен между опорным узлом и несущей платформой и служит для привода несущей платформы в соответствии с заданными параметрами, хранящимися в блоке управления. Сама несущая платформа установлена с возможностью наклона в различных направлениях и на различные углы наклона относительно шарнирного узла вращения. Имеется также детектирующий/корректирующий модуль, расположенный на несущей платформе для детектирования и получения актуальных параметров, включающих в себя направление наклона и угол наклона несущей платформы, и передачи актуальных параметров в блок управления. При этом блок управления сравнивает актуальные параметры с заданными, хранимыми в нем параметрами для получения сравнительного результата, и в соответствии со сравнительным результатом блок управления модифицирует направление наклона и угол наклона несущей платформы посредством узла привода. Изобретение должно обеспечить автоматическое отслеживание солнечной энергии в системе генерирования. 20 з.п. ф-лы, 8 ил.

Система автономного электро- и теплоснабжения жилых и производственных помещений. Источником электроэнергии является фотоэлектрическая батарея (16), бесперебойность питания обеспечивается аккумуляторной батареей (21) и ветрогенераторной установкой (17), заряд батареи (21) от них происходит через коммутатор (20); источниками тепла являются блок солнечных коллекторов (10) и ветрогенераторная установка (17), соединенная с электронагревателем (19) в тепловом аккумуляторе (3), нагреваемый в коллекторе (10) воздушный поток передает теплоту через контур (12) в помещение и/или в теплообменник (13) в аккумуляторе (3) с водой, подача тепла в отопительные приборы помещения регулируется вентилями (34) и (35), насосом (25) и тепловым насосом (1), который поддерживает температуру на выходе его конденсатора, а поток теплоносителя регулируется насосом (25) и вентилями (34) и (35), контроль подачи тепла потребителям ведется датчиками температуры. Все датчики тепловой и электрической нагрузок, исполнительные механизмы в тепловых контурах системы и их разобщительная арматура соединены с автоматической системой управления (41), которая обрабатывает сигналы, определяет алгоритм поведения всех элементов и вырабатывает сигналы управления. Технический результат: повышение надежности, увеличение эффективности работы теплового насоса и системы в целом, повышение экономичности. 1 ил.

Фотоэлектрический модуль солнечного концентрированного излучения относится к гелиотехнике и касается создания солнечных модулей с фотоэлектрическими и тепловыми приемниками и концентраторами солнечного излучения в виде параболоидов. Солнечный теплофотоэлектрический модуль с параболоторическим концентратором, состоящий из параболоидного концентратора типа «Фокон» и теплофотоэлектрического приемника, расположенного в фокальной области с равномерным распределением концентрированного излучения, отличающийся тем, что солнечный теплофотоэлектрический модуль содержит параболоторический концентратор и цилиндрический теплофотоэлектрический приемник с устройством охлаждения, установленный в фокальной области, концентратор, представляющий тело вращения с зеркальной внутренней поверхностью отражения, состоящий из нескольких зон (a-b, b-c, c-d), выполнен составным по принципу собирания отраженных лучей в двух фокальных областях из отдельных зон концентратора: - форма отражающей поверхности зон a-b, b-c концентратора Х(У) определяется системой уравнений, соответствующей условию равномерной освещенности поверхности фотоэлектрической части теплофотоэлектрического приемника, выполненного в виде цилиндра из скоммутированных высоковольтных ФЭП длиной ho и радиусом rо, Yn=Rn 2/4fo, Xn=Rn-(k-1)ro, Rn=2fo(tgαn+cosαn), Δα=αo/N, αn=Δα(n-N/2), X*=2f1Q[(1+1/Q2)l/2-1], Q=B/ro, B=ho+h, Y*=X*2/4f1, Y*n=ΔY*n, Хn=[4f1(Y*+Y*n)]1/2, ΔY=P[1±(1-4R/P2)1/2]/2, P=L+Yb, L=fo+h+ho/2, где αn - угол (в зоне рабочего профиля концентратора а-с) между уровнем ординаты в точке координат Хn, Уn и отраженным от поверхности параболы с фокусным расстоянием fo лучом, приходящим в фокальную область шириной ho, расположенной на радиусе rо цилиндрического фотоэлектрического приемника в интервалах Δα=αo/N, где n выбирается из ряда целых чисел n=1, 2, 3…N, значения параметров fo, f1, k выбираются в соответствии с граничными условиями, а геометрическая концентрация освещенности фотоэлектрического приемника Kn в интервалах радиуса концентратора ΔXn=Xn-Xn-1 равна: Kn=(Rn+1 2-Rn 2)n/do, - форма отражающей поверхности зоны c-d концентратора Х(У) определяется системой уравнений, соответствующей условию равномерной освещенности поверхности тепловой части теплофотоэлектрического приемника, выполненного в виде усеченного конуса с боковой поверхностью длиной d*, верхним радиусом rов и нижним радиусом rв:Хc=2Уc(1/codβв-tgβв), tgβв=(Yс-Нв)(Rc-roв), fв=Yc-Xctgβв, rв=Хc-Rc, d*=h*/sinφo, d*n=d*n/N, Kn=(R2 n+1-R2 n)/(r*n+1+r*n)Δd*, Xвn=2fв(tgγвn+1/cosγвn), tgφo=h*/(ro-r*во), где βв - угол (в зоне рабочего профиля концентратора c-d) между уровнем ординаты в точке координат Хс, Ус и отраженным от поверхности параболы с фокусным расстоянием fв лучом, приходящим в фокальную область усеченного конуса радиусом rв фотоэлектрического приемника, γn - угол (в зоне рабочего профиля концентратора c-d) между уровнем ординаты в точке координат Хn, Уn и отраженным от поверхности параболы с фокусным расстоянием fв лучом, приходящим в фокальную область усеченного конуса шириной d* фотоэлектрического приемника в интервалах Δd*=d*/N, где n выбирается из ряда целых чисел n=1, 2, 3…N, при этом значения параметров fв, k выбираются в соответствии с граничными условиями, φо угол наклона боковой поверхности усеченного конуса фотоэлектрического приемника, а геометрическая концентрация освещенности фотоэлектрического приемника Kn в интервалах радиуса концентратора ΔХn=Хn-Xn-1 равна: Kn=(R=2 n+1-R2 n)/(r*n+1+r*n)Δd*. 5 ил.

Мобильная автономная солнечная электростанция (МАСЭС) предназначена для снабжения электроэнергией боевых позиций и командных пунктов ракетно-артиллерийских подразделений, пограничных застав, блокпостов и других удаленных объектов полевого базирования различного назначения. МАСЭС относится к области возобновляемых источников энергии и, в частности, предназначена для получения электроэнергии от воздействия солнечной радиации на фотоэлектронные модули (ФЭМ). МАСЭС содержит: одноосный прицеп, на котором размещена квадратная в поперечном сечении световодная труба; четырехгранный оптически активный купол; криволинейный отражатель лучей солнечной радиации; вращающийся цилиндр, на образующей которого размещены ФЭМ, полуцилиндрическая сложная собирающая линза; вал цилиндра; подшипники вала цилиндра; микродвигатель; вентилятор; датчик температуры; блок аккумуляторных батарей (БАКБ); контроллер заряда-разряда (КЗР); инвертор. Положительный эффект достигается за счет сбора лучей солнечной радиации независимо от угла солнцестояния четырехгранным оптически активным куполом; дополнительной концентрации лучей криволинейным отражателем на поверхность четырехгранного оптически активного купола; транспортировки лучей солнечной радиации от четырехгранного оптически активного купола по квадратной световодной трубе на полуцилиндрическую сложную собирающую линзу; вращения цилиндра, на образующей поверхности которого размещены ФЭМ, воспринимающие периодическую концентрацию лучей солнечной радиации от полуцилиндрической сложной собирающей линзы. Технический результат: устойчивое получение электроэнергии от солнечной радиации без применения приборов слежения за солнцем, повышение надежности и эффективности выработки электроэнергии. 12 з.п. ф-лы, 6 ил.

Изобретение относится к гелиотехнике, в частности к солнечным энергетическим модулям для получения электричества и тепла. Техническим результатом является повышение эффективности преобразования солнечной энергии, снижение удельных затрат на получение электроэнергии и тепла. В гибридном фотоэлектрическом модуле, содержащем защитное стеклянное покрытие, соединенные солнечные элементы, размещенные между стеклом и корпусом с теплообменником, солнечные элементы электроизолированы от теплообменника, пространство между солнечными элементами и теплообменником, а также между стеклянным покрытием и теплообменником заполнено слоем силоксанового геля толщиной 0,5-5 мм, защитное стеклянное покрытие выполнено в виде вакуумированного стеклопакета из двух стекол с вакуумным зазором 0,1-0,2 мм с вакуумом 10-3-10-5 мм рт.ст. Теплообменник выполнен в виде герметичной камеры с патрубками для циркуляции теплоносителя, а общая площадь соединенных солнечных элементов соизмерима с площадью верхнего основания корпуса теплообменника. В гибридном фотоэлектрическом модуле цепочки из последовательно соединенных солнечных элементов могут быть соединены электрически параллельно при помощи коммутационных шин. 1 з.п. ф-лы, 2 ил.

Изобретение относится к гелиотехнике, в частности к конструкциям солнечных энергетических установок с фотоэлектрическим датчиком слежения за Солнцем и системами азимутального и зенитального поворотов плоскости солнечной энергоустановки. Энергоустановка содержит принимающую солнечную энергию плоскость, систему управления приводами азимутального и зенитального поворотов плоскости и разворота ее с запада на восток, валы приводов, систему слежения за Солнцем. Система слежения включает в себя два фотоэлектрических модуля, закрепленных на выносной платформе, которая установлена параллельно принимающей солнечную энергию плоскости энергоустановки. Первый фотоэлектрический модуль представляет собой датчик положения Солнца по азимуту, в конструкции которого размещены два фотоэлемента слежения за Солнцем и командный фотоэлемент разворота принимающей солнечную энергию плоскости солнечной энергоустановки с запада на восток. Второй фотоэлектрический модуль представляет собой датчик положения Солнца по зениту, содержащий два фотоэлемента слежения за Солнцем. Конструкция каждого фотоэлектрического модуля содержит монтажную площадку, на верхней стороне которой размещены два фотоэлемента, разделенные перегородкой, служащей в свою очередь разделителем направлений освещенности последних и опорой для крепления зеркального цилиндра. Командный фотоэлемент разворота плоскости энергоустановки с запада на восток находится на нижней стороне монтажной площадки фотоэлектрического модуля, следящего за положением Солнца по азимуту. Применение данного изобретения обеспечивает высокую точность слежения по азимуту и зениту за положением Солнца и повышенную надежность работы энергоустановки. 3 ил.

Устройство относится к области электротехники. Техническим результатом является повышение прочности. Зажимное соединение (1) для закрепления на направляющих балках (8) пластинообразных конструктивных элементов (13), в частности солнечных модулей, состоит из опоры (2), имеющей ориентированную в продольном направлении зажимного соединения (1) упорную балку (4) с боковыми крыловидными планками (5, 6) с поверхностями (10, 11) прилегания для конструктивных элементов (13), а также предусмотренную на нижней стороне пяту (7) для крепления опоры (2) на балке (8), а также - из зажимной крышки (3) с продольным пазом (9), охватывающим верхнюю часть упорной балки (4), и с покрывающими поверхности (10, 11) прилегания опоры (2) зажимными поверхностями (13, 14) и с удерживающим соединением (25, 28, 29) для фиксации зажимной крышки (3) на опоре (2), причем балка (8) имеет направляющие пазы с выступающими внутрь паза краями (34), и пята (7), выполненная Т-образной, своей поперечиной (36) вставлена в направляющий паз и после поворота на 90° зацепляется позади выступающих краев (34). Опора (2) имеет проход (24), по центру которого расположена пружинная шайба (31), которая с силовым замыканием захватывает вдавленный, соединенный с зажимной крышкой (3) удерживающий штифт (30) и тем самым фиксирует зажимную крышку (3) на опоре (2). 25 з.п. ф-лы, 8 ил.
Изобретение относится к области гелио- и ветроэнергетики. Всесезонная гибридная энергетическая вертикальная установка содержит установленный с возможностью вращения вертикальный вал в виде цилиндрической трубы, охватывающей неподвижную полую ось. Неподвижная полая ось закреплена на основании. На вертикальном валу соосно между двумя защитными куполами закреплены ротор Савониуса и ротор Дарье. Защитные купола покрыты препятствующим обледенению слоем. Ротор Савониуса установлен внутри ротора Дарье. Лопасти ротора Дарье выполнены в виде скрученных полос, покрытых препятствующим обледенению слоем. На всей поверхности лопастей ротора Савониуса, выполненных в виде скрученных пластин, с двух сторон закреплены фотоэлектрические преобразователи. Выходы фотоэлектрических преобразователей соединены с силовым входом устройства управления. На вертикальном валу закреплен датчик скорости вращения вала. Выход датчика скорости вращения вала соединен с сигнальным входом устройства управления. Первый силовой выход устройства управления соединен через первый ключ с входом бесколлекторного двигателя постоянного тока. Второй силовой выход устройства управления соединен через второй ключ с входом индукционного передатчика энергии. Выход индукционного передатчика энергии соединен через контроллер заряда с первым входом накопителя электрической энергии. Второй вход накопителя соединен через контроллер заряда с выходом электромагнитного генератора. Электромагнитный генератор закреплен в нижней части вертикального вала. Технический результат - увеличение вырабатываемой электроэнергии за счет использования ветровой и солнечной энергии всесезонно при переменных погодных условиях. 12 з.п. ф-лы, 2 ил.
Наверх