Система мельничного привода

Изобретение относится к приводам средств измельчения различных материалов. Система мельничного привода включает в себя расположенную под чашей бегунов передачу 1 с планетарной и/или цилиндрической ступенью 11, 12, имеющей вертикальное расположение вала. В корпус 3 передачи интегрирован электрический двигатель 2, ротор 21 и статор 22 которого имеют вертикально проходящие оси. На противолежащих торцевых сторонах на роторе и статоре смонтированы верхняя 23 и нижняя 24 подшипниковые крышки, в которых выполнены гнезда под подшипники 26, 27 вала ротора. Верхняя 23 и нижняя 24 подшипниковые крышки соединены посредством корпуса 25 статора, который по наружному периметру имеет ребра охлаждения. Между нижней подшипниковой крышкой 24 и донной частью корпуса выполнен поддон для охлаждающего средства. Двигатель опирается посредством выполненного на внутренней стороне корпуса, проходящего радиально внутрь фланца 34. Система мельничного привода обеспечивает более упрощенный монтаж и эффективное охлаждение узла двигателя. 11 з.п. ф-лы, 2 ил.

 

Известные системы мельничного привода включают в себя одну или несколько ступеней передачи для преобразования приводной мощности электродвигателя. Ступени передачи и электродвигатель образуют при этом ветвь привода, тесно связанную с процессом переработки внутри, например, чашевой мельницы, смесительного барабана, дробилки, трубной мельницы или вращающейся трубчатой печи, которая подвержена значительным обратным действиям процесса переработки. Обычно для привязки электродвигателя к приводной ветви применяются ступени с коническими зубчатыми колесами.

В DE 39 31 116 A1 описано приводное устройство для мельницы вертикальной конструкции, у которого корпус предвключенной передачи неподвижно привернут к мельнице. При этом необходима точная ориентация находящихся на большом расстоянии друг от друга осей приводной шестерни и зубчатого венца. Кроме того, передача осевых усилий мельницы через осевой упорный подшипник в общий корпус передачи создает значительные нагрузки для зубчатого зацепления в предвключенной передаче. Общее большое внутреннее пространство передачи и подшипников мельницы способствует быстрому загрязнению смазочным маслом приводного устройства. Кроме того, разветвление механической мощности в предвключенной передаче оказывается проблематичным с точки зрения отсутствующей компенсации излишних сил реакции.

Из JP 2005 052799 A известно приводное устройство для вертикальной дробилки, привод которого осуществляется либо через зубчатый венец на вращающемся нижнем диске, либо через многоступенчатую коническую зубчатую передачу. В результате отсутствия подвижности регулирования на ведомой ступени приводного устройства ударные нагрузки от процесса переработки передаются в приводное устройство, в частности в его зубчатое зацепление.

В WO 2009/068484 A1 описана цилиндрическая зубчатая передача с одной или несколькими передаточными ступенями для привода охваченной зубчатым венцом рабочей машины, которая включает в себя корпус передачи, в котором помещены передаточные ступени, и установленную на ведомом валу ведомой ступени, подвижно регулируемую зубчатую шестерню, которая находится в зацеплении с зубчатым венцом. Корпус передачи состоит из первой, обладающей собственной жесткостью, части корпуса и из второй, неподвижной части корпуса. Первая часть корпуса охватывает ведомую ступень с ведомым валом и подвижно регулируемой зубчатой шестерней и имеет выступающие за передачу боковые стенки, которые стоят на фундаменте. Вторая часть корпуса без соприкосновения с фундаментом закреплена с торцевой стороны на первой части корпуса.

В более ранней европейской заявке на патент с регистрационным номером 09011589.0 описана система мельничного привода, снабженная расположенной под чашей бегунов передачей по меньшей мере с одной планетарной и/или цилиндрической ступенью, а также интегрированным в корпус передачи электрическим двигателем. Кроме того, система мельничного привода включает в себя преобразователь с предусмотренным регулировочным устройством для регулирования частоты вращения двигателя без зазора в зубчатом зацеплении.

В WO 2010/20287 описана система мельничного привода, снабженная интегрированным узлом двигателя и передачи, которая имеет один общий циркуляционный контур охлаждения. Узел двигателя и передачи опирается на нижней плите корпуса, охватывающего узел двигателя и передачи.

Поэтому в основу настоящего изобретения положена задача создать интегрированную систему мельничного привода, которая позволит осуществлять упрощенный монтаж узла двигателя и эффективное охлаждение узла двигателя.

В соответствии с изобретением эта задача решается с помощью системы мельничного привода с признаками, указанными в п.1 формулы изобретения. Предпочтительные усовершенствования настоящего изобретения указаны в зависимых пунктах формулы изобретения.

Предлагаемая изобретением система мельничного привода включает в себя расположенную под чашей бегунов передачу по меньшей мере с одной планетарной и/или цилиндрической ступенью, которая имеет вертикальное расположение вала. Кроме того, в корпус передачи интегрирован электрический двигатель, ротор и статор которого имеют вертикально проходящие оси. Кроме того, на противолежащих торцевых сторонах на роторе и статоре смонтированы верхняя подшипниковая крышка и нижняя подшипниковая крышка, в которых имеются гнезда под подшипники вала ротора. Верхняя подшипниковая крышка и нижняя подшипниковая крышка соединены посредством корпуса статора, который по наружному периметру имеет ребра охлаждения. На эти ребра охлаждения могут ориентироваться смонтированные на корпусе или, соответственно, заделанные в корпус форсунки. Между нижней подшипниковой крышкой и донной частью корпуса выполнен поддон для охлаждающего средства. Находящееся в поддоне охлаждающее средство может, таким образом, применяться для дополнительного охлаждения двигателя. Двигатель опирается посредством выполненного на внутренней стороне корпуса, проходящего радиально внутрь фланца, с которым соединены или, соответственно, соединена нижняя и/или верхняя подшипниковая крышка. Это позволяет осуществлять простой монтаж узла двигателя системы мельничного привода путем вставления в корпус через верхнюю и/или нижнюю подшипниковую крышку. При этом двигатель может по существу опираться на внутреннюю сторону корпуса только посредством фланца. Благодаря исключительно вертикальному расположению чаши бегунов, передачи и двигателя можно, кроме того, обойтись без относительно дорогой конической зубчатой передачи.

Охлаждение двигателя осуществляется предпочтительно посредством циркулирующей через передачу смазки или, соответственно, охлаждающего средства. При интеграции двигателя в циркуляционный контур смазки передачи можно обойтись без трудоемких вентиляционных мер для достаточного охлаждения двигателя. Кроме того, может быть предусмотрена непроницаемая для смазочного масла оболочка для обмоток ротора или, соответственно, статора двигателя для уплотнения относительно смазки, циркулирующей внутри корпуса.

Кроме того, один из предпочтительных вариантов осуществления предлагаемой изобретением системы мельничного привода включает в себя преобразователь, снабженный регулировочным устройством для регулирования частоты вращения двигателя без зазора в зубчатом зацеплении. Благодаря применению преобразователя для регулирования частоты вращения двигателя достигается независимость между сетевым питанием и крутящим моментом двигателя. Таким образом могут предотвращаться повреждения зубчатого зацепления при коротких перерывах вследствие выпадения сети, так как при выпадении сети благодаря предлагаемому изобретением регулированию частоты вращения двигателя в направлении вращения в передаче не возникает зазор в зубчатом зацеплении. Кроме того, благодаря применению преобразователя может быть реализовано множество специальных вариантов передаточного числа при сокращении количества типов конструктивных элементов зубчатого зацепления. Благодаря регулированию частоты вращения соответствующий процесс переработки с помощью предлагаемой изобретением системы мельничного привода может, кроме того, осуществляться в оптимальной рабочей точке. Благодаря этому улучшается эффективность процесса помола. Это позволяет, в свою очередь, сократить потребление энергии.

Предпочтительно между ступицей ротора и нижней подшипниковой крышкой расположен по меньшей мере один осевой подшипник для вала ротора. Это позволяет получить особенно компактную конструкцию. Кроме того, передача включает в себя в соответствии с одним из предпочтительных вариантов осуществления настоящего изобретения по меньшей мере две планетарные ступени, а корпус выполнен по меньшей мере из двух частей. Кроме того, в области между первой и второй планетарной ступенью предусмотрен разъем корпуса. Таким образом, интегрированная система мельничного привода может разделяться на узлы, транспортируемые без затруднений, которые на месте инсталляции снова могут быстро собираться.

Соответственно одному из предпочтительных усовершенствований настоящего изобретения двигатель представляет собой синхронную машину, система магнитов ротора которой заварена в оболочку из нержавеющей стали. Так как на роторе при этом возникают только небольшие тепловые потери, охлаждения ротора не требуется. Альтернативно возбуждаемой от постоянных магнитов синхронной машине двигатель может быть также выполнен в виде синхронной или асинхронной машины с посторонним возбуждением.

Настоящее изобретение ниже поясняется подробнее на одном из примеров осуществления с помощью чертежей, где:

фиг.1 - предлагаемая изобретением система мельничного привода, изображенная в сечении,

фиг.2 - предлагаемая изобретением система мельничного привода, изображенная в перспективе в сечении.

Изображенная на фиг.1 система мельничного привода включает в себя располагаемую под чашей бегунов передачу 1 с двумя планетарными ступенями 11, 12, которые имеют вертикальное расположение вала. В корпус 3 передачи 1 интегрирован электрический двигатель 2, ротор 21 и статор 22 которого имеют вертикально проходящие оси. На противолежащих торцевых сторонах на роторе 21 и статоре 22 смонтированы верхняя подшипниковая крышка 23 и нижняя подшипниковая крышка 24, в которых имеются гнезда под подшипники 26, 27 вала ротора. Верхняя подшипниковая крышка 23 и нижняя подшипниковая крышка 24 соединены посредством корпуса 25 статора, который по наружному периметру имеет изображенные на фиг.2 ребра 28 охлаждения. На эти ребра 28 охлаждения ориентированы смонтированные на корпусе 3 распылительные форсунки 35. Между нижней подшипниковой крышкой 24 и донной частью корпуса 3 выполнен поддон для охлаждающего средства.

Двигатель 2 опирается посредством выполненного на внутренней стороне корпуса 3, проходящего радиально внутрь фланца 34, с которым соединена верхняя подшипниковая крышка 23. Двигатель 2 в настоящем примере осуществления опирается на внутреннюю сторону корпуса 3 только посредством фланца 34.

Обе планетарные ступени 11, 12 включают в себя каждая колесо 111, 121 с внутренними зубьями, водило 114, 124 планетарной передачи с опирающимися в нем планетарными зубчатыми колесами 112, 122, и центральное колесо 113, 123. Колеса 111, 121 с внутренними зубьями планетарных ступеней 11, 12 неподвижно соединены с корпусом 3. Водило 124 планетарной передачи ведомой планетарной ступени 12 опирается посредством осевого подшипника 125. Центральное колесо 113 ведущей планетарной ступени 11 соединено с валом ротора двигателя 2.

Вал ротора и вал центрального колеса ведущей планетарной ступени 11 предпочтительно соединены посредством муфты, расположенной ниже или выше двигателя 2. Кроме того, в настоящем примере осуществления водило 114 планетарной передачи ведущей планетарной ступени 11 и центральное колесо 123 ведомой планетарной ступени 12 соединены друг с другом.

Двигатель 2 подключен к циркуляционному контуру снабжения смазкой или, соответственно, охлаждающим средством передачи 1. Таким образом, может осуществляться охлаждение двигателя 2 посредством смазки, циркулирующей через передачу 1. На роторе 21 предусмотрена непроницаемая для смазочного масла оболочка для уплотнения относительно смазки, циркулирующей внутри корпуса 3. Предпочтительно соответствующим образом к воздушному зазору между ротором 21 и статором 22 в радиальном направлении примыкает непроницаемая для смазочного масла оболочка пакета активной стали статора, который включает в себя обмотки статора 22.

Для герметизации статора 22 предусмотрена втулка. Наряду с втулкой статор 22 имеет зажимной фланец, зажимной элемент и эластичное уплотнение. С помощью зажимного элемента эластичное уплотнение прижато к зажимному фланцу и втулке. Для герметизации статора 22 может применяться любая подходящая часть корпуса статора, при этом эластичное уплотнение оказывает на нее давление за счет предварительного натяга. Другие детали, касающиеся герметизации ротора 21 и статора 22, содержатся в более ранней немецкой заявке на патент DE 10 2009 034 158.7, на описание к которой настоящим делается ссылка.

В роторе 21 предусмотрено несколько проходящих в осевом направлении отверстий для стекания смазки с передачи 1 в поддон под двигателем 2. Поддон может быть, например, разделен на внутреннюю область для смазки передачи и на наружную область для охлаждающего средства двигателя.

В настоящем примере осуществления двигатель 2 представляет собой возбуждаемую от постоянных магнитов синхронную машину, система магнитов ротора которой заварена в оболочку из нержавеющей стали. Это обеспечивает возможность особенно низких электрических потерь. Альтернативно этому система магнитов ротора может иметь оболочку из непроводящего или, соответственно, немагнитного материала.

Изображенная на фиг.1 система мельничного привода имеет также преобразователь 4 с предусмотренным регулировочным устройством для регулирования частоты вращения двигателя 2 без зазора в зубчатом зацеплении, так чтобы между боковой поверхностью зубьев передачи 1 в направлении вращения отсутствовал зазор. Механические собственные частоты мельничной системы передачи и двигателя при применении преобразователя 4 некритичны вследствие независимости компонентов системы. Боковые поверхности зубьев передачи 1 при этом удерживаются в постоянном силовом замыкании за счет включения минимального крутящего момента. Благодаря этому в значительной степени предотвращаются нагрузки боковых поверхностей зубьев, изменяющие направление.

У изображенной на фиг.2 системы мельничного привода между ступицей ротора 21 и нижней подшипниковой крышкой 24 расположен осевой подшипник 27 для вала ротора. Кроме того, корпус 3 в настоящем примере осуществления выполнен из двух частей и включает в себя ведомую часть 31 корпуса и ведущую часть 32 корпуса. При этом в области между ведомой планетарной ступенью 12 и ведущей планетарной ступенью 11 предусмотрен разъем 33 корпуса.

Предпочтительно наружный диаметр двигателя 2 меньше, чем внутренний диаметр колес 111, 121 с внутренними зубьями планетарных ступеней 11, 12. Таким образом получается технологически простая конструкция системы мельничного привода. Альтернативно тому только наружный диаметр ротора 21 меньше, чем внутренний диаметр колес 111, 121 с внутренними зубьями, а статор 22 изготовлен из нескольких проходящих в окружном направлении сегментов.

Применение настоящего изобретения не ограничено описанным примером осуществления.

1. Система мельничного привода, включающая в себя
- располагаемую под чашей бегунов передачу, по меньшей мере, с одной планетарной и/или цилиндрической ступенью, которая имеет вертикальное расположение вала,
- интегрированный в корпус передачи электрический двигатель, ротор и статор которого имеют вертикально проходящие оси,
- верхнюю подшипниковую крышку и нижнюю подшипниковую крышку, которые смонтированы на противолежащих торцевых сторонах на роторе и статоре и в которых имеются гнезда под подшипники вала ротора,
- соединяющий верхнюю подшипниковую крышку и нижнюю подшипниковую крышку корпус статора, который по наружному периметру имеет ребра охлаждения, на которые могут ориентироваться смонтированные на корпусе и/или заделанные в корпус форсунки,
- выполненный между нижней подшипниковой крышкой и донной частью корпуса поддон для охлаждающего средства,
- выполненный на внутренней стороне корпуса, проходящий радиально внутрь фланец, с которым соединены/соединена нижняя и/или верхняя подшипниковая крышка и посредством которого опирается двигатель.

2. Система мельничного привода по п.1, у которой двигатель может по существу опираться на внутреннюю сторону корпуса только посредством фланца.

3. Система мельничного привода по одному из пп. 1 или 2, у которой между ступицей ротора и нижней подшипниковой крышкой расположен, по меньшей мере, один осевой подшипник для вала ротора.

4. Система мельничного привода по одному из пп. 1 или 2, у которой корпус выполнен, по меньшей мере, из двух частей, а передача включает в себя по меньшей мере две планетарные ступени, и у которой в области между первой и второй планетарной ступенью предусмотрен разъем корпуса.

5. Система мельничного привода по одному из пп. 1 или 2, у которой двигатель подключен к циркуляционному контуру снабжения смазкой или, соответственно, охлаждающим средством передачи.

6. Система мельничного привода по одному из пп. 1 или 2, у которой предусмотрен преобразователь с предусмотренным регулировочным устройством для регулирования частоты вращения двигателя без зазора в зубчатом зацеплении.

7. Система мельничного привода по одному из пп. 1 или 2, у которой предусмотрена непроницаемая для смазочного масла оболочка для обмоток ротора и/или статора для уплотнения относительно циркулирующей внутри корпуса смазки.

8. Система мельничного привода по одному из пп. 1 или 2, у которой наружный диаметр двигателя меньше, чем внутренний диаметр колеса с внутренними зубьями, по меньшей мере, одной планетарной ступени.

9. Система мельничного привода по одному из пп. 1 или 2, у которой только наружный диаметр ротора меньше, чем внутренний диаметр колеса с внутренними зубьями, по меньшей мере, одной планетарной ступени, и у которой статор изготовлен из нескольких проходящих в окружном направлении сегментов.

10. Система мельничного привода по одному из пп. 1 или 2, у которой двигатель представляет собой возбуждаемую от постоянных магнитов синхронную машину, система магнитов ротора которой заварена в оболочку из нержавеющей стали.

11. Система мельничного привода по одному из пп. 1 или 2, у которой двигатель имеет систему магнитов ротора, без уплотнения заваренную в оболочку из нержавеющей стали.

12. Система мельничного привода по одному из пп. 1 или 2, у которой двигатель имеет систему магнитов ротора, снабженную оболочкой, по меньшей мере, из одного непроводящего и/или немагнитного материала.



 

Похожие патенты:

Изобретение относится к устройствам для измельчения различных материалов, в частности к роликовым мельницам с бегунами и чашей. Роликовая мельница содержит по меньшей мере один бегун 1, чашу 2 бегунов, по меньшей мере одну систему 3 привода бегуна 1 для приведения в действие бегуна 1 и системы 3 привода чаши 2 бегунов 1 для приведения в действие чаши бегунов.

Дробилка // 2517231
Изобретение относится к устройствам для изучения процесса измельчения зернопродуктов в комбикормовом производстве. Дробилка содержит ротор 1, корпус рабочей камеры 11, который установлен с возможностью свободного вращения относительно оси ротора.

Изобретение относится к области измельчения материала, такого как цементное сырье, цементный клинкер и других подобных материалов. Валковая мельница (1) содержит корпус (2) мельницы, окружающий в основном горизонтальный размольный стол (3).

Изобретение относится к устройствам для гранулирования сырья, в частности минерально-органического сырья, и может найти применение на предприятиях комбикормового производства и других отраслей.

Изобретение относится к мельницам для помола сыпучих материалов, таких как цементное сырье, цементный клинкер. .

Изобретение относится к валковой мельнице для измельчения дисперсного материала, такого как исходное цементное сырье, цементный клинкер, уголь и другие подобные материалы.

Изобретение относится к валковой мельнице для измельчения сыпучего материала, такого как исходное цементное сырье, цементный клинкер и других подобных материалов.

Изобретение относится к фармацевтической и пищевой промышленности, в частности к производству композиций биологически активных веществ, которые могут быть использованы как биологически активные добавки.

Изобретение относится к передаточному механизму для истирающих мельниц, содержащих обкатывающиеся по чаше размольные вальцы. .

Изобретение относится к мельницам, в частности к валковым тарельчатым цементным и угольным мельницам, и может быть использовано в системах привода тяжеловесных грузов. Система (1) привода имеет чашу (2) бегунов, установленную с возможностью вращения вокруг вертикали (А), корпус (6) и опирающуюся на корпус (6) систему (4) передачи. Электродвигатель (5) расположен под системой (4) передачи и интегрирован в корпус (6). Электромотор (5) опирается на корпус (6), прежде всего на опорный элемент (6с) корпуса (6). Ротор (7) напрямую или через интегрированную в ротор (7) муфту может быть соединен с системой (4) передачи. Система (1) привода характеризуется компактностью и износостойкостью, не требует частого технического обслуживания. 2 н. и 28 з.п. ф-лы, 8 ил.

Изобретение относится к области измельчения и разделения твердого полезного ископаемого и может быть использовано, например, при обогащении разного вида минерального сырья. Измельчитель-классификатор содержит вращающийся перфорированный барабан 2, установленный на приводных 4 и поддерживающих 5 роликах, и размещенный внутри перфорированного барабана 2 рабочий элемент. Рабочий элемент снабжен индивидуальным приводом и выполнен в виде вала-измельчителя 6 со сменными рабочими рельефными накладками 8, при этом вал-измельчитель относительно внутренней поверхности перфорированного барабана 2 установлен с регулируемым по высоте зазором 7. Вал-измельчитель 6 и перфорированный барабан 2 посредством индивидуальных приводов имеют возможность изменения частоты и направления вращения, а ось вращения вала-измельчителя 6 расположена на вертикальной оси поперечного сечения перфорированного барабана 2. Измельчитель обеспечивает повышенную эффективность разрушения материала при минимальных энергетических затратах. 3 ил.

Изобретение относится к сельскому хозяйству и предназначено для измельчения продуктов растительного происхождения. Станок содержит станину, межвальцовое устройство, два вальца, привод, механизм привала-отвала с эксцентриками. Межвальцовое устройство выполнено в виде размещенной между мелющими вальцами бесконечной ленты. Лента состоит из отдельных шарнирно соединенных плоских сегментов. Ширина ленты соответствует длине мелющих вальцов. Лента расположена на нижнем и верхнем направляющих дисках и натяжном диске. Оси мелющих вальцов размещены шарнирно на рычагах, оси качания которых расположены на станине. Привод бесконечной ленты осуществлен при помощи цепной передачи от звездочек. Одна звездочка жестко закреплена на мелющем вальце. Вторая звездочка установлена на нижнем направляющем диске, размещенном шарнирно на оси качания рычага. Радиусы верхнего и нижнего направляющих и натяжного дисков выполнены равными межосевому расстоянию шарниров плоских сегментов бесконечной ленты. На каждом из дисков выполнены размещенные равномерно по его образующей по шесть впадин в виде полуокружностей. Шток механизма отвала-привала одним концом шарнирно закреплен на оси мелющего вальца. Второй подпружиненный конец штока размещен на ползуне. Внутри ползуна размещена пружина и эксцентриковый вал. Снижается металлоемкость станка. 2 ил.

Изобретение относится к редукторному двигателю для приводной системы мельницы. Редукторный двигатель содержит передачу 1, включающую по меньшей мере одну планетарную ступень с вертикально или горизонтально расположенным валом. При этом в корпус передачи 1 интегрирован электродвигатель, подключенный к циркуляционному контуру подачи смазочного средства передачи для охлаждения электродвигателя с помощью циркулирующего через передачу смазочного средства. Ротор 21 и статор 22 электродвигателя имеют оси, проходящие параллельно положению вала передачи. Для обмоток ротора 21 и/или статора 22 электродвигателя для герметизации относительно циркулирующего внутри корпуса смазочного средства предусмотрена непроницаемая для смазочного масла оболочка. Дополнительно к этому предусмотрен преобразователь 23 электрической энергии с согласованным регулировочным устройством для регулирования скорости вращения электродвигателя без люфта в зацеплении. Коронная шестерня 14 по меньшей мере одной планетарной ступени окружена в радиальном направлении как ротором, так и статором. В изобретении обеспечивается возможность предотвращения повреждений передачи за счет коротких прерываний в трансмиссии. 9 з.п. ф-лы, 1 ил.

Изобретение относится к способам и устройствам для измельчения различных материалов. Способ измельчения заключается в том, что дезинтеграцию измельчаемого материала осуществляют на вращающейся опорной поверхности 2 мелющими телами 1, имеющими форму тел вращения. При этом мелющие тела 1 размещают в один слой между двумя опорными поверхностями 2, а величину зазора между поверхностью мелющих тел 1 и опорными поверхностями 2 устанавливают меньше 0,86 диаметра мелющих тел 1. Опорные поверхности 2, имеющие форму цилиндра 6, 11, конуса 5, 10 или круга 7, 12, устанавливают параллельно или под углом друг к другу. Величину угла устанавливают меньше угла трения материала мелющих тел и опорных поверхностей об измельчаемый материал. Опорные поверхности размещают относительно друг друга коаксиально или с эксцентриситетом и ориентируют горизонтально, вертикально или под наклоном. Устройство для измельчения содержит неподвижный корпус 4, имеющий замкнутую форму, мелющие тела 1, контактирующие с корпусом 4 и выполненные в виде тел вращения, и привод вращения. Корпус 4 состоит из неподвижно соединенных между собой конической части 5, цилиндрической ступенчатой части 6 и горизонтальной части 7 в форме круга, снабженной концентричными направляющими канавками. Во внутренней полости корпуса 4 размещен ротор 9. Ротор 9 также состоит из неподвижно соединенных между собой конической части 10, цилиндрической ступенчатой части 11 и горизонтальной части 12 в форме круга. В зазорах между корпусом и ротором размещены мелющие тела 1, имеющие форму конических 18, бочкообразных 19 или цилиндрических 20 роликов или шариков различного размера с поверхностной насечкой или без нее. Способ и устройство обеспечивают повышение эффективности измельчения. 2 н. и 1 з.п. ф-лы, 8 ил.

Изобретение относится к устройствам для измельчения твердых сыпучих веществ, например кофе, пшеницы, гороха, перца, и может быть использовано в быту, в пищевой и медицинской промышленности, в сельском хозяйстве. Дезинтегратор содержит корпус с крышкой, загрузочный бункер, рабочую камеру, рабочий орган и приводной электродвигатель. Рабочий орган выполнен в виде двух соосно расположенных дисков. Диски примыкают друг к другу по торцам рабочими поверхностями с образованием зазора. Один из дисков имеет возможность вращения, а другой закреплен неподвижно в корпусе. Приводной электродвигатель выполнен в виде сдвоенного асинхронного двухстаторного однороторного торцового электродвигателя с полым валом. Магнитопроводы статора жестко закреплены в корпусе, а короткозамкнутый ротор соединен с одним из рабочих дисков через полый вал. Полый вал имеет технологические отверстия для прохода обрабатываемого вещества в зазор между дисками. При этом корпус выполнен сборным с вентиляционными отверстиями и камерой для сбора готового продукта в нижней части. В дезинтеграторе обеспечивается возможность изменения зазора между рабочими дисками для обработки различных по величине сыпучих веществ с различной степенью измельчения, что улучшает качество измельчения и интенсифицирует процесс измельчения при повышении КПД. 5 з.п. ф-лы, 4 ил.

Изобретение относится к технологии переработки зерна и может быть использовано в мукомольной промышленности, а также на сельскохозяйственных предприятиях при производстве плющеного зерна и комбикормовой смеси. Валковая мельница содержит корпус, валки на опорах, гидравлическое устройство для поджима одного валка к другому. Бочки валков имеют шероховатость 0,9 мкм ≤ Ra ≤ 1,8 мкм. Оба валка оснащены отдельными приводами с системой управления, которая обеспечивает регулирование скоростей вращения валков, причем отношение линейных скоростей вращения валков v1 и v2 определяется по формуле k=v1/v2, где коэффициент рассогласования окружных скоростей к задан в пределах 0,8≤k≤1,5. Мельница обеспечивает эффективную работу устройства и позволяет снизить энергетические затраты на измельчение зерна. 2 ил.

Изобретение относится к технике измельчения сыпучих материалов. Установка содержит барабан, привод, загрузочные и разгрузочные цапфы. Барабан выполнен в виде цилиндра с плоскими торцевыми стенками, установленного наклонно относительно горизонтальной оси. Согласно первому варианту выполнения торцевые стенки размещены перпендикулярно к горизонтальной оси вращения барабана, а по всей длине барабана смонтирована цилиндрическая пружина с плоским сечением витков, которая оборудована устройством для изменения шага витков путем ее растяжения или сжатия. Согласно второму варианту выполнения торцевые стенки размещены под различными углами не только к горизонтальной оси вращения, но и друг к другу, при этом по всей длине барабана смонтирована пружина выпуклой формы с плоским сечением витков, которая оборудована устройством для изменения шага витков путем ее растяжения или сжатия. Вышеуказанное выполнение установки обеспечивает расширение технологических возможностей. 2 н.п. ф-лы, 3 ил.

Группа изобретений относится к средствам для дробления и измельчения различных материалов. Система для контроля рабочего состояния мельницы содержит, по меньшей мере, один интерфейсный модуль датчиков, размещенный на мельнице или близко к ней с возможностью приема информации от, по меньшей мере, одного датчика, станцию управления оператора, связанную с, по меньшей мере, одним интерфейсным модулем датчиков с возможностью приема данных от упомянутого интерфейсного модуля датчиков, создания эксплуатационной информации, указывающей, по меньшей мере, одну функциональную характеристику мельницы и отслеживания упомянутой эксплуатационной информации для определения возможного ухудшения функциональной характеристики. При этом один из датчиков представляет собой датчик нагрузки, соединенный с узлом нагружения пружиной. Станция управления оператора выполнена с возможностью приема данных от, по меньшей мере, одного интерфейсного модуля датчиков и управления принятыми данными для определения нагрузки на одном или более размольных колесах мельницы. Способ контроля заключается в том, что посредством, по меньшей мере, одного интерфейсного модуля датчиков принимают данные, обнаруживаемые одним или более датчиками нагрузки, соединенными с узлом нагружения пружиной и находящимися на связи с упомянутым, по меньшей мере, одним интерфейсным модулем датчиков с возможностью обнаружения сил, передаваемых к системе нагружения пружиной, а посредством станции управления оператора создают эксплуатационную информацию, указывающую, по меньшей мере, одну функциональную характеристику упомянутых мельниц, принимают данные от, по меньшей мере, одного интерфейсного модуля датчиков, соответствующие силам, обнаруженным упомянутым датчиком нагрузки, управляют упомянутыми принятыми данными для определения нагрузки на одном или более размольных мельниц, контролируют и сравнивают вышеуказанную информацию с течением времени для определения степени возможного ухудшения функциональной характеристики мельниц. При этом посредством интерфейсного модуля датчиков, при необходимости, преобразуют упомянутые данные из аналоговых в цифровые данные. Система и способ контроля поддерживают работу мельницы в штатном режиме, что значительно снижает вероятность возникновения поломок и аварийных ситуаций. 2 н. и 8 з.п. ф-лы, 4 ил.

Изобретение относится к способам получения порошковых материалов на основе германатов тугоплавких металлов, а именно циркония и гафния, которые могут быть использованы в качестве компонентов термостойких керамических изделий и люминофоров. Исходные диоксид германия и диоксид циркония или гафния смешивают в стехиометрическом соотношении и подвергают механохимической активации в шаровой планетарной мельнице, футерованной диоксидом циркония, мелющими шарами из диоксида циркония с ускорением мелющих шаров 30g при загрузке мелющих шаров не менее 6 г/г обрабатываемых диоксидов, в течение 30-60 мин, а прокаливание проводят при температуре 1200°С в течение не менее 6 часов. Изобретение обеспечивает повышение выхода получаемых оксидов за счет устранения потерь диоксида германия из-за его высокой летучести при температуре выше 1200°С, а также получение германатов тугоплавких металлов в точном соответствии со стехиометрией, что способствует сохранению люминесцентных свойств получаемых оксидов. 2 ил., 1 табл., 8 пр.
Наверх