Способ получения п-иодфенилжирных кислот



Способ получения п-иодфенилжирных кислот
Способ получения п-иодфенилжирных кислот
Способ получения п-иодфенилжирных кислот

 


Владельцы патента RU 2522557:

Государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный медицинский университет" Министерства здравоохранения Российской Федерации (ГБОУ ВПО СибГМУ Минздрава России) (RU)

Изобретение относится к способу получения п-иодфенилжирных кислот на основе иодониевых солей, соответствующему принципам «зеленой» химии, которые могут применяться в различных областях техники, в том числе в органической и фармацевтической химии, биохимии и в медицине, в частности в качестве радиофармпрепаратов. Способ получения п-иодфенилжирных кислот включает получение промежуточного продукта с последующим введением атома иода, где на первом этапе получают иодониевую соль на основе фенилжирной кислоты и диацетоксииодбензола в среде уксусной кислоты и в присутствии серной кислоты, при температуре загрузки исходных соединений 0-5°C и дальнейшей температуре проведения реакции 20-28°C, при этом получение иодониевой соли проводят при мольном соотношении фенилжирной кислоты и диацетоксииодбензола (ДИБ) 1:1.1, при перемешивании в течение 5 часов, иодониевую соль выделяют в виде малорастворимого в воде иодоний иодида, для этого в реакционную смесь добавляют водный раствор калий иодида, выделившийся при этом осадок иодоний иодида отделяют фильтрацией, далее иодониевую соль разлагают кипячением в толуоле, о завершении разложения судят по растворению кристаллов иодониевой соли, нерастворимых в толуоле, после этого, для выделения п-иодфенилжирной кислоты, в реакционную массу добавляют водный раствор NaHCO3, отделяют водную фазу, подкисляют серной кислотой, экстрагируют п-иодфенилжирную кислоту этилацетатом, обезвоживают этилацетатную фракцию безводным Na2SO4, растворитель отгоняют под вакуумом и получают п-иодфенилжирную кислоту. Способ позволяет со 100%-ной пара-селективностью ввести атом иода в пара-положение ароматического кольца фенилжирной кислоты, исключая образования орто-изомера и получать пара-иодфенилжирные кислоты. Способ прост, не использует высокотоксичных и дорогостоящих соединений, позволяет получать с высокими выходами п-иодфенилжирные кислоты и является перспективным для производства в промышленном масштабе. 3 з.п. ф-лы, 3 ил., 7 пр.

 

Изобретение относится к области органической химии, в частности к способам получения п-иодфенилжирных кислот на основе иодониевых солей, соответствующим принципам «зеленой» химии (Green Chemistry), которые могут применяться в различных областях техники, в том числе в органической и фармацевтической химии, биохимии и в медицине, в частности в качестве радиофармпрепаратов (Фиг 1).

Способов получения п-иодфенилжирных кислот, отвечающих принципам «зеленой» химии, известно немного. На сегодняшний день существуют всего два метода селективного введения атома иода в пара-положение 15-фенил-3-R,S-метилпентадекановой кислоты.

Известен способ получения 15-(4-иодфенил)-3-(RS)-метилпентадекановой кислоты, который основан на синтезе триазенов через пара-аминозамещенную жирную кислоту [М.М. Goodman, F.F. Knapp. New Myocardial Imaging Agents: Synthesis of 15-(p-Iodophenyl)-3(R,S)-methylpentadecanoic Acid by Decomposition of a 3,3-(1,5-Pentanediyl)triazene Precursor // J. Org. Chem. 1984. 49, №13. Р.2322]. Метод включает в себя четыре стадии: однореакторное таллилирование с последующим замещением на нитрозогруппу; восстановление до аминопроизводного; синтез триазена; введение атома иода (Фиг 3).

Главным недостатком этого метода является многостадийность процесса получения и использование высокотоксичного трифторацетат таллия.

Наиболее близким к предлагаемому является способ получения 15-(4-иодфенил)-3-(RS)-метилпентадекановой кислоты [М.М. Goodman, G. Kirsch, F.F. Knapp. Synthesis and Evaluation of Radioiodinated Terminal p-lodophenyl-Substituted α- and P-Methyl-Branched Fatty Acids // J. Med. Chem. 1984. 27, №2. P.390-397], в котором первоначально в результате реакции электрофильного замещения пара-селективно вводится атом таллия, который в последующем замещается на иод действием иодид-иона (Фиг 2).

Главным недостатком этого метода является использование высокотоксичного трифторацетат таллия, кроме того, 5% орто-изомера при этом все же образуется.

Метод обеспечивает 95%-ную пара-селективность. Однако использование высокотоксичных солей таллия является существенным недостатком этих методов. В связи с этим является актуальным поиск экологически безопасных методов селективного пара-иодирования фенилжирных кислот.

Новая техническая задача - упрощение способа, повышение селективности способа, повышение его функциональности, позволяющей расширить ассортимент целевых продуктов.

Для решения поставленной задачи в способе получения п-иодфенилжирных кислот, включающем получение промежуточного продукта с последующим введением атома иода, на первом этапе получают иодониевую соль на основе фенилжирной кислоты и диацетоксииодбензола в среде уксусной кислоты и в присутствии серной кислоты, при температуре загрузки исходных соединений 0-5°C и дальнейшей температуре проведения реакции 20-28°C, при этом получение иодониевой соли проводят при мольном соотношении фенилжирной кислоты и диацетоксииодбензола (ДИБ) 1:1.1, при перемешивании в течение 5 часов, иодониевую соль выделяют в виде малорастворимого в воде иодоний иодида, для этого в реакционную смесь добавляют водный раствор калий иодида, выделившийся при этом осадок иодоний иодида отделяют фильтрацией, далее иодониевую соль разлагают кипячением в толуоле, о завершении разложения судят по растворению кристаллов иодониевой соли, нерастворимых в толуоле, после этого для выделения п-иодфенилжирной кислоты в реакционную массу добавляют водный раствор NaHCO3, отделяют водную фазу, подкисляют серной кислотой, экстрагируют п-иодфенилжирную кислоту этилацетатом, обезвоживают этилацетатную фракцию безводным Na2SO4, растворитель отгоняют под вакуумом и получают п-иодфенилжирную кислоту.

Также для получения 6-(4-иодфенил)гексановой кислоты используют фенилгексановую кислоту.

Также для получения 15-(4-иодфенил)пентадекановой кислоты используют фенилпентадекановую кислоту.

Также для получения 15-(4-иодфенил)-3-(RS)-метилпентадекановой кислоты используют фенил-3-(RS)-метилпентадекановую кислоту.

Способ осуществляют следующим образом

Для получения иодониевых солей на основе ДИБ и фенилжирных кислот в качестве фенилжирных кислот используют фенилгексановую, фенилпентадекановую, фенил-3-(RS)-метилпентадекановую кислоты. Синтез иодониевой соли на основе ДИБ и фенилжирной кислоты проводится при комнатной температуре 20-28°C в среде уксусной кислоты и в присутствии концентрированной серной кислоты. Перед введением серной кислоты реакционную массу, содержащую ДИБ, уксусную кислоту и фенилжирную кислоту, охлаждают до 0-5°C. Прикапывание серной кислоты проводят при температуре 0-5°C. Далее реакцию ведут при комнатной температуре в течение 5 часов при перемешивании реакционной массы. Также, получение иодониевой соли на основе ДИБ и фенилжирной кислоты проводят при следующих мольных соотношениях исходных веществ: фенилжирная кислота - ДИБ - 1:1.1. Также для выделения иодониевой соли, производят замену аниона соли, сульфат-иона на иодид-ион. Иодоний иодиды обладают ограниченной растворимостью в воде, поэтому для выделения иодониевой соли в реакционную массу вводят водный раствор калий иодида и перемешивают в течение часа.

Образовавшийся осадок иодониевой соли отфильтровывают, промывают водой, высушивают. Также иодониевая соль представляет собой кристаллы бледно-желтого цвета, весьма устойчивые при комнатной температуре, но чувствительные к воздействию света. Поэтому оптимально хранение иодониевой соли в темноте при температуре 10°C. Также в способе получения п-иодфенилжирных кислот иодониевую соль на основе ДИБ и фенилжирной кислоты подвергают термическому разложению, приводящему к образованию п-иодфенилжирной кислоты и иодбензола. Разложение ведут в среде толуола при кипячении. Реакцию завершают при растворении иодониевой соли, т.к. образующаяся при этом п-иодфенилжирная кислота, в отличие от ее иодониевой соли, хорошо растворима в толуоле. Для выделения п-иодфенилжирной кислоты к раствору добавляют водный раствор NaHCO3, водную фазу отделяют, подкисляют серной кислотой, затем экстрагируют п-иодфенилжирную кислоту этилацетатом. Этилацетатное извлечение сушат Na2SO4 (безводным), растворитель отгоняют под вакуумом.

В предлагаемом способе получения п-иодфенилжирных кислот, иодирование осуществляют в два этапа. Первоначально на основе фенилжирной кислоты и соединения поливалентного иода (СПИ) синтезируют иодониевую соль, которую в последующем подвергают разложению, приводящему к селективному введению атома иода в пара-положение ароматического кольца фенилжирной кислоты.

Отличительные признаки проявили в заявляемой методике совокупности новые свойства, явным образом не вытекающие из уровня техники в данной области и не очевидные для специалиста. Предлагаемая совокупность признаков не описана в патентной и научно-технической литературе. Способ апробирован в лабораторных условиях.

Примеры конкретных способов получения п-иодфенилжирных кислот

Пример 1. Получение 6-(4-иодфенил)гексановой кислоты

Фенилгексановую кислоту (1 ммоль, m=0.192 г) и ДИБ (1.1 ммоль, m=0.355 г) в 5 мл уксусной кислоты охлаждают до 5°C и при интенсивном перемешивании по каплям добавляют 0.3 мл концентрированной серной кислоты. Продолжают перемешивание при комнатной температуре в течение 5 часов. Затем реакционную массу охлаждают до 0-5°C и при интенсивном перемешивании небольшими порциями добавляют водный раствор KI (0.350 г в 4 мл воды). Продолжают перемешивание при комнатной температуре в течение часа. Выпавшие кристаллы отфильтровывают, промывают на фильтре водой до нейтральной среды фильтрата. Полученные кристаллы иодониевой соли бледно-желтого цвета высушивают в темноте при комнатной температуре. Далее кристаллы вносят в 4 мл толуола, в присутствии 0.035 г KI кипятят в течение 10 минут до полного растворения кристаллов иодониевой соли. К охлажденному раствору добавляют Na2SO3 и перемешивают до исчезновения цвета иода в растворе. Для выделения п-иодфенилжирной кислоты к раствору добавляют водный раствор NaHCO3, водную фазу отделяют, подкисляют серной кислотой, затем экстрагируют 6-(4-иодфенил)гексановую кислоту этилацетатом (2×10 мл). Этилацетатное извлечение сушат Na2SO4 (безводным), растворитель отгоняют под вакуумом. Выход 0.230 г (71%).

Спектр ЯМР 1H (300 МГц, CDCl3, δ, м.д., J, Гц): 1.41 (м, 2Н, ), 1.64 (м, 4Н, ), 2.38 (т, 2Н, , J=8.0 Гц), 2.58 (т, 2Н, , J=8.6 Гц), 6.80 (д 2Наром, J=9.0 Гц), 7.61 (д, 2Наром, J=9.0 Гц), 10.82 (с, 1Н, COOH). Спектр ЯМР 13С (75 МГц, δ, м.д. (CDCl3): 24.43 (C3), 28.51 (C,4), 30.86 (C4), 34.02 (C5), 35.17 (C6), 90.78 ((C-I), 130.46, 137.32, 141.75 (Саром), 179.71 (COOH).

Пример 2. Получение 15-(4-иодфенил)пентадекановой кислоты

Фенилпентадекановую кислоту (1 ммоль, m=0.320 г) и ДИБ (1.1 ммоль, m=0.355 г) в 5 мл уксусной кислоты охлаждают до 5°C и при интенсивном перемешивании по каплям добавляют 0.3 мл концентрированной серной кислоты. Продолжают перемешивание при комнатной температуре в течение 5 часов. Затем реакционную массу охлаждают до 0-5°C и при интенсивном перемешивании небольшими порциями добавляют водный раствор KI (0.350 г в 4 мл воды). Продолжают перемешивание при комнатной температуре в течение часа. Выпавшие кристаллы отфильтровывают, промывают на фильтре водой до нейтральной среды фильтрата. Полученные кристаллы иодониевой соли бледно-желтого цвета высушивают в темноте при комнатной температуре. Далее кристаллы вносят в 4 мл толуола, в присутствии 0.035 г KI кипятят в течение 10 минут до полного растворения кристаллов иодониевой соли. К охлажденному раствору добавляют Na2SO3 и перемешивают до исчезновения цвета иода в растворе. Для выделения п-иодфенилжирной кислоты к раствору добавляют водный раствор NaHCO3, водную фазу отделяют, подкисляют серной кислотой, затем экстрагируют 15-(4-иодфенил)пентадекановую кислоту этилацетатом. Этилацетатное извлечение сушат Na2SO4 (безводным), растворитель отгоняют под вакуумом. Выход 0.279 г (62%).

Спектр ЯМР 1H (300 МГц, CDCl3, δ, м.д., J, Гц): 1.28 (м, 20Н, ), 1.64 (м, 4Н, ), 2.37 (т, 2Н, , J=8.0 Гц), 2.56 (т, 2Н, , J=8.6 Гц), 6.94 (д 2Наром, J=9.0 Гц), 7.60 (д, 2Наром, J=9.0 Гц), 10.75 (с, 1Н, COOH).

Пример 3. Получение 15-(4-иодфенил)-3-(RS)-метилпентадекановой кислоты

Фенил-3-(RS)-метилпентадекановую кислоту (1 ммоль, m=0.330 г) и ДИБ (1.1 ммоль, m=0.355 г) в 5 мл уксусной кислоты охлаждают до 5°C и при интенсивном перемешивании по каплям добавляют 0.3 мл концентрированной серной кислоты. Продолжают перемешивание при комнатной температуре в течение 5 часов. Затем реакционную массу охлаждают до 0-5°C и при интенсивном перемешивании небольшими порциями добавляют водный раствор KI (0.350 г в 4 мл воды). Продолжают перемешивание при комнатной температуре в течение часа. Выпавшие кристаллы отфильтровывают, промывают на фильтре водой до нейтральной среды фильтрата. Полученные кристаллы иодониевой соли бледно-желтого цвета высушивают в темноте при комнатной температуре. Далее кристаллы вносят в 4 мл толуола, в присутствии 0.035 г KI кипятят в течение 10 минут до полного растворения кристаллов иодониевой соли. К охлажденному раствору добавляют Na2SO3 и перемешивают до исчезновения цвета иода в растворе. Для выделения п-иодфенилжирной кислоты добавляют водный раствор Na2HCO, водную фазу отделяют, подкисляют серной кислотой, затем экстрагируют 15-(4-иодфенил)-3-(RS)-метилпентадекановую кислоту этилацетатом. Этилацетатное извлечение сушат Na2SO4 (безводным), растворитель отгоняют под вакуумом. Выход 0.350 г (76%). Спектр ЯМР 1H (300 МГц, (CD3)2CO, δ, м.д., J, Гц): 0.95 (д, 3Н, CH3, J=7.3 Гц), 1.30 (м, 20Н, ), 1.60 (м, 2Н, ), 2.07 (м, 1Н, ), 2.29 (м, 2Н, ), 2.58 (т, 2Н, , J=8.6 Гц), 7.04 (д 2Наром, J=9.0 Гц), 7.63 (д, 2Наром, J=9.0 Гц), 10.70 (с, 1Н, COOH).

Спектр ЯМР 13С (75 МГц, (CD3)2CO, δ, м.д.): 19.72 (CH3), 26.91 (C5), 29.23 (C13), 29.64 (C6), 29.64 (C7-12), 31.31 (C14), 31.54 (C3), 35.46 (C,15), 36.69 (C4), 41.60 (C2), 90.52 ((С-I), 130.58, 137.25, 142.55 (Саром), 179.55 (COOH).

Пример 4. Получение 6-(4-иодфенил)гексановой кислоты при 20-28°C

К смеси фенилгексановой кислоты (1 ммоль, m=0.192 г) и ДИБ (1.1 ммоль, m=0.355 г) в 5 мл уксусной кислоты при интенсивном перемешивании по каплям добавляют 0.3 мл концентрированной серной кислоты. Реакционная масса приобретает интенсивно-бурый цвет. Продолжают перемешивание при комнатной температуре в течение 5 часов. Затем при интенсивном перемешивании небольшими порциями добавляют водный раствор KI (0.350 г в 4 мл воды). Продолжают перемешивание при комнатной температуре в течение часа. Выпавшие кристаллы отфильтровывают, промывают на фильтре водой до нейтральной среды фильтрата. Полученные кристаллы иодониевой соли коричневого цвета высушивают в темноте при комнатной температуре. Далее кристаллы вносят в 4 мл толуола, в присутствии 0.035 г KI кипятят в течение 10 минут до полного растворения кристаллов иодониевой соли. К охлажденному раствору добавляют Na2SO3 и перемешивают до исчезновения цвета иода в растворе. Для выделения п-иодфенилжирной кислоты добавляют водный раствор NaHCO3, водную фазу отделяют, подкисляют серной кислотой, затем экстрагируют 6-(4-иодфенил)гексановую кислоту этилацетатом (2×10 мл). Этилацетатное извлечение сушат Na2SO4 (безводным), растворитель отгоняют под вакуумом. Выход 0.110 г (34%).

Спектр ЯМР 1C (300 МГц, CDCl3, δ, м.д., J, Гц): 1.41 (м, 2Н, ), 1.64 (м, 4Н, ), 2.38 (т, 2Н, , J=8.0 Гц), 2.58 (т, 2Н, , J=8.6 Гц), 6.80 (д 2Наром, J=9.0 Гц), 7.61 (д, 2Наром, J=9.0 Гц), 10.82 (с, 1Н, COOH). Спектр ЯМР 13C (75 МГц, δ, м.д. (CDCl3): 24.43 (C3), 28.51 (С,4), 30.86 (C4), 34.02 (C5), 35.17 (C6), 90.78 ((C-I), 130.46, 137.32, 141.75 (Саром), 179.71 (COOH).

Пример 5. Получение 6-(4-иодфенил)гексановой кислоты при времени получения иодониевой соли 2 часа

Фенилгексановую кислоту (1 ммоль, m=0.192 г) и ДИБ (1.1 ммоль, m=0.355 г) в 5 мл уксусной кислоты охлаждают до 5°C и при интенсивном перемешивании по каплям добавляют 0.3 мл концентрированной серной кислоты. Продолжают перемешивание при комнатной температуре в течение 2 часов. Затем реакционную массу охлаждают до 0-5°C и при интенсивном перемешивании небольшими порциями добавляют водный раствор KI (0.350 г в 4 мл воды). Продолжают перемешивание при комнатной температуре в течение часа. Выпавшие кристаллы отфильтровывают, промывают на фильтре водой до нейтральной среды фильтрата. Полученные кристаллы иодониевой соли бледно-желтого цвета высушивают в темноте при комнатной температуре. Далее кристаллы вносят в 4 мл толуола, в присутствии 0.035 г KI кипятят в течение 10 минут до полного растворения иодониевой соли. К охлажденному раствору добавляют Na2SO3 и перемешивают до исчезновения цвета иода в растворе. Для выделения п-иодфенилжирной кислоты добавляют водный раствор NaHCO3, водную фазу отделяют, подкисляют серной кислотой, затем экстрагируют 6-(4-иодфенил)гексановую кислоту этилацетатом (2×10 мл). Этилацетатное извлечение сушат Na2SO4 (безводным), растворитель отгоняют под вакуумом. Выход 0.163 г (51%).

Спектр ЯМР 1H (300 МГц, CDCl3, δ, м.д., J, Гц): 1.41 (м, 2Н, ), 1.64 (м, 4Н, ), 2.38 (т, 2Н, , J=8.0 Гц), 2.58 (т, 2Н, , J=8.6 Гц), 6.80 (д 2Наром, J=9.0 Гц), 7.61 (д, 2Наром, J=9.0 Гц), 10.82 (с, 1Н, СООН). Спектр ЯМР 13С (75 МГц, δ, м.д. (CDCl3): 24.43 (C3), 28.51 (C,4), 30.86 (C4), 34.02 (C5), 35.17 (C6), 90.78 ((C-I), 130.46, 137.32, 141.75 (Саром), 179.71 (COOH).

Пример 6. Получение 6-(4-иодфенил)гексановой кислоты при времени получения иодониевой соли 8 часов

Фенилгексановую кислоту (1 ммоль, m=0.192 г) и ДИБ (1.1 ммоль, m=0.355 г) в 5 мл уксусной кислоты охлаждают до 5°C и при интенсивном перемешивании по каплям добавляют 0.3 мл концентрированной серной кислоты. Продолжают перемешивание при комнатной температуре в течение 8 часов. Затем реакционную массу охлаждают до 0-5°C и при интенсивном перемешивании небольшими порциями добавляют водный раствор KI (0.350 г в 4 мл воды). Продолжают перемешивание при комнатной температуре в течение часа. Выпавшие кристаллы отфильтровывают, промывают на фильтре водой до нейтральной среды фильтрата. Полученные кристаллы иодониевой соли бледно-желтого цвета высушивают в темноте при комнатной температуре. Далее кристаллы вносят в 4 мл толуола, в присутствии 0.035 г KI кипятят в течение 10 минут до полного растворения иодониевой соли. К охлажденному раствору добавляют Na2SO3 и перемешивают до исчезновения цвета иода в растворе. Для выделения п-иодфенилжирной кислоты добавляют водный раствор NaHCO3, водную фазу отделяют, подкисляют серной кислотой, затем экстрагируют 6-(4-иодфенил)гексановую кислоту этилацетатом (2×10 мл). Этилацетатное извлечение сушат Na2SO4 (безводным), растворитель отгоняют под вакуумом. Выход 0.455 г (70.2%).

Спектр ЯМР 1H (300 МГц, CDCl3, δ, м.д., J, Гц): 1.41 (м, 2Н, ), 1.64 (м, 4Н, ), 2.38 (т, 2Н, , J=8.0 Гц), 2.58 (т, 2Н, , J=8.6 Гц), 6.80 (д 2Наром, J=9.0 Гц), 7.61 (д, 2Наром, J=9.0 Гц), 10.82 (с, 1Н, COOH). Спектр ЯМР 13С (75 МГц, δ, м.д. (CDCl3): 24.43 (C3), 28.51 (C,4), 30.86 (C4), 34.02 (C5), 35.17 (C6), 90.78 ((C-I), 130.46, 137.32, 141.75 (Саром), 179.71 (COOH).

Пример 7. Получение 6-(4-иодфенил)гексановой кислоты при соотношении фенилгексановая кислота - ДИБ - 1:1.5

Фенилгексановую кислоту (1 ммоль, m=0.192 г) и ДИБ (1.5 ммоль, m=0.490 г) в 5 мл уксусной кислоты охлаждают до 5°C и при интенсивном перемешивании по каплям добавляют 0.3 мл концентрированной серной кислоты. Продолжают перемешивание при комнатной температуре в течение 5 часов. Затем реакционную массу охлаждают до 0-5°C и при интенсивном перемешивании небольшими порциями добавляют водный раствор KI (0.350 г в 4 мл воды). Продолжают перемешивание при комнатной температуре в течение часа. Выпавшие кристаллы отфильтровывают, промывают на фильтре водой до нейтральной среды фильтрата. Полученные кристаллы иодониевой соли светло-коричневого цвета высушивают в темноте при комнатной температуре. Далее кристаллы вносят в 4 мл толуола, в присутствии 0.035 г KI кипятят в течение 10 минут до полного растворения кристаллов иодониевой соли. К охлажденному раствору добавляют Na2SO3 и перемешивают до исчезновения цвета иода в растворе. Для выделения п-иодфенилжирной кислоты, к раствору добавляют водный раствор NaHCO3, водную фазу отделяют, подкисляют серной кислотой, затем экстрагируют 6-(4-иодфенил)гексановую кислоту этилацетатом (2×10 мл). Этилацетатное извлечение сушат Na2SO4 (безводным), растворитель отгоняют под вакуумом. Выход 0.200 г (63.2%).

Спектр ЯМР 1H (300 МГц, CDCl3, δ, м.д., J, Гц): 1.41 (м, 2H, CH23), 1.64 (м, 4H, CH24,5), 2.38 (m, 2H, CH22, J=8.0 Гц), 2.58 (m, 2H, CH26, J=8.6 Гц), 6.80 (д 2Hаром, J=9.0 Гц), 7.61 (д, 2Hаром, J=9.0 Гц), 10.82 (с, 1H, COOH). Спектр ЯМР 13С (75 МГц, δ, м.д. (CDCl3: 24.43 (C3), 28.51 (C,4), 30.86 (C4), 34.02 (C5), 35.17 (C6), 90.78 ((C-I), 130.46, 137.32, 141.75 (Cаром), 179.71 (COOH).

Обоснование режима

Экспериментальным путем подобран оптимальный температурный режим получения п-иодфенилжирных кислот[6-(4-иодфенил)гексановой кислоты 15-(4-иодфенил)пентадекановой кислоты, 15-(4-иодфенил)-3-(RS)-метилпентадекановой кислоты].

Установлено, что загрузка исходных веществ должна производиться при охлаждении (0-5°C), в дальнейшем реакцию можно проводить при 20-28°C. Увеличение температуры загрузки исходных соединений до 20-28°C приводило к снижению выхода на 37% (пример 1, 4).

Оптимальным соотношением фенилжирной кислоты и ДИБ является 1:1.1, увеличение количества ДИБ снижало селективность процесса, о чем свидетельствует выделение иода в ходе реакции и снижение выхода п-иодфенилжирной кислоты на 7.8% (пример 1, 7).

Оптимальным временем получения иодониевой соли является 5 часов. Уменьшение времени перемешивания фенилжирной кислоты и ДИБ приводило к неполной конверсии фенилжирной кислоты в иодониевую соль, и соответственно, к уменьшению выхода целевой п-иодфенилжирной кислоты на 20%. Увеличение времени реакции до 8 часов практически не изменяло выхода целевого продукта (пример 1, 5, 6).

ПРИЛОЖЕНИЕ

Фигура 1 - Схема получения п-иодфенилжирных кислот

Фигура 2 - Схема синтеза 15-(p-иодфенил)-3-R,S-метилпентадекановой кислоты

Фигура 3 - Схема синтеза 15-(p-иодфенил)-3-R,S-метилпентадекановой кислоты

1. Способ получения п-иодфенилжирных кислот, включающий получение промежуточного продукта с последующим введением атома иода, отличающийся тем, что на первом этапе получают иодониевую соль на основе фенилжирной кислоты и диацетоксииодбензола в среде уксусной кислоты и в присутствии серной кислоты, при температуре загрузки исходных соединений 0-5°C и дальнейшей температуре проведения реакции 20-28°C, при этом получение иодониевой соли проводят при мольном соотношении фенилжирной кислоты и диацетоксииодбензола (ДИБ) 1:1.1, при перемешивании в течение 5 часов, иодониевую соль выделяют в виде малорастворимого в воде иодоний иодида, для этого в реакционную смесь добавляют водный раствор калий иодида, выделившийся при этом осадок иодоний иодида отделяют фильтрацией, далее иодониевую соль разлагают кипячением в толуоле, о завершении разложения судят по растворению кристаллов иодониевой соли, нерастворимых в толуоле, после этого, для выделения п-иодфенилжирной кислоты, в реакционную массу добавляют водный раствор NaHCO3, отделяют водную фазу, подкисляют серной кислотой, экстрагируют п-иодфенилжирную кислоту этилацетатом, обезвоживают этилацетатную фракцию безводным Na2SO4, растворитель отгоняют под вакуумом и получают п-иодфенилжирную кислоту.

2. Способ по п.1, отличающийся тем, что для получения 6-(4-иодфенил)гексановой кислоты используют фенилгексановую кислоту.

3. Способ по п.1, отличающийся тем, что для получения 15-(4-иодфенил)фенилпентадекановой кислоты используют фенилпентадекановую кислоту.

4. Способ по п.1, отличающийся тем, что для получения 15-(4-иодфенил)-3-(RS)-метилпентадекановой кислоты используют фенил-3-(RS)-метилпентадекановую кислоту.



 

Похожие патенты:

Изобретение относится к новому продукту в виде раствора для лечения доброкачественных, вирусных, предзлокачественных и злокачественных неметастазирующих поражений кожи, диспластических поражений видимых слизистых оболочек, грибковых заболеваний кожи, коррекции морщин и старческих пигментных пятен, представляющему собой соединение общей формулы Н2SеО3·х·[R-СХY-(СН 2)m-СООН], где х=2-6, полученное взаимодействием двуоксиси селена с галоидкарбоновыми кислотами общей формулы R-CXY-(CH2)m-СООН, где R = фенил, алкил общей формулы CnH2n+1; n=1-5, Х=Н или Y, Y=F, Cl, Br или J, m=0-10.

Изобретение относится к радиохимической технологии, а именно к способам получения радиофармацевтических препаратов, меченных радиоактивным изотопом йода - йодом-123.

Изобретение относится к способу переработки водорода в узле очистки устройства для очистки терефталевой кислоты. Способ осуществляют путем охлаждения и декомпрессии несконденсированных газов, выделяемых в ходе кристаллизации и мгновенного испарения, для удаления из них водяного пара и переработки водорода.

Изобретение относится к способу получения водной акриловой кислоты из потока газообразного материала, включающему следующие стадии: а) подача газообразного потока в конденсатор, где поток газообразного материала включает по меньшей мере акриловую кислоту, воду, формальдегид; и б) работа конденсатора и получение газообразного выходящего потока, включающего несконденсированные компоненты, которые выходят из верхней части конденсатора, и конденсированного потока водной акриловой кислоты, включающего акриловую кислоту, который сливают из грязеотстойника конденсатора, где поток водной акриловой кислоты включает не больше 0,1 мас.% формальдегида в пересчете на общую массу потока водной акриловой кислоты.

Изобретение относится к способу обратного расщепления аддуктов Михаэля, содержащихся в жидкости F с массовой долей ≥ 10 мас.%, в пересчете на массу жидкости F, которые образовались при получении акриловой кислоты или ее сложных эфиров, в установке для обратного расщепления, которая включает по меньшей мере один насос Р, разделительную колонну К, которая снизу вверх состоит из кубовой части, примыкающей к кубовой части, содержащей внутренние устройства с разделяющим эффектом разделяющей части и следующей за ней головной части, и в которой давление в газовой фазе уменьшается снизу вверх, а также непрямой теплообменник с циркуляцией теплоносителя UW, который имеет по меньшей мере один вторичный объем и по меньшей мере один первичный объем, отделенный от этого по меньшей мере одного вторичного объема с помощью реальной разделительной стенки D, при котором жидкость F с температурой подачи TZ непрерывно вводят в разделительную колонну К в точке подачи I, которая находится в этой разделительной колонне К выше самого нижнего внутреннего устройства с разделяющим эффектом, а в расположенной на самом низком уровне точке кубовой части разделительной колонны К с помощью насоса Р непрерывно отбирают расходный поток M ˙ стекающей в кубовую часть через внутренние устройства с разделяющим эффектом, содержащей аддукты Михаэля жидкости с температурой TSU, так что в кубовой части в качестве кубовой жидкости устанавливается уровень S стекающей в него жидкости, который составляет менее половины расстояния А, измеренного от точки разделительной колонны К, расположенной на самом низком уровне, до нижней поверхности самого нижнего внутреннего устройства с разделяющим эффектом в разделительной колонне К, в то время как в остальном объеме кубовой части, расположенном над этим уровнем жидкости, существует давление газа GD, а также по меньшей мере один частичный поток I из расходного потока M ˙ пропускают по меньшей мере через один вторичный объем непрямого теплообменника с циркуляцией теплоносителя UW и при этом путем непрямого теплообмена с жидким теплоносителем, пропущенным одновременно по меньшей мере через один первичный объем этого непрямого теплообменника с циркуляцией теплоносителя UW, нагревают до температуры обратного расщепления TRS, лежащей выше температуры TSU, а из выводимого по меньшей мере из одного вторичного объема непрямого теплообменника с циркуляцией теплоносителя UW с температурой TRS потока вещества M ˙ * в точке подачи II, которая находится ниже самого нижнего внутреннего элемента с разделяющим эффектом разделительной колонны К и выше уровня S кубовой жидкости, по меньшей мере один частичный поток II подается обратно в кубовую часть разделительной колонны К таким образом, что этот по меньшей мере один частичный поток II в кубовой части разделительной колонны К не направлен на кубовую жидкость, и по меньшей мере из одного из двух потоков M ˙ , M ˙ * отводится частичный поток в качестве остаточного потока, при условии, что температура обратного расщепления TRS установлена так, что, с одной стороны, при прохождении по меньшей мере одного вторичного объема непрямого теплообменника с циркуляцией теплоносителя UW по меньшей мере часть количества аддуктов Михаэля, содержащихся в по меньшей мере одном частичном потоке I, расщепляется с образованием соответствующих им продуктов обратного расщепления, а также, с другой стороны, по меньшей мере один частичный поток II, подаваемый обратно в разделительную колонну К, при существующем в кубовой части в точке подачи II давлении газа GD кипит, а образующаяся при кипении газовая фаза, содержащая по меньшей мере частичное количество продукта обратного расщепления, поступает в головную часть колонны К в качестве газового потока G, содержащего продукт обратного расщепления, следуя за убывающим в направлении головной части колонны К давлением газа, а этот газовый поток G путем прямого и/или непрямого охлаждения частично конденсируется еще в головной части разделительной колонны К и/или будучи выведенным из головной части разделительной колонны К, образующийся при этом конденсат по меньшей мере частично возвращается в разделительную колонну К в качестве флегмовой жидкости, а газовый поток, остающийся при частичной конденсации, отводится, причем насос Р представляет собой радиальный центробежный насос с полуоткрытым радиальным рабочим колесом.

Изобретение относится к улучшенному способу сепарации и фильтрации необработанной терефталевой кислоты для получения очищенной терефталевой кислоты. Способ включает подачу суспензии неочищенной терефталевой кислоты в ротационный напорный фильтр для твердожидкостной сепарации с получением влажного отфильтрованного осадка, отфильтрованной остаточной жидкости, промывочной текучей среды и обезвоженного газа, подачу промывочной текучей среды и инертного газа, удаление примесей из части отфильтрованной остаточной жидкости и переработку оставшейся отфильтрованной остаточной жидкости.

Изобретение относится к усовершенствованному способу получения уксусной кислоты с улучшенным выходом, включающему следующие стадии: а) введение метанола и/или его реакционноспособного производного и монооксида углерода в первую реакционную зону, содержащую жидкую реакционную композицию, включающую катализатор карбонилирования, необязательно промотор катализатора карбонилирования, метилиодид, метилацетат, уксусную кислоту и воду; б) извлечение, по меньшей мере, части жидкой реакционной композиции совместно с растворенным и/или захваченным монооксидом углерода и другими газами из первой реакционной зоны; в) направление, по меньшей мере, части извлеченной жидкой реакционной композиции во вторую реакционную зону, в которой потребляется, по меньшей мере, часть растворенного и/или захваченного монооксида углерода; г) направление, по меньшей мере, части жидкой реакционной композиции из второй реакционной зоны в зону испарительного разделения с образованием: паровой фракции, включающей уксусную кислоту, метилиодид, метилацетат и отходящий газ низкого давления, включающий монооксид углерода; и жидкой фракции, включающей катализатор карбонилирования и необязательно промотор катализатора карбонилирования; д) направление паровой фракции из зоны испарительного разделения в одну или более зон дистилляции с целью извлечения конечной уксусной кислоты; причем температура жидкой реакционной композиции, извлекаемой из первой реакционной зоны, составляет от 170 до 195°С; а температура жидкой реакционной композиции, направляемой из второй реакционной зоны в зону испарительного разделения, по меньшей мере, на 8°С превышает температуру жидкой реакционной композиции, извлекаемой из первой реакционной зоны.
Изобретение относится к улучшенному способу селективного удаления примеси пропионовой кислоты из потока акриловой кислоты. .
Изобретение относится к улучшенному способу получения аммонийных солей фумаровой или янтарной кислоты, которые используются для изготовления биологически активных добавок или лекарственных средств, а также в ветеринарии и пищевой промышленности.

Изобретение относится к усовершенствованному способу эффективного повторного использования рафинационного маточного раствора из аппаратурного комплекса производства очищенной терефталевой кислоты РТА, включающему в себя следующие стадии: (1) охлаждение рафинационного маточного раствора с применением способа теплообмена; (2) обработка охлажденного рафинационного маточного раствора посредством ультрафильтрации и повторное использование ультрафильтрационно сконцентрированного раствора для окислительной установки; (3) проведение ионообменной обработки фильтрата, полученного при ультрафильтрации: селективная адсорбция ионов Со и ионов Mn в фильтрате, повторное использование десорбционного раствора Со и Mn в качестве катализатора и последующая адсорбция ионов металлов, таких как ионы Fe, ионы Ni, ионы Na; и (4) применение раствора после ионного обмена в качестве эндотермической среды на стадии (1) для обмена теплом с рафинационным маточным раствором, при котором большую часть раствора направляют в пульверизационную сушилку башенного типа, а избыточную часть после теплообмена отбрасывают; раствор, пульверизированный в пульверизационной сушилке башенного типа, повторно используют в рафинационной системе.
Изобретение относится к способу хранения жидкой в условиях хранения мономерной фазы, в которой содержание мономеров составляет 95 мас.%, в резервуаре для хранения, причем мономером является мономер из группы, состоящей из акролеина, метакролеина, акриловой кислоты, сложных эфиров из акриловой кислоты и спирта, имеющего от 1 до 12 атомов углерода, а также сложных эфиров из метакриловой кислоты и спирта, имеющего от 1 до 12 атомов углерода, и жидкую мономерную фазу получают путем конденсации из газообразной фазы или путем расплавления кристаллической фазы.

Изобретение относится к новому способу получения 6-[3-(1-адамантил)-4-метоксифенил]-2-нафтойной кислоты формулы (I) посредством реакции Сузуки между 3-адамантил-4-метоксифенилбороновой кислотой формулы (II) и 6-бром-2-нафтойной кислотой формулы (III), причем взаимодействие между соединениями (II) и (III) проводят при температуре в интервале от 60 до 110°С, в течение от 30 мин до 24 час, в атмосфере инертного газа, в присутствии палладиевого катализатора и основания, в полярном растворителе с последующей обработкой кислотой.

Изобретение относится к усовершенствованному способу получения монохлоруксусной кислоты (МХУК) и может быть использовано в химической промышленности. .

Изобретение относится к химии хлорорганических соединений, а именно к усовершенствованному способу получения хлорзамещенных арилоксикарбоновых кислот путем хлорирования кислот общей формулы где R1 - Н, галоид, С1 -С4-алкил, n - целое число от 1 до 3, или их солей с последующим выделением целевого продукта, в котором в качестве хлорирующего средства используют твердый гипохлорит кальция в отсутствие растворителей, а активацию процесса осуществляют механическим воздействием в виде ударной или ударно-сдвиговой нагрузки на смесь твердых реагентов.
Наверх