Способ получения кристаллов галогенидов таллия

Изобретение относится к области получения материалов, прозрачных в инфракрасной области спектра, которые могут быть использованы для изготовления оптических элементов, прозрачных в области длин волн от 0,4 до 25 мкм, неохлаждаемых детекторов χ- и γ - излучений для ядерно-физических методов диагностики и контроля, а также изготовления волоконных световодов ИК-диапазона. Способ получения кристаллов галогенидов таллия включает синтез соли галогенида таллия путем барботирования смеси инертного газа с парами галогена через расплав металлического таллия, очистку соли вакуумной дистилляцией расплава в контейнере и выращивание кристалла, при этом вакуумную дистилляцию проводят в контейнере, установленном под углом 30-50 град относительно горизонтальной плоскости, при вращении контейнера вокруг его продольной оси со скоростью 60-100 об/мин. Изобретение обеспечивает повышение производительности и упрощение процесса получения кристаллов. 2 пр.

 

Изобретение относится к области получения материалов, прозрачных в инфракрасной области спектра, а именно кристаллов галогенидов таллия, которые могут быть использованы для изготовления оптических элементов, прозрачных в области длин волн от 0,4 до 25 мкм, неохлаждаемых детекторов χ- и γ-излучений для ядерно-физических методов диагностики и контроля, а также изготовления волоконных световодов ИК-диапазона.

Известен способ получения кристаллов бромида таллия, включающий глубокую очистку исходной соли таллия чередованием процессов вакуумной дистилляции, направленной кристаллизации, вакуумной дистилляции с последующим выращиванием кристаллов из полученной соли чистотой 99,9%. (А.В.Елютин, М.С.Кузнецов, И.С.Лисицкий и др. Получение кристаллов бромида таллия для датчиков χ- и γ-излучения. ISSN 0372-2929. Цветные металлы, 2004 г, №11. С.84-87). Известный способ позволяет достаточно глубоко очистить исходные соли от примесей и получить кристалл бромида таллия. Однако процесс очистки с последующим выращиванием кристалла очень трудоемок из-за частых перегрузок и малопроизводителен (процесс очистки длится до нескольких суток) из-за большого количества процессов.

Известен способ получения кристаллов галогенидов таллия, включающий синтез солей галогенидов таллия барботированием смеси инертного газа и галогена через расплав металлического таллия, очистку их от примесей последовательным сочетанием направленной кристаллизации расплава и вакуумной дистилляции с поверхности расплава в вертикальном стеклянном контейнере с последующим выращиванием кристалла методом Стокбаргера. (Т.И.Дарвойд, Е.Г.Морозов, В.Б.Беклемишев и др. Важнейшие соединения таллия. Свойства, получение, применение. ISSN NO13-8379. Ставрополь: «Люминофор», 1997 г. С.145-169). Способ принят за прототип.

В известном способе получения кристаллов галогенидов таллия для очистки исходных солей используют процесс вакуумной дистилляции галогенидов таллия в стеклянном контейнере с ограниченной поверхностью расплава для дистилляции. Длительность процесса составляет не менее 8-10 часов. Кроме того, возгоняемый материал из-за ограниченной вертикальными стенками контейнера поверхности конденсируется в виде компактного поликристаллического слитка, затрудняющего и усложняющего дальнейшее разделение его на фракции по степени очистки.

Техническим результатом изобретения является повышение производительности и упрощение процесса получения кристаллов галогенидов таллия.

Технический результат достигается тем, что в способе получения кристаллов галогенидов таллия, включающем синтез соли галогенида таллия путем барботирования смеси инертного газа с парами галогена через расплав металлического таллия, очистку соли вакуумной дистилляцией с поверхности расплава в контейнере и выращивание кристалла, согласно изобретению вакуумную дистилляцию проводят в контейнере, установленном под углом 30-50 град относительно горизонтальной плоскости, при вращении контейнера вокруг его продольной оси со скоростью 60-100 об/мин.

Сущность изобретения заключается в том, что в отличие от способа прототипа, где вакуумную дистилляцию проводят в вертикальном контейнере диаметром 40-45 мм, и свободная поверхность расплава ограничена данным размером, в заявленном способе вакуумную дистилляцию проводят в контейнере, установленном под наклоном к горизонтальной плоскости на угол 30-50 градусов, в результате чего площадь свободной поверхности расплава, с которой происходит возгонка галогенида таллия, увеличивается. При этом вращение наклоненного контейнера вокруг его продольной оси со скоростью 60-100 об/мин интенсифицирует процесс очистки галогенида таллия от труднолетучих примесей.

Угол наклона 30-50 град обеспечивает увеличение поверхности расплава не менее чем в 1,5-2 раза. При угле наклона менее 30 град одновременно с увеличением поверхности испарения расплава увеличивается и поверхность, на которой происходит конденсация испаряющегося галогенида таллия, и при вращении контейнера часть неиспарившегося расплава, загрязненного труднолетучими примесями, смешивается с возгонами и загрязняет их, что усложняет разделение конденсирующегося материала на загрязненные и очищенные фракции и, тем самым, снижает производительность. Кроме того, из-за относительно ограниченных геометрических размеров контейнера увеличивается возможность выливания расплава из контейнера в начальной стадии возгонки.

При увеличении угла наклона контейнера более 50 град уменьшается производительность, так как уменьшается свободная поверхность расплава, с которой происходит возгонка галогенида таллия и, следовательно, поверхность, на которой происходит конденсация испаряющегося галогенида таллия.

При вращении контейнера происходит перемешивание расплава галогенида таллия с постоянным обновлением поверхности расплава, что способствует интенсификации процесса очистки галогенида таллия от примесей. При вращении контейнера со скоростью ниже 60 об/мин из-за вязкости расплава галогенида таллия на его поверхности образуется пленка, насыщенная труднолетучими примесями, что затрудняет перемешивание расплава, обновление его поверхности и возгонку галогенида таллия. Производительность процесса очистки снижается.

При скорости вращения выше 100 об/мин возникающая центробежная сила удерживает расплав около стенок контейнера и вращает его вместе с контейнером, не перемешивая расплав, что также снижает производительность процесса.

Примеры выполнения способа

Пример 1. В стакан из термостойкого боросиликатного стекла загружали слиток металлического таллия весом 1,5 кг. По центру стакана на высоте 5-10 мм от дна устанавливали трубку из термостойкого стекла для подачи смеси галогена и инертного газа. Трубку соединяли с установленной на водяной бане колбой с жидким бромом марки ОСЧ и баллоном с особо чистым аргоном или гелием. Расплавляли металл и, барботируя через расплав металла смесь паров брома с инертным газом, синтезировали бромид таллия, оставляя 10 - 20% непрореагировавшего металла для цементации примесей. После окончания процесса синтеза бромид таллия механически отделяли от непрореагировавшего металла. Бромид таллия перегружали в термостойкий стеклянный контейнер диаметром 40 мм, длиной 500 мм. Контейнер с бромидом помещали в герметичную вакуумируемую реторту, которую вакуумировали до остаточного давления (1-2)·10-2 мм рт.ст. и размещали в зоне высокой температуры в печи с продольным градиентом температуры. Контейнер нагревали до температуры 500°С до расплавления бромида таллия. Реторту с контейнером устанавливали под углом 30 градусов относительно горизонтальной плоскости и включали вращение вокруг продольной оси контейнера со скоростью 90 об/мин. Под действием вакуума расплав бромида таллия испаряли и конденсировали на стенках контейнера в холодной зоне контейнера в виде мелкокристаллического слитка. За счет наклона контейнера длина слитка сконденсированного материала составляла 300 мм. От полученного слитка отделяли начальную и конечную части, обогащенные - и труднолетучими примесями, а среднюю очищенную часть слитка помещали в установку выращивания кристаллов и процесс выращивания осуществляли методом Стокбаргера. Получали кристалл диаметром 35 мм, весом 450 г. Спектральное пропускание выращенного кристалла на длине волны 2,5-20,0 мкм составило 68%, коэффициент объемного поглощения βv на длине волны 10,6 мкм 5·10-5 см-1. Время процесса очистки соли с помощью заявленного способа составило 3 часа. Процесс очистки соли бромида таллия для выращивания такого же кристалла с использованием известного способа вакуумной дистилляции в вертикальном контейнере составил 6 часов.

Пример 2. Синтезирование твердого раствора бромида-йодида таллия так же, как в примере 1, осуществляли методом барботирования смеси паров йода и брома с инертным газом через расплав металлического таллия, получали 700 г солей твердого раствора состава 42,5 мас.% бромида таллия, 57,5 мас.% йодида таллия (КРС-5). Соли перегружали в термостойкий стеклянный контейнер диаметром 40 мм, длиной 500 мм. Контейнер с бромидом-иодидом таллия помещали в герметичную вакуумируемую реторту, которую вакуумировали до остаточного давления (1-2)·10-2 мм рт.ст. и размешали в печи с продольным градиентом температуры в зоне высокой температуры. Контейнер нагревали до температуры 450°С до расплавления соли КРС-5. Реторту с контейнером устанавливали под углом 50 градусов относительно горизонтального расположения контейнера и включали вращение вокруг продольной оси со скоростью 80 об/мин. Под действием вакуума расплав бромида-йодида таллия испаряли и конденсировали на стенках контейнера в холодной зоне контейнера в виде мелкокристаллического слитка. Длина сконденсировавшегося слитка составляла за счет наклона контейнера 350 мм. От сконденсировавшегося слитка отделяли начальную и конечную обогащенную легко- и труднолетучими примесями части, а среднюю очищенную часть слитка помещали в установку выращивания кристаллов и процесс выращивания осуществляли методом Стокбаргера. Получали кристалл диаметром 40 мм, весом 500 г. Спектральное пропускание выращенного кристалла на длине волны 2,5-20,0 мкм составило 68%, коэффициент объемного поглощения βv на длине волны 10,6 мкм 8·10-5 см-1. Время процесса очистки соли с помощью заявленного способа составило 2,5 часа. Процесс очистки соли бромида таллия для выращивания такого же кристалла с использованием известного способа вакуумной дистилляции в вертикальном контейнере составил 5 часов.

Таким образом, заявленный способ позволяет повысить в 1,5-2 раза производительность и упростить процесс, и за счет упрощения сократить трудозатраты.

Способ получения кристаллов галогенидов таллия, включающий синтез соли галогенида таллия путем барботирования смеси инертного газа с парами галогена через расплав металлического таллия, очистку соли вакуумной дистилляцией расплава в контейнере и выращивание кристалла, отличающийся тем, что вакуумную дистилляцию проводят в контейнере, установленном под углом 30-50 град относительно горизонтальной плоскости, при вращении контейнера вокруг его продольной оси со скоростью 60-100 об/мин.



 

Похожие патенты:
Изобретение относится к области получения материалов детекторов для регистрации ионизирующего излучения, которые могут быть использованы для инфракрасной оптики, лазерной техники, акустооптики.

Изобретение может быть использовано в медицинских томографах, при неразрушающем контроле в промышленности, для обеспечения безопасности при осмотре личного имущества, в физике высоких энергий.
Изобретение относится к области получения материалов, прозрачных в инфракрасной области спектра, а именно кристаллов галогенидов серебра и таллия, которые могут быть использованы для изготовления оптических элементов, прозрачных в области длин волн от 0,4 до 25 мкм, а также для изготовления волоконных световодов ИК-диапазона.
Изобретение относится к области получения материалов прозрачных в инфракрасной области спектра, а именно кристаллов галогенидов серебра, которые могут быть использованы для изготовления оптических элементов прозрачных в области длин волн от 0,4 до 15 мкм, а также для изготовления волоконных световодов среднего ИК диапазона.

Изобретение относится к технологии получения оптических поликристаллических материалов, а именно фторидной керамики, имеющей наноразмерную структуру и усовершенствованные оптические, лазерные и генерационные характеристики.
Изобретение относится к технологии получения оптических поликристаллических материалов, а именно фторидной керамики, имеющей наноразмерную структуру и усовершенствованные оптические, лазерные и генерационные характеристики.

Изобретение относится к новым неорганическим сцинтилляционным материалам, к новому сцинтиллятору кристаллического типа, особенно в форме монокристалла, и может быть использовано для регистрации ионизирующего излучения в виде электромагнитных волн низких энергий, гамма-излучения, рентгеновского излучения, космических лучей и частиц в фундаментальной физике, устройствах компьютерной томографии, РЕТ-томографах, в томографах нового поколения, гамма-спектрометрах, в карго-сканерах, в системах каротажа скважин, в системах радиационного контроля и др.
Изобретение относится к области изготовления оптических монокристаллов фторидов металлов, в частности к способу их вторичного отжига. .
Изобретение относится к области выращивания из расплава монокристаллов оптических фторидов щелочноземельных металлов путем их охлаждения при температурном градиенте с использованием затравочного кристалла.

Изобретение относится к оксидным сцинтилляционным монокристаллам, предназначенным для приборов рентгеновской компьютерной томографии (РКТ) и обследования просвечиванием излучением.

Изобретение относится к технологии производства монокристаллов сапфира, используемых для изготовления синего или белого светодиодов. Устройство содержит печь 10, выполненную с возможностью нагрева и термоизоляции от окружающего воздуха для обеспечения температуры внутри печи, превышающей температуру плавления обломков сапфира; тигель 20, расположенный в печи таким образом, чтобы обеспечить расплавление обломков сапфира в тигле 20 и рост монокристалла в длину из затравочного кристалла 51 в тигле 20; нагреватель 30, расположенный снаружи тигля 20 для расплавления обломков сапфира; и охлаждающие средства 40, расположенные на нижней части тигля 20 для предотвращения полного расплавления затравочного кристалла 51, при этом нагреватель 30 выполнен в виде нескольких отдельных нагревателей, которые управляются независимо друг от друга отдельно установленными температурными датчиками, регуляторами мощности и блоками регулирования температуры таким образом, что он равномерно поддерживает температуру внутри тигля в горизонтальном направлении.
Изобретение относится к области получения материалов, прозрачных в инфракрасной области спектра, а именно кристаллов галогенидов серебра и таллия, которые могут быть использованы для изготовления оптических элементов, прозрачных в области длин волн от 0,4 до 25 мкм, а также для изготовления волоконных световодов ИК-диапазона.
Изобретение относится к области получения материалов прозрачных в инфракрасной области спектра, а именно кристаллов галогенидов серебра, которые могут быть использованы для изготовления оптических элементов прозрачных в области длин волн от 0,4 до 15 мкм, а также для изготовления волоконных световодов среднего ИК диапазона.
Изобретение относится к области выращивания из расплава монокристаллов оптических фторидов щелочноземельных металлов путем их охлаждения при температурном градиенте с использованием затравочного кристалла.

Изобретение относится к технологии материалов электронной техники, а именно к способам получения полупроводниковых кристаллов из расплавов для создания структурно-совершенных монокристаллических подложек, и может быть использовано при формировании эпитаксиальных структур и приготовлении рабочих тел электрооптических модуляторов, работающих в ИК-области спектра.

Изобретение относится к области материалов электронной техники и может найти применение при создании новых устройств фотоники, квантовой электроники и оптики УФ-диапазона спектра.

Изобретение относится к технологии выращивания кристаллов и может быть использовано при создании активированных кристаллических материалов с прогнозируемыми свойствами для нужд фотоники, квантовой электроники и оптики.

Изобретение относится к области материалов электронной техники и может найти применение при создании новых устройств фотоники, квантовой электроники и оптики УФ-диапазона спектра.

Изобретение относится к получению и использованию новой инфракрасной лазерной матрицы для инфракрасной оптики. .

Изобретение относится к кристаллам литиевых халькогенидов, предназначенных для применения в нелинейной оптике. .

Изобретение относится к технологиям переработки нефтесодержащего сырья. Изобретение касается способа комплексной переработки нефтесодержащего сырья, включающего распыление сырья в вакуумной дистилляционной камере посредством диспергаторов, оппозитно расположенных и формирующих капельные сырьевые факелы, эвакуацию образующихся в процессе однократного испарения сырья остаточного продукта, совокупной паровой фазы, фракционирование совокупной паровой фазы.
Наверх