Способ электрических проверок космического аппарата

Изобретение относится к наземным проверкам космических аппаратов (КА) и их подготовке к штатной эксплуатации. Способ заключается в проведении включения и выключения КА, в т.ч. бортовых источников его электропитания, в частности аккумуляторных батарей (АБ). Перед включением КА к АБ подключают наземные стабилизированные источники электроэнергии, а после выключения КА дополнительно контролируют токи подзаряда АБ от указанных источников. По этим токам судят о штатном завершении процесса выключения КА. Кроме того, по величине токов подзаряда оценивают величину токов утечки АБ в выключенном состоянии КА, которая не должна превышать заранее заданной величины. Техническим результатом изобретения является повышение надежности и расширение функциональных возможностей процесса электрических проверок КА. 1 з.п. ф-лы, 1 ил.

 

Заявляемое изобретение относится к электротехнической промышленности и может быть использовано при изготовлении космических аппаратов (КА) и подготовке их к штатной эксплуатации.

При создании КА большое внимание уделяется обеспечению высокой степени надежности электрических проверок.

Эта задача может быть решена только при условии обеспечения широких функциональных возможностей и применения многоуровневого контроля технологического процесса электрических проверок КА.

Известен способ электрических проверок КА (патент RU №2245825), реализованный «Автоматизированной испытательной системой для отработки, электрических проверок и подготовки к пуску космических аппаратов».

Известный способ заключается в автоматизированной выдаче технологических команд и радиокоманд, допусковом контроле дискретных и аналоговых параметров по данным бортовой системы телеизмерения и контроле поставленных на слежение параметров бортовой вычислительной системы, контроле сопротивления изоляции бортовых шин относительно корпуса, формирования директив оператора в ручном режиме, формирования протокола испытаний, отображения текущего состояния процесса испытаний.

Недостатком известного способа электрических проверок КА является отсутствие защиты от возникновения нештатных ситуаций, связанных с неполным выключением КА при перерывах в работе с ним, в случае возникновения каких-либо неисправностей в бортовой или наземной аппаратуре на различных этапах электрических проверок КА.

Наиболее близким техническим решением является способ электрических проверок КА, описанный в материалах заявки №2010141494, который выбран в качестве прототипа.

Известный способ заключается в проведении включения и выключения космического аппарата, включая подключение или отключение бортовых источников электропитания или их наземных имитаторов, автоматизированной выдачи команд управления, допускового контроля дискретных и аналоговых параметров по данным бортовой системы телеизмерения и контроля поставленных на слежение параметров бортовой вычислительной системы, контроля сопротивления изоляции бортовых шин относительно корпуса, формирования директив автоматической программы и директив оператора в ручном режиме, формирования протокола испытаний, отображения текущего состояния процесса испытаний, отличающийся тем, что в процессе проведения включения космического аппарата, перед подключением бортовых источников электропитания или их наземных имитаторов, дополнительно контролируют электрическое сопротивление между шинами питания космического аппарата на предмет соответствия его наперед заданному значению, а при его несоответствии наперед заданному значению включение космического аппарата запрещают.

Недостатком известного способа электрических проверок КА является отсутствие защиты от возникновения нештатных ситуаций, связанных с неполным выключением КА при перерывах в работе с ним. Следует отметить, что неполное выключение КА ведет к переразряду аккумуляторных батарей (АБ), попаданию бортовой аппаратуры КА под воздействие питающего напряжения ниже согласованной величины, что, в свою очередь, ведет к финансовым потерям и срыву сроков изготовления КА.

Задачей заявляемого изобретения является повышение надежности и расширение функциональных возможностей процесса электрических проверок КА.

Поставленная задача решается тем, что при проведении электрических проверок космического аппарата на заключительных этапах, заключающемся в проведении включения и выключения космического аппарата, в том числе подключения и отключения бортовых источников электропитания - аккумуляторных батарей, к аккумуляторным батареям перед включением космического аппарата подключают наземные стабилизированные источники электроэнергии, а после выключения космического аппарата дополнительно контролируют токи подзаряда аккумуляторных батарей от наземных стабилизированных источников электроэнергии и по их величине судят о штатном завершении процесса выключения космического аппарата. Кроме того, по величине токов подзаряда оценивают величину токов утечки от аккумуляторных батарей в выключенном состоянии космического аппарата, на предмет непревышения заранее заданной величины.

Действительно, при проведении электрических проверок КА на заключительных этапах его изготовления или подготовки к штатной эксплуатации, когда проверяется в основном факт стыковки каких-либо цепей, и не требуется существенной емкости от аккумуляторных батарей, используют практически разряженные аккумуляторные батареи с подключенными к ним наземными стабилизированными источниками электроэнергии с напряжением, равным (или чуть больше) напряжению разомкнутой цепи (НРЦ) аккумуляторных батарей. Это позволяет защитить аккумуляторные батареи от разряда при включении КА (и нежелательного в данной ситуации существенного заряда АБ) и обеспечить необходимый объем электрических проверок КА. При включении КА АБ не разряжаются, а вся необходимая энергия берется с наземных стабилизированных источников. При этом на выходе наземных стабилизированных источников появляется ток существенной величины. Соответственно при выключении КА этот ток исчезает. Это позволяет судить о штатном выключении КА по величине тока на выходе наземных стабилизированных источников.

На заключительных этапах изготовления или подготовки КА к штатной эксплуатации, когда КА находится в предполетной конфигурации и количество наземных цепей контроля ограничено, а бортовая телеметрия выключена, такой дополнительный уровень контроля позволяет повысить надежность процесса электрических проверок КА.

Кроме того, предлагаемый способ позволяет оценить величину токов утечки от АБ. Для этого оценивают величину токов утечки от аккумуляторных батарей в выключенном состоянии космического аппарата, по величине токов подзаряда от наземных стабилизированных источников электроэнергии. Измеренные значения оценивают на предмет непревышения заранее заданной величины.

Суть заявляемого изобретения поясняется чертежом, на котором приведена блок-схема наземной системы управления и контроля электрических проверок космического аппарата.

Космический аппарат (КА) 1, в частности, содержит:

2 - аккумуляторные батареи.

Системы управления и контроля электрических проверок космического аппарата содержат:

3 - автоматизированный испытательный комплекс (АИК);

4 - блок управления и отображения информации с АИК (ПЭВМ АИК);

5 - зарядно-разрядный комплекс (ЗРК);

6 - блок отображения информации с ЗРК (ПЭВМ ЗРК).

Система работает следующим образом. На блоке отображения информации с ЗРК (мониторе ПЭВМ ЗРК) 6 контролируется заранее заданное значение тока Iстаб, протекающего в цепи подключения аккумуляторных батарей 2 и зарядно-разрядного комплекса 5. Оператор через ПЭВМ АИК 4 в ручном режиме запускает требующиеся циклограммы электрических проверок, в том числе циклограммы включения и выключения КА 1. ПЭВМ АИК 4 в автоматическом режиме инициирует выдачу команд управления через АИК 3, анализирует поступающую информацию от бортовой телеметрии. Текущие данные работ о подаче питания, прохождении команд управления и включении КА 1 считываются и контролируются на ПЭВМ АИК 4. Параллельно контролируется ток Iстаб на блоке отображения информации с ЗРК 6, информация о величине тока Iстаб, который заранее определен, говорит о включенном состоянии КА 1. После проведения электрических проверок и выключения КА 1 на блоке управления и отображения информации с АИК 4 ведется контроль параметров, сигнализирующих о выключенном состоянии КА 1, при этом на блоке отображения информации с ЗРК 6 контролируется снижение тока Iстаб до заранее заданной величины, при которой состояние КА 1 считается выключенным. В случае если измеренное значение тока Iстаб на блоке отображения информации с ЗРК 6 не будет соответствовать заранее заданным параметрам - процесс испытаний останавливается до выяснения причин невыключенного состояния КА 1 или причин протекания токов в цепи подключения аккумуляторных батарей 2 и зарядно-разрядного комплекса 5 и устранения несоответствия.

Таким образом, предлагаемый способ электрических проверок КА повышает надежность и функциональные возможности процесса электрических проверок КА.

1. Способ электрических проверок космического аппарата на заключительных этапах, заключающийся в проведении включения и выключения космического аппарата, в том числе подключение и отключение бортовых источников электропитания - аккумуляторных батарей, отличающийся тем, что к аккумуляторным батареям перед включением космического аппарата подключают наземные стабилизированные источники электроэнергии, а после выключения космического аппарата дополнительно контролируют токи подзаряда аккумуляторных батарей от наземных стабилизированных источников электроэнергии и по их величине судят о штатном завершении процесса выключения космического аппарата.

2. Способ электрических проверок космического аппарата по п.1, отличающийся тем, что по величине токов подзаряда оценивают величину токов утечки от аккумуляторных батарей в выключенном состоянии космического аппарата, на предмет непревышения заранее заданной величины.



 

Похожие патенты:

Изобретение относится к космической технике. Устройство для проверки пульта космонавта включает в себя одноплатный компьютер VME VP9, операционную панель, рабочую консоль, источники питания.
Изобретение относится к космонавтике и может быть применено для обеспечения безопасности Земли от столкновения с опасным космическим телом. Центр обеспечения управления системы астероидной безопасности, размещенный на Земле, содержит средства связи и управления, оптическую и радиолокационную аппаратуру контроля и наблюдения с измерительными и телематическими приборами, три и более лунных летательных аппарата, выполненных в лунном, грузовом, пилотируемом вариантах, пять и более летательных топливных заправщиков, стартово-посадочный комплекс с заправочным комплексом, двумя и более взлетно-посадочными полосами, заводом жидкого водорода, средствами радиационной безопасности.

Изобретение относится к наземным имитационным испытаниям космических аппаратов (КА), а именно многозвенных маложестких механических систем изделий космической техники.

Изобретение относится к наземным испытаниям электротехнических систем космических аппаратов (КА). Способ состоит в проведении включения и выключения КА, в т.ч.

Изобретение относится к космической технике, а именно к колонизации космических объектов (КО). Космический корабль (КК) содержит посадочный (модуль длительно действующей базы (ДДБ)) (ПМ) и взлётный модули (ВМ).

Изобретение относится к ракетно-космической отрасли, а именно к наземному вспомогательному оборудованию. .

Изобретение относится к космической промышленности. .

Изобретение относится к ракетно-космической технике (РКТ), именно к технике и технологии подготовки к пуску ракеты-носителя (РН) с космической головной частью (КГЧ), содержащей разгонный блок (РБ) и космический аппарат (КА), и может быть использовано для подготовки к пуску ракет-носителей легкого, среднего и тяжелого класса с космическими головным частями на технических комплексах космодромов.

Изобретение относится к ракетно-космической технике (РКТ) - именно, к технике и технологии подготовки ракеты-носителя (РН) и космической головной части (КГЧ) к пуску: доставке, сборке, тестированию на техническом комплексе (ТК) космодрома для пуска РН, выведения космического аппарата (КА) на орбиту и может быть использовано для подготовки к пуску экологически безопасных ракет-носителей легкого, среднего и тяжелого класса с космическими головным частями, на технических комплексах любых космодромов, в частности, например, на космическом ракетном комплексе (КРК) космодрома «Байтерек» (Казахстан)и на проектируемом космодроме «Восточный».

Изобретение относится к ракетной технике и предназначено для отвода коммуникаций с разъемными соединениями от борта ракеты. .

Изобретение относится к космической технике и может быть использовано для заправки топливом двигателя ракеты-носителя. Устройство для заправки топливом двигателей ракеты-носителя содержит наземный модуль с наземным каналом, наземным клапаном, наземной плитой, двумя коаксиальными наземными проходами, бортовой модуль с бортовым каналом, бортовым клапаном, бортовой плитой с бортовым проходом, двумя бортовыми коаксиальными проходами, систему гидравлического соединения между бортовым модулем и наземным модулем, две камеры, две кольцевые камеры, механическую запорную систему с вилкой отсоединения и запорный палец между наземной и бортовой плитами. Изобретение позволяет исключить замену или ремонт системы соединения бортового и наземного модулей в случае отмены пуска. 11 з.п. ф-лы, 13 ил.

Изобретение относится к космической технике, а именно к трансбордерным тележкам для трансбордера технического комплекса космодрома. Трансбордерная тележка для трансбордера технического комплекса космодрома содержит электромеханический привод, питаемый от троллей через подвижный токосъемник, грузовую площадку, установку автоматического пенного пожаротушения с дистанционным управлением и с элементами, защищенными от воздействия опасных факторов взрыва и пожара и воздействия пролитых при аварийной ситуации компонентов ракетного топлива (КРТ), с пеногенераторами в кожухе электромеханического привода, с углубленными пеногенераторами с крышками для защиты от попадания КРТ, поддоны под грузовой площадкой для сбора пролитых КРТ, соединенные с трубопроводом с запорным вентилем, придонные зоны с токосъемником с ловушками из негорючих материалов. Участки грузовой площадки имеют уклоны в сторону отверстий, отходящих от трубопроводов, соединенных с поддонами сбора пролитых КРТ. Изобретение позволяет повысить противопожарную защиту изделий ракетно-космической техники при перемещении между объектами космодрома. 5 ил.

Изобретение относится к изделиям космической техники и касается съемного технологического оборудования изделий космической техники, использующегося при наземной подготовке космических аппаратов (КА). Технологический кожух прикреплен на защищаемую поверхность элементами крепления. Кожух выполнен на основе листов заданной конфигурации из легкого, жесткого, оптически прозрачного материала, например сотового поликарбоната. Все материалы кожуха выполнены не содержащими и не накапливающими коррозионно-активные газы, пылевые частицы, влагу. Листы установлены на защищаемую поверхность в один и более слоев параллельно защищаемой поверхности. Между листами кожуха и защищаемой поверхностью обеспечивается заданный зазор за счет конструкции крепежных элементов. Достигается обеспечение целостности, защиты от загрязнений и коррозионных повреждений оптических покрытий КА в процессе наземных работ с изделием (сборка, испытания, транспортировка), возможность визуального контроля состояния оптических поверхностей без демонтажа защитного кожуха, возможность быстрого изменения конфигурации защитного кожуха. 5 ил.

Изобретение относится к системам терморегулирования (СТР) мощных телекоммуникационных спутников, содержащим многочисленные (до 10) вертикально расположенные последовательно соединенные длинноразмерные (~3-6 м) коллекторы. Согласно изобретению, жидкостный контур СТР для наземных испытаний заправляют жидким теплоносителем, в частности растворителем. Затем этот теплоноситель сливают продувкой воздухом до его полного удаления перед вакуумной сушкой. Последняя предшествует заправке СТР штатным теплоносителем. При этом первоначально продувают весь жидкостный тракт, минуя (с помощью клапана-регулятора байпасной линии) указанные вертикально расположенные коллекторы панелей радиаторов. Продувку данных коллекторов осуществляют в последнюю очередь (переводя клапан-регулятор в другое положение). Техническим результатом изобретения является повышение технологичности СТР и сокращение времени продувки при сливе теплоносителя. 3 ил.

Изобретение относится к области космической техники и может быть использовано для терморегулирования лунного пускового ракетного комплекса (ЛПРК). Система подогрева ЛПРК содержит жидкостный контур, теплоноситель, тепловой кожух с тепловыми аккумуляторами и задвигающейся крышкой с автоматической системой открытия/закрытия с датчиками света, насосную станцию, систему управления обогревом, солнечные батареи и электроаккумулятор. Одна половина тепловых аккумуляторов заправлена жидким теплоносителем, а другая - пустая. Тепловой кожух содержит наружную зеркальную поверхность и внутреннюю поверхность, покрытую теплоизоляционным материалом (тефлон, политетрафторэтилен, политрифторхлорэтилен, кристаллический сополимер этилена с тетрафторэтиленом). Изобретение позволяет повысить надежность терморегуляции ЛПРК. 4 з.п. ф-лы, 1 ил.

Изобретение относится к управлению параметрами среды в изделиях ракетно-космической технике при их подготовке на стартовом сооружении и в полете. Устройство включает в себя установленный на переходном отсеке (4) головной обтекатель (ГО) (3) полезной нагрузки (ПН) (1), выводимой ракетой (2) космического назначения. В верхней части ГО (3) закреплен рассекатель (5) подаваемого через транзитную магистраль (6) газового потока. В нижней части ГО (3) выполнен люк (7) для сброса газового компонента. На внутренней поверхности ГО (3) закреплены звукозащитное, влагозащитное и металлическое антистатическое покрытия. В крышке люка (7) выполнено отверстие, а с внутренней ее стороны закреплен плоский решетчатый акустический глушитель. С другой стороны на отверстии крышки (7) закреплен местный обтекатель (в виде накладного дозвукового диффузора). На переходном отсеке (ПО) (4) выполнено дополнительное отверстие с фильтром (сеткой) и с аналогичным местным обтекателем (поз. Г). Полости ПО (4) и ГО (3) сообщены посредством отверстий (поз. Д), выполненных в шпангоуте ПО, и отверстий (22) в адаптере (21). При старте и полете ракеты (2) с ПН (1) уровень акустического воздействия на них снижается благодаря применению указанных защитного покрытия, глушителя и местных обтекателей. Тем самым снижается возможность образования и попадания в полости ГО и на поверхности ПН (в застойные зоны) загрязняющих частиц. Техническим результатом изобретения является обеспечение высокого качества чистоты внутренней полости ГО, в которой размещена ПН. 6 ил.

Изобретение относится к космической технике и может быть использовано в стационарных стендах сборки частей ракет-носителей. Стационарный стенд сборки головного блока ракетно-космического носителя содержит силовую раму в виде прямоугольника коробчатого сечения с выступающими узлами для скрепления со стрелой и гидроцилиндрами, площадку обслуживания с лестничными переходами и выдвижными трапами, анкерный крепеж, грузоподъемную стрелу с устройством для размещения и скрепления головного блока, гидроцилиндры подъема и опускания стрелы, гидросистему питания, электрооборудование с мотор-редукторами, опорно-поворотное кольцо в виде полого цилиндра с отверстиями под болты, подшипник вращения, упоры. Устройство для размещения и скрепления головного блока выполнено в виде фермы трубчатой конструкции в форме усеченного конуса. Изобретение позволяет повысить надежность проведения сборочных работ по стыковке (отстыковке) головного блока к ракете-носителю. 3 з.п. ф-лы, 7 ил.

Группа изобретений относится к методам и средствам управления параметрами среды в изделиях ракетно-космической техники, в частнОСТИ, при предстартовой подготовке современных ракет-носителей (РН) полезной нагрузки (ПН). Данные РН оснащены наземными системами подготовки и подачи термостатирующего газового компонента (ГК) с высокой степенью очистки по бортовым газоводам блоков РН. Способ включает подведение и подачу ГК в головной обтекатель (ГО) одновременно через верхний и нижний распылители. Подачу производят по единому магистральному газоводу в направлении снизу вверх. Рассекатели переменного сечения верхнего распылителя размещают взаимно противоположно с тем, чтобы при вдуве ГК струи соударялись между собой над ПН и отражались от ГО, выравнивая поле скоростей ГК. Этим создают равномерное течение ГК в пространстве между ПН и ГО. В нижней полости ГО ГК направляют на ПН, создавая в ГО избыточное давление, за счет которого происходит сброс ГК через специальные отверстия. В реализующих способ устройствах распылители выполнены в виде противолежащих рассекателей переменного сечения, которые с одной стороны заглушены, а с другой объединены посредством коллекторов переменного сечения. Техническим результатом группы изобретений является повышение эффективности обеспечения теплового режима и чистоты среды для ПН, установленной на РН под ГО. 3 н.п. ф-лы, 10 ил.

Автоматизированный испытательный комплекс для электрических испытаний космических аппаратов содержит пульт ручного управления, основной и резервный центральный пульт управления, основную и резервную центральную вычислительную машину, основной и резервный каналы устройств выдачи матричных команд и ретранслятора мультиплексного обмена, устройство приема и обработки дискретных сигналов, микросистему для измерения напряжения и сопротивления в электрических цепях, устройства выдачи дискретных бесконтактных и контактных сигналов, устройство приема и обработки телеметрической информации, источник питания испытываемого изделия, соединенные определенным способом. Центральная вычислительная машина содержит вычислительный блок, блок контроля шин питания, блок контроля стыковки, блок ввода и нормализации аналоговых сигналов, блок приема телеметрической информации по низкочастотному каналу, блок мультиплексного канала обмена, блок проверки обтекания цепей пиропатронов, коммутатор Ethernet, соединенные определенным способом. Центральный пульт управления содержит блок управления испытаниями, монитор, устройство ввода, устройство вывода. Обеспечивается высокая надежность устройства за счет элементов резервирования. 3 ил.

Изобретение относится к ракетно-космической технике и может быть использовано при подготовке и старте ракеты космического назначения. Устройство обеспечения теплового режима и чистоты космической головной части ракеты космического назначения с крупногабаритной полезной нагрузкой содержит на головном обтекателе и на переходном отсеке отверстия вдува термостатирующей газовой среды, отверстия истечения термостатирующей газовой среды, шарнирно установленные клапаны одностороннего действия отверстий вдува и истечения термостатирующей газовой среды, устройство вдува термостатирующей газовой среды в виде закрепленного на окантовке отверстия вдува лотка с клапанами одностороннего действия в виде уплотняющих крышек, дополнительные отверстия вдува термостатирующей газовой среды, клапаны одностороннего действия в виде заслонки с противовесом между входным отверстием с защитной сеткой и выходным отверстием, теплоизолирующее и терморегулирующие покрытия. Изобретение позволяет повысить качество чистоты и эффективность термостатирования космической головной части ракеты космического назначения. 9 ил.
Наверх