Многоканальная защищенная волоконно-оптическая система передачи



Многоканальная защищенная волоконно-оптическая система передачи

 

H04B10/00 - Передающие системы, использующие потоки корпускулярного излучения или электромагнитные волны, кроме радиоволн, например световые, инфракрасные (оптические соединения, смешивание или разделение световых сигналов G02B; световоды G02B 6/00; коммутация, модуляция и демодуляция светового излучения G02B,G02F; приборы или устройства для управления световым излучением, например для модуляции, G02F 1/00; приборы или устройства для демодуляции, переноса модуляции или изменения частоты светового излучения G02F 2/00; оптические мультиплексные системы H04J 14/00)

Владельцы патента RU 2522741:

Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" - Госкорпорация "Росатом" (RU)
Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр-Всероссийский научно-исследовательский институт экспериментальной физики"-ФГУП "РФЯЦ-ВНИИЭФ" (RU)

Изобретение относится к защищенным волоконно-оптическим системам передачи и может быть использовано в качестве дуплексного волоконно-оптического канала передачи информации ограниченного доступа по неконтролируемой территории. Технический результат состоит в повышении скорости передачи информации и длины ретрансляционного участка волоконно-оптической линии за счет волнового уплотнения и увеличения чувствительности мониторинга. Для этого система передачи содержит волоконно-оптическую линию и два приемо-передающих устройства, состоящих из оптического передатчика, оптического приемника и устройства мониторинга. В каждое приемопередающее устройство дополнительно введены оптический мультиплексор/демультиплексор, контроллер и N групп, при этом входы контроллера соединены с выходами устройств мониторинга всех групп, а выход контроллера соединен со вторыми входами оптических передатчиков всех групп, входы оптического мультиплексора/демультиплексора соединены с выходами оптических передатчиков всех групп, а его выходы соединены с входами оптических приемников всех групп, причем линейные вход/выход мультиплексора/демультиплексора соединены между собой волоконно-оптической линией. 2 ил.

 

Изобретение относится к защищенным волоконно-оптическим системам передачи и может быть использовано в качестве дуплексной многоканальной волоконно-оптической системы передачи информации ограниченного доступа по неконтролируемой территории.

Известна «Аппаратура для детектирования и отвода световой энергии из оптического волокна» (см. патент США № US 4636029 от 13.01.1987 г.) Аппаратура по своему функциональному назначению и составу является наиболее близкой к заявляемой системе и поэтому выбрана в качестве прототипа. Аппаратура содержит два идентичных приемо-передающих устройства, соединенных между собой волоконно-оптическими линиями передачи. Каждое приемо-передающее устройство содержит последовательно соединенные оптический приемник, устройства мониторинга и оптический передатчик. Второй вход оптического передатчика является информационным входом приемо-передающего устройства, а его оптический выход является оптическим выходом приемо-передающего устройства. Второй выход оптического приемника является информационным выходом оптического приемника, а его оптический вход является оптическим входом приемо-передающего устройства. Вышеуказанное устройство работает следующим образом. Входные информационные сигналы поступают на вход оптического передатчика, где формируется оптический информационный сигнал, который излучается в волоконно-оптическую линию. На противоположном оптическом полюсе линии оптический сигнал принимается оптическим приемником, детектируется и в аналоговом виде поступает на вход устройства мониторинга. Одновременно восстановленный электрический сигнал поступает на выход оптического приемника. Устройство мониторинга обрабатывает входной сигнал, выделяя из шумов сигнал, который соответствует попытке отвода световой энергии из оптического волокна. В случае обнаружения сигнала попытки съема, устройство формирует сигнал тревоги. В этом случае снимается сигнал разрешения передачи с обоих оптических передатчиков. Передача сигналов и контроль волоконно-оптической линии в противоположном направлении осуществляются точно таким же образом.

Недостатками вышеуказанного устройства являются низкая эффективность использования пропускной способности волоконно-оптических линий и небольшая дальность передачи из-за невозможности обеспечения высокой чувствительности обнаружения попытки съема оптического сигнала.

Решаемой технической задачей является создание высокоскоростной многоканальной защищенной волоконно-оптической системы передачи информации ограниченного доступа большой дальности.

Достигаемым техническим результатом является увеличение скорости передачи информации и длины ретрансляционного участка волоконно-оптической линии за счет волнового уплотнения и увеличения чувствительности мониторинга.

Для достижения технического результата в многоканальной защищенной волоконно-оптической системе передачи, содержащей не менее одной волоконно-оптической линии и двух идентичных приемо-передающих устройств, каждое из которых включает в себя не менее одной группы, состоящей из оптического передатчика, первый вход которого является информационным входом приемо-передающего устройства и последовательно соединенных оптического приемника и устройства мониторинга, новым является то, что в каждое приемо-передающее устройство дополнительно введены оптический мультиплексор/демультиплексор, контроллер и N групп, идентичных первой группе, при этом входы контроллера соединены с выходами устройств мониторинга всех групп, а выход контроллера соединен со вторыми входами оптических передатчиков всех групп, входы оптического мультиплексора/демультиплексора соединены с выходами оптических передатчиков всех групп, а его выходы соединены с входами оптических приемников всех групп, причем линейные входы/выходы мультиплексоров/демультиплексоров соединены между собой волоконно-оптический линией.

Новая совокупность существенных признаков в заявляемой многоканальной защищенной волоконно-оптической системе передачи позволяет повысить скорость передачи и увеличить длину ретрансляционного участка защищенной волоконно-оптической системы передачи за счет того, что вводится волновое уплотнение единичных оптических каналов и увеличивается чувствительность контроля за счет одновременного контроля по каждому из единичных каналов.

На фиг.1 представлена функциональная схема заявляемой защищенной волоконно-оптической системы передачи.

Многоканальная защищенная волоконно-оптическая система передачи содержит не менее одной волоконно-оптической линии 8 и два идентичных приемо-передающих устройства, каждое из которых включает в себя не менее одной группы, состоящей из оптического передатчика 3, первый вход которого является информационным входом приемо-передающего устройства и последовательно соединенных оптического приемника 4 и устройства мониторинга 5.

В каждое приемо-передающее устройство дополнительно введены оптический мультиплексор/демультиплексор 7, контроллер 6 и N групп, идентичных первой группе, при этом входы контроллера - 6 соединены с выходами устройств мониторинга 5 всех групп, а выход контроллера 6 соединен со вторыми входами оптических передатчиков 3 всех групп, входы оптического мультиплексора/демультиплексора 7 соединены с выходами оптических передатчиков 3 всех групп, а его выходы соединены с входами оптических приемников 4 всех групп, причем линейные вход/выход мультиплексора/демультиплексора соединены между собой волоконно-оптический линией 8.

Заявляемая многоканальная защищенная волоконно-оптическая система передачи работает следующим образом. Входные информационные сигналы параллельно поступают на входы 1 оптических передатчиков 3, которые формируют оптические сигналы, каждый из которых отличается друг от друга длиной волны оптического излучения. Длины волн соответствуют стандартным сеткам, принятым в технологии волнового уплотнения (WDM, DWDM, CWDM, HWDM). Количество каналов может быть два и более. После этого оптические сигналы поступают на входы мультиплексора/демультиплексора 7, где мультиплексор складывает их в один групповой сигнал. Групповой сигнал передается по волоконно-оптической линии 8. Оптический групповой сигнал поступает на вход мультиплексора/демультиплексора 7 на противоположной стороне линии, который на оптических выходах формирует оптические сигналы на длинах волн, соответствующих входным длинам волн. Каждый из оптических сигналов поступает на вход соответствующего оптического приемника 4, который преобразует оптический сигнал в электрический. Электрический сигнал передается на вход устройства мониторинга 5, которое обрабатывает сигнал с целью выделения сигнала попытки отвода световой энергии из волоконно-оптической линии. В случае обнаружения сигнала попытки отвода сигнала из волоконно-оптической линии, устройство мониторинга формирует сигнал тревоги. Все сигналы с выходов устройств мониторинга поступают на вход контроллера 6, который производит их анализ. В случае, когда одновременно поступают сигналы тревоги от всех устройств мониторинга, контроллер фиксирует попытку съема оптического сигнала и формирует сигналы, запрещающие передачу всем оптическим передатчикам 3.

Увеличение эффективности использования пропускной способности оптического волокна достигается за счет одновременной передачи сигналов, поступающих на все входы оптических передатчиков. Если скорость передачи информации по всем каналам одинакова и равна Vo, то скорость передачи в волоконно-оптической линии составит

V = m V o ,                                       ( 1 )

где m - количество одновременно работающих оптических передатчиков и приемников.

Например, если Vo=100 Мбит/с, a m=16, то V=1,6 Гбит/с.

Таким образом, скорость передачи увеличивается пропорционально количеству единичных каналов передачи.

Снижение вероятности ложной тревоги достигается за счет одновременного контроля одного и того же волокна всеми устройствами мониторинга одновременно. Если вероятности ложной тревоги для всех устройств мониторинга одинаковы и равны Ро, то вероятность ложной тревоги для системы составит

Р л т = Р o n ,                                       ( 2 )

где n - количество одновременно работающих устройств мониторинга.

Например, если Ро=0,001, а n=16, то Рлт=0,001l6=10-48.

Такое существенное снижение вероятности ложной тревоги позволяет снизить порог обнаружения, что приведет к повышению чувствительности обнаружения сигналов попытки отвода оптического сигнала. На фиг.2 представлена зависимость вероятности ложной тревоги в зависимости от отношения порог/шум Q.

Повышение чувствительности в свою очередь позволит повысить мощность оптического информационного сигнала на входном полюсе ВОЛП, которая определяется по формуле

W o = W д ( 1 10 0,1   А д ) 1 ,                 ( 3 )

где Wд - максимально допустимая величина мощности отводимой из ВОЛП, Вт;

Ад - чувствительность устройства мониторинга к изменению коэффициента передачи ВОЛП, дБ.

Увеличение мощности на входном полюсе волоконнно-оптической линии приведет к увеличению длины ретрансляционного участка волоконно-оптической системы передачи.

Для подтверждения работоспособности заявляемого устройства и экспериментального определения параметров был собран макет. В качестве оптических передатчиков, оптических приемников и устройств мониторинга были использованы конверторы FOBOS-100S, контроллеры были выполнены на основе микроконтроллеров PIC16C662 со специальным программным обеспечением, в качестве мультиплексоров/демультиплексоров были использованы устройства MUX/DEM 1×8 фирмы «Континент», С-Петербург. ВОЛП была собрана из оптических шнуров SC-FC и оптических FM-аттенюаторов.

Многоканальная защищенная волоконно-оптическая система передачи, содержащая не менее одной волоконно-оптической линии и двух идентичных приемо-передающих устройств, каждое из которых включает в себя не менее одной группы, состоящей из оптического передатчика, первый вход которого является информационным входом приемопередающего устройства и последовательно соединенных оптического приемника и устройства мониторинга, отличающаяся тем, что в каждое приемо-передающее устройство дополнительно введены оптический мультиплексор/демультиплексор, контроллер и N групп, идентичных первой группе, при этом входы контроллера соединены с выходами устройств мониторинга всех групп, а выход контроллера соединен со вторыми входами оптических передатчиков всех групп, входы оптического мультиплексора/демультиплексора соединены с выходами оптических передатчиков всех групп, а его выходы соединены с входами оптических приемников всех групп, причем линейные вход/выход оптического мультиплексора/демультиплексора соединены между собой волоконно-оптической линией.



 

Похожие патенты:

Изобретение относится к технике волоконно-оптической связи и может использоваться в волоконно-оптических линиях связи (ВОЛС) для организации нескольких независимых каналов связи.

Изобретения относятся к автомобильной технике. Устройство для управления транспортным средством содержит рулевое колесо, оптический излучатель и оптически сопряженные с ним приемники излучения, подключенные к специализированному вычислителю.

Изобретение относится к технике связи и может использоваться в оптических системах связи. Технический результат состоит в обеспечении регулировки диапазона волн компенсатора дисперсии.

Изобретение относится к технике связи и может использоваться в системах оптической связи. Технический результат состоит в повышении помехоустойчивости передачи.

Изобретение относится к технике связи и может использоваться при передаче информации на расстояние на основе нелокальной квантовой корреляции между квантовыми частицами, одними из которых являются фотоны.

Предлагаемое изобретение относится к области радиотехники и связи и может использоваться в оптических системах передачи информации, датчиках оптических излучений малой интенсивности, измерителях оптических сигналов в физике высоких энергий и т.п.

Изобретение относится к технике связи и может использоваться в оптических системах связи. Технический результат состоит в обеспечении адаптации фильтра в частотной области.

Изобретение относится к технике связи и может использоваться в системах оптической связи. Технический результат состоит в повышении надежности связи за счет повышения оперативности восстановления связи.

Изобретение относится к способам контроля волоконно-оптических линий передачи на основе одномодовых оптических волокон и может быть использовано в качестве способа отделения локальных дефектов, образованных несанкционированными отводами, от локальных дефектов, вызванных неразъемными оптическими соединениями.

Изобретение относится к технике связи и может использоваться в системах с предыскажением. Технический результат состоит в повышении помехоустойчивости за счет уведомления каждой платы о предыскажении.

Изобретение относится к измерительной технике для передачи аналоговых электрических сигналов с использованием светового канала. Технический результат состоит в расширении динамического диапазона, отношения сигнал/шум волоконно-оптического канала в условиях сильных электромагнитных помех. Для этого оптоэлектронное устройство для передачи аналоговых сигналов содержит лазерный передатчик, оптически связанный с оптическим приемником, выход которого соединен со входом цифрового регистратора; введены блок стабилизации лазера и блок логарифмирования входного сигнала, вход которого является входом устройства, а выход соединен с первым входом лазерного передатчика, второй вход и выход которого соединены соответственно с выходом и входом блока стабилизации лазера. 2 ил.

Изобретение относится к устройствам контроля потерь в волоконно-оптических линиях и может быть использовано в качестве универсального технического средства защиты информации ограниченного доступа, передаваемой по неконтролируемой территории. Техническим результатом является создание устройства контроля ВОЛП, независимого от параметров информационных сигналов: скорости передачи и способа кодирования. Для этого устройство содержит передающий оптоэлектронный модуль, вход которого соединен с выходом цифрового генератора, и последовательно соединенные приемный оптоэлектронный модуль, усилитель с автоматической регулировкой усиления, полосовой фильтр, детектор уровня, микроконтроллер, устройство сигнализации, введены оптический коммутатор, первый и второй оптические ответвители, согласующее устройство, выход которого соединен со вторым входом усилителя с автоматической регулировкой усиления, а вход - с первым выходом микроконтроллера, второй выход которого соединен с входом управления оптического коммутатора, оптический выход которого является выходом устройства в волоконно-оптическую линию, а оптический вход соединен с выходом первого оптического ответвителя, первый вход которого является входом устройства, а второй вход соединен с выходом передающего оптоэлектронного модуля. 2 ил.

Изобретение относится к технике электрической связи и может использоваться в системах двусторонней оптической связи. Технический результат заключается в расширении функциональных возможностей устройства двусторонней оптической связи в подводных условиях. Для этого в аппаратуру оптической подводной беспроводной оптической связи, содержащую оптический приемник и передатчик со схемами их управления, дополнительно введены поворотное устройство, позиционно-чувствительный элемент и контроллер управления, при этом все оптические подсистемы жестко связаны друг с другом, укреплены на поворотном устройстве, а их угловые апертуры связаны соотношением θt<θR<θp, где θt - угол расходимости излучения передатчика; θR - угловое поле зрения приемника; θp - угловое поле зрения позиционно чувствительного элемента. 3 з.п. ф-лы, 3 ил.

Изобретение относится к технике связи и может использоваться в оптических системах связи. Технический результат состоит в обеспечении внедрения данных в излучаемый свет и повышении эффективности передачи данных. Для этого предложен световой модуль, содержащий по меньшей мере два первичных источника света, способных к излучению первичного цветного света. Это позволяет световому модулю излучать свет, имеющий интенсивность (Y) и цветовые координаты (x, y), посредством аддитивного смешения цветов составляющих первичных цветов. Световой модуль также содержит модулятор, способный к модуляции первичных источников света, позволяя внедрять данные в излучаемый свет. Модулятор скомпонован, чтобы модулировать цветовые координаты излучаемого света, для внедрения данных. Это особенно выгодно, поскольку чувствительность человеческого глаза к изменениям в цвете ниже, чем к изменениям в интенсивности. Таким образом, данные внедряют в свет, излучаемый из световых модулей системы освещения.3 н. и 10 з.п. ф-лы, 4 ил.

Изобретение относится технике связи и может использоваться для управления динамическим изменением размеров в сетях транспортировки данных без прерывания передачи. Технический результат состоит в повышении пропускной способности передачи. Для этого сетевое соединение содержит М компонентных интервалов, определенных в области полезной нагрузки схемы транспортировки более высокого порядка сети транспортировки данных, и способ содержит этапы, на которых принимают сигнал управления изменением размера соединения в каждом из узлов маршрута сетевого соединения; добавления в каждом узле маршрута сетевого соединения, в ответ на сигнал управления изменением размера соединения, к первому набору М компонентных интервалов второго набора N компонентных интервалов так, чтобы сетевое соединение содержало M+N компонентных интервалов; и увеличивают скорость транспортировки данных после получения в каждом узле маршрута сетевого соединения для сетевого соединения M+N компонентных интервалов. 10 н. и 18 з.п. ф-лы, 40 ил.

Изобретение относится к области радиотехники. Технический результат - получение направленного потока волн, энергия которых в свободном пространстве не будет ослабляться (зависеть) обратно пропорционально квадрату пройденного пути и будет самофокусироваться. Для этого в способе преобразования в открытом пространстве двух направленных в одну сторону линейно поляризованных моногармоничных потоков электромагнитных волн в направленный поток волн де Бройля, в котором получают когерентную резонансную интерференцию идущих в одном направлении двух пересекающихся в свободном пространстве ортогональных линейно поляризованных потоков радиоизлучения от по меньшей мере одной пары возбудителей: Электрического Диполя Герца (ЭГД) и Магнитного Диполя Герца (МГД), размещенных на близком расстоянии друг от друга при параллельном расположении их продольных осей, создающих моногармоническую радиацию с высоким уровнем стабильности несущей частоты и направленные раздельно в одну и ту же сторону, которые в заданной зоне на заданном расстоянии их пересечения имеют равную друг другу эффективную изотропно излучаемую мощность (ЭИИМ), при этом направление поляризации потоков у каждой пары МГД и ЭГД возбудителей взаимно ортогонально. 8 з.п. ф-лы, 35 ил.

Изобретение относится к технике связи и может использоваться в системах оптической связи. Технический результат состоит в расширении арсенала методов решения задачи миниатюризации в микроэлектронике. Для этого в способе, заключающемся в том, что корпуса электронных модулей соединяют непосредственно с использованием ключа, который предварительно изготавливают и устанавливают так, чтобы их соответствующие оптические окна, которые предварительно располагают заподлицо с внешними поверхностями, которые выполняют с заданными параметрами плоскостности и шероховатости, совпали с заданной точностью. 6 ил.

Изобретение относится к средствам построения цифровых систем. Технический результат заключается в повышении скорости обработки информации с уменьшением числа электронно-оптических преобразований в системе и вносимых ими искажений. В способе передают метку в адресной части оптического блока, используют канал синхронизации с выделенной длиной волны λN+1 и передают синхроимпульсы, общие для всех оптических каналов передачи и формирующие кадры. Блоки состоят из адреса и поля данных (пакета данных), в поле адреса находится метка, представляющая собой признак коммутатора, которому адресовано сообщение. До и после метки находятся защитные интервалы t1и t2. В конце кадра может находиться защитный интервал t3. Каждому коммутатору соответствует индивидуальная битовая последовательность, а при отсутствии блока данных в адресе записывается последовательность бит «Метка пустого блока», формируя так называемый «пустой блок». 2 н.п. ф-лы, 2 ил.

Устройство относится к средствам построения цифровых сетей. Технический результат заключается в уменьшении числа электронно-оптических преобразований в системе, что уменьшает вносимые ими искажения. Сеть состоит из N последовательно соединенных узлов коммутации маршрутизации, которые могут замыкаться в кольцо, с разделением маршрутизации, которая производится в электронном виде в маршрутизаторах, и коммутации, которая производится в оптическом виде в фотонных коммутаторах. Применение данной волоконно-оптической сети позволит строить телекоммуникационные сети кольцевой и линейной топологии с оптической пакетной коммутацией, использующие существующую структуру сетей SDH путем замены терминальных мультиплексоров на узел коммутации и маршрутизации. 4 ил.

Группа изобретений относится к области лазерной локации, лазерной связи, а также к системам доставки лазерного излучения на движущийся объект. Технический результат состоит в повышении точности наведения и доставки лазерного излучения на движущийся объект. Для этого на движущийся объект посылают импульсы лазерного излучения с длиной волны λ на объект с формированием на нем теплового пятна, принимают излучение теплового пятна в спектральных интервалах ИК-диапазона, содержащих длину волны λ, ширину спектральных интервалов суживают в процессе приема излучения теплового пятна так, что спектральные границы интервалов сближаются с λ, а усредненное значение яркости изображения теплового пятна сохраняется примерно неизменным в процессе приема излучения, при этом лазерное излучение, отраженное от объекта, в процессе приема излучения теплового пятна селективно ослабляют, корректируют посылку импульсов лазерного излучения в направлении наиболее яркой точки теплового пятна, направление определяют по координатам точки максимальной яркости в изображении теплового пятна, которое получают после доставки на объект каждого импульса лазерного излучения. Устройство, реализующее способ, включает в себя источник лазерного излучения, связанный с блоком управления направлением пучка лазерного излучения, оптически сопряженные двухкоординатную оптическую систему наведения, телескоп, светоделитель, реотражатель, селективный ослабитель интенсивности лазерного излучения, сменный светофильтр из набора пропускающих светофильтров, входящего в блок светофильтров, объектив, матричный фотоприемник, чувствительный в ИК-диапазоне спектра, включающем длину волны лазерного излучения, связанный с блоком обработки изображения, связанным, в свою очередь, с измерителем амплитуды сигнала и центральным блоком управления, при этом блок светофильтров связан с измерителем амплитуды сигнала и выполнен с возможностью замены сменного светофильтра из набора светофильтров по командам от измерителя амплитуды сигнала, центральный блок управления связан с приводами и датчиками двухкоординатной оптической системы наведения, приводом телескопа, также с источником лазерного излучения, выполнен с возможностью заданий режимов их работы и имеет входы и выходы для связи с внешними устройствами. 2 н. и 3 з.п. ф-лы, 1 ил.
Наверх