Теплообменный элемент

Изобретение относится к теплообменным аппаратам и может быть использовано в энергетике и смежных с ней отраслях промышленности. Теплообменный элемент представляет собой спиралевидную гибкую трубу с периодически расположенными на ее внутренней поверхности турбулизаторами, предпочтительно, в виде кольцевых выступов. Радиус R спирали составляет 0,05≤D/R≤0,25, где D - внутренний диаметр трубы, R - радиус спирали, при этом внутренний диаметр d выступов составляет 0,85≤d/D≤0,98, а шаг t между ними - 0,45≤t/D≤0,6. Технический результат - увеличение эффективности теплообменного элемента. 2 ил.

 

Изобретение относится к теплообменным аппаратам и может быть использовано в энергетике и смежных с ней отраслях промышленности.

Известен теплообменный аппарат с теплообменным элементом из гладких труб с интенсификаторами в виде пружинных вставок из проволоки, установленных в проточной части канала (см. Ю.Г.Назмиев. Теплообмен при ламинарном течении жидкости в дискретно-шероховатых каналах. - М.: Энергоатомиздат, 1998 - 371 с.).

В известных интенсификаторах при малых шагах проволочной спирали нарушается тепловой контакт выступа (проволоки) с поверхностью трубы, что вызывает существенное падение тепловой эффективности проволочной спирали.

Известен способ интенсификации теплообмена путем выполнения периодических кольцевых выступов на внутренней поверхности теплообменного элемента. Сущность указанного метода заключается в следующем. На наружную поверхность трубы накаткой наносятся периодически расположенные кольцевые канавки, при этом на внутренней стороне трубы образуются кольцевые диафрагмы с плавной конфигурацией. Кольцевые диафрагмы и канавки турбулизируют поток в пристенном слое и обеспечивают интенсификацию теплообмена снаружи и внутри труб. При этом не увеличивается наружный диаметр труб, что позволяет использовать данные трубы в тесных пучках и не менять существующей технологии сборки теплообменных аппаратов. (Дрейцер Г.А., Щербаченко И.К. Исследование интенсификации теплообмена в трубах с кольцевыми турбулизаторами плавной конфигурации // «Ракетные и космические системы». Сборник тезисов статей студентов, аспирантов и молодых ученых. М.: Изд-во МАИ. 2000. С.96-100.)

Основными недостатками являются неоптимальные геометрические характеристики турбулизаторов, что, с одной стороны, ведет к загромождению тракта и росту его гидравлического сопротивления, с другой - не позволяет получить оптимальные условия теплообмена.

Известен теплообменный элемент, снабженный трубами с винтовой накаткой (Назмиев Ю.Г., Конахина И.А. Интенсификация теплообмена при течении вязкой жидкости в трубах с винтовой накаткой. Теплоэнергетика. 1993. №11. С.59-62).

Недостатком указанного теплообменного элемента является его повышенное гидравлическое сопротивление, снижение прочности на продольный разрыв, вызванный образованием концентраций напряжений при пластической деформации стенки теплообменного элемента в процессе накатки выступов.

Известен теплообменный элемент, представляющий собой трубу, при этом труба выполнена из проволоки в виде тугой пружины, витки которой жестко скреплены. (Патент РФ на полезную модель №62694, F28D 7/00, F28D 11/04 - прототип).

Указанный теплообменный элемент выполнен из проволоки заданного сечения, например круглого, из простой или легированной стали с заданным углом подъема винтовой линии с последующей сваркой стыков лазерным лучом или пайкой.

При течении жидкостей в проточной части указанных элементов существенно интенсифицируется процесс разрушения пристенного ламинарного подслоя, происходит образование вихревой структуры у входной кромки элемента, незатухающей вдоль всей проточной части пружинно-витого теплообменного элемента, что способствует увлечению теплогидродинамической эффективности предлагаемого теплообменного элемента.

Наличие спиральных выступов на наружной поверхности пружинно-витой трубы приводит к возникновению эффекта оребрения трубы с низкими накатанными однозаходными ребрами полукруглого сечения с их малым шагом, что тем самым увеличивает поверхность теплообмена.

Основными недостатками является сложность конструкции, связанная с наличием большого количества сварных/паяных швов на поверхности трубы, неоптимальные геометрические характеристики турбулизаторов, что, с одной стороны, ведет к загромождению тракта и росту его гидравлического сопротивления, с другой - не позволяет получить оптимальные условия теплообмена.

Задачей изобретения является интенсификация теплообмена при уменьшении поверхности теплообмена и сохранении тепловой производительности, при снижении мощности прокачки расходов теплоносителей.

Решение указанной задачи достигается тем, что в предложенном теплообменном элементе, представляющем собой спиралевидную гибкую трубу с периодически расположенными на ее внутренней поверхности турбулизаторами, предпочтительно, в виде кольцевых выступов, согласно изобретению радиус R спирали составляет 0,05≤D/R≤0,25, где D - внутренний диаметр трубы, R - радиус спирали, при этом внутренний диаметр d выступов составляет 0,85≤d/D≤0,98, а шаг t между ними - 0,45≤t/D≤0,6.

Нижнее значение указанного соотношения 0,05≤D/R≤0,25 выбрано, исходя из того, что при дальнейшем его уменьшении не происходит интенсификация теплообмена.

Верхнее значение указанного соотношения 0,05≤D/R≤0,25 выбрано, исходя из того, что при дальнейшем его увеличении происходит загромождение гидравлического тракта теплообменного элемента, что ведет к росту его гидравлического сопротивления.

Нижнее значение указанного соотношения 0,85≤d/D≤0,98 выбрано, исходя из того, что при дальнейшем его уменьшении не происходит интенсификация теплообмена.

Верхнее значение указанного соотношения 0,85≤d/D≤0,98 выбрано, исходя из того, что при дальнейшем его увеличении происходит загромождение гидравлического тракта теплообменного элемента, что ведет к росту его гидравлического сопротивления.

Верхнее значение указанного соотношения 0,45≤t/D≤0,6 выбрано, исходя из того, что при дальнейшем его увеличении практически не происходит интенсификация теплообмена, за счет того, что за счет достаточно большой длины между турбулизаторами поток успевает стабилизироваться.

Нижнее значение указанного соотношения 0,45≤t/D≤0,6 выбрано, исходя из того, что при дальнейшем его уменьшении происходит рост гидравлического сопротивления тракта теплообменного элемента.

Сущность изобретения иллюстрируется чертежами, где на фиг.1 показан общий вид теплообменного элемента, на фиг.2 - продольное сечение теплообменного элемента с указанием размеров.

На внутренней поверхности трубы 1 выполнены турбулизаторы 2 в виде спиральных выступов с учетом следующих соотношений: радиус R спирали составляет 0,05≤D/R≤0,25, где D - внутренний диаметр трубы, R - радиус спирали, при этом внутренний диаметр d выступов составляет 0,85≤d/D≤0,98, а шаг t между ними - 0,45≤t/D≤0,6.

Предложенный теплообменный элемент работает следующим образом.

Наличие турбулизаторов 2 на внутренней поверхности трубы 1 приводит к возникновению эффекта оребрения трубы 1 с низкими накатанными однозаходными ребрами полукруглого сечения с их малым шагом, что тем самым увеличивает поверхность теплообмена.

Выполнение турбулизаторов 2 на внутренней поверхности теплообменного элемента позволяет существенно интенсифицировать теплообмен за счет закрутки потока витыми элементами элемента и отрывных течений на выступах, выполненных в виде части окружности.

При течении жидкостей в проточной части предлагаемых элементов существенно интенсифицируется процесс разрушения пристенного ламинарного подслоя, происходит образование вихревой структуры у входной кромки элемента, незатухающей вдоль всей проточной части теплообменного элемента, что способствует увеличению теплогидродинамической эффективности предлагаемого теплообменного элемента, при этом за счет выполнения конструктивных элементов в указанных пределах практически не изменяется гидравлическое сопротивление тракта теплообменного элемента.

Проведенные автором и заявителем испытания предложенного способа подтвердили правильность заложенных конструкторско-технологических решений и предложенных критериев.

Теплообменный элемент, представляющий собой спиралевидную гибкую трубу с периодически расположенными на ее внутренней поверхности турбулизаторами, предпочтительно, в виде кольцевых выступов, характеризующийся тем, что радиус R спирали составляет 0,05≤D/R≤0,25, где D - внутренний диаметр трубы, R - радиус спирали, при этом внутренний диаметр d выступов составляет 0,85≤d/D≤0,98, а шаг t между ними - 0,45≤t/D≤0,6.



 

Похожие патенты:

Изобретение относится к области теплотехники и может быть использовано в теплообменниках для нагрева воды. Теплообменник изготовлен из одной заготовки из теплопроводного материала и содержит ребра, направляющие текучую среду и передающие теплоту между текучей средой и теплообменником; между указанными ребрами имеются поперечные ребра, которые выступают в направлении, по существу перпендикулярном указанным ребрам, на расстояние, которое меньше, чем расстояние между указанными ребрами, и в направлении по существу поперек направления движения текучей среды, при этом поперечные ребра расположены поочередно вблизи к или на расположенных напротив друг друга ребрах с тем, чтобы текучая среда протекала между ребрами и следовала извилистому пути между ребрами, при этом поперечное направление проходит по существу перпендикулярно указанным ребрам.

Изобретение относится к теплообменной технике. .

Изобретение относится к области теплотехники и может быть использовано в теплообменниках с трубкой и камерой для перемещения теплообменных сред. .

Изобретение относится к области энергетики и может быть использовано в химической, металлургической и газовой промышленности. .

Изобретение относится к теплотехнике и может быть использовано в парогенераторах при изготовлении труб парогенераторов. .

Изобретение относится к теплотехнике и предоставляет методы, приборы и системы, в которых имеет место частичное кипячение жидкости в миниканале или микроканале длиной, по крайней мере, 15 см.

Изобретение относится к транспортному машиностроению. .

Изобретение относится к области теплотехники и может быть использовано при создании теплообменных устройств. .
Изобретение относится к охлаждающим устройствам, в которых для прокачки теплоносителей используются осевые вентиляторы. .

Теплообменник для энергетических установок содержит винтообразные элементы из труб с двумя прямыми и двумя скругленными участками на каждом витке. При этом центры труб у прямых участков в поперечном сечении теплообменника располагаются на контуре многоугольника.

Изобретение относится к области теплоэнергетики и может быть использовано в качестве подогревателя сетевой и горячей воды. .

Изобретение относится к теплотехнике и может быть использовано в теплообменных аппаратах энергетических установок. .

Изобретение относится к области теплотехники и может быть использовано в установках для сжижения природного газа и, в частности, для изготовления змеевиковых теплообменников.

Изобретение относится к области теплотехники, а именно к змеевиковым теплообменникам, и может быть использовано в установках для сжижения природного газа. .

Изобретение относится к криогенной системе газоснабжения космического скафандра космонавта, осуществляющего, в частности, внекорабельную деятельность. .

Изобретение относится к теплотехнике, а именно к теплообменникам для холодильных аппаратов. .

Изобретение относится к теплотехнике и может быть использовано в качестве теплообменника в системе водоподготовки ядерной энергетической установки. .

Изобретение относится к энергетике и может быть использовано в системах продувки первого и второго контуров атомной электростанции. .

Изобретение относится к бытовой объединенной тепло-энергоустановке. .

Изобретение относится к теплотехнике и может использоваться в жидкостных теплообменниках. В жидкостно-жидкостном теплообменнике, соединяющем секции труб, закрепленных в герметичном корпусе и подключенных к раздельным коллекторам по контурам охлаждающих теплоносителей, в контуре змеевикообразного теплоносителя каждая секция труб выполнена в виде спиралеобразного конусного змеевика сходящегося и расходящегося типа, установленных попарно большими основаниями, обращенными друг к другу, и попарно меньшими основаниями, обращенными друг к другу, причем секции разделены поперечными перегородками в местах больших оснований змеевиков отверстиями кольцеобразных прорезей, в местах меньших оснований - центральными отверстиями в контуре охлаждающего теплоносителя. Технический результат - упрощение конструкции при повышении уровня стабильности теплопередачи температуры хладона. 3 ил.
Наверх