Способ определения смачиваемости мелкодисперсных порошков

Изобретение относится к области исследования характеристик порошковых материалов, в частности их смачиваемости. Целью изобретения является разработка более точного способа определения смачиваемости порошков. Сущность изобретения заключается в том, что в кювете с прозрачными плоско-параллельными стенками создают взвесь равномерно распределенных в воздухе частиц порошка диаметром не более 5 мкм с начальной концентрацией взвеси частиц, выбираемой из условия T0≤0.2, и измеряют спектральный коэффициент пропускания взвеси. Затем в кювету подают поток монодисперсных капель диаметром 0.8÷2.5 мм из равномерно распределенных по поперечному сечению кюветы капельниц в течение заданного промежутка времени tk, определяемого из условия Tk>2T0, и повторно измеряют спектральный коэффициент пропускания взвеси. Параметр смачиваемости порошка рассчитывается по формуле

β = 4 V ln [ ( ln 1 T 0 ) ( ln 1 T k ) 1 ] η π D 2 h n f t k

где V - объем кюветы; T0, Tk - спектральный коэффициент пропускания до и после осаждения капель; η - коэффициент захвата; D - диаметр капли; h - высота кюветы; n - количество капельниц; f - частота падения капель; tk - промежуток времени подачи капель в кювету. Техническим результатом является повышение точности определения характеристик смачиваемости порошковых материалов и обеспечение проведения измерений непосредственно в пылевоздушной смеси. 3 табл., 7 ил.

 

Изобретение относится к области исследования характеристик порошков, в частности их смачиваемости. Смачиваемость порошков играет важную роль в эффективности целого ряда технологических процессов - мокром пылеулавливании, пылеподавлении, флотации, фильтровании, комковании порошковых материалов, формировании керамических композиций, пропитке и т.д. [1].

Смачиваемость сажи, например, определяет процесс гранулирования и регламентирует выход сажи, используемой для резиновой промышленности, при производстве лаков и красок, а также при получении каучуков. Смачиваемость порошков угля является одним из показателей, определяющих эффективность процесса отделения минералов от пустых пород при обогащении угля [2] и технологии нейтрализации угольной пыли в шахтах [3].

Основной характеристикой смачиваемости плоской поверхности твердого тела жидкостью является краевой угол θ [4], который отсчитывается от касательной к свободной поверхности капли жидкости, проведенной в точке раздела трех фаз (жидкой, твердой, газообразной), в сторону жидкости (Фиг.1). Известны способы определения смачиваемости твердых материалов [1, 5], основанные на измерении краевого угла по профилю капли жидкости y(r), расположенной на плоской поверхности твердого тела, путем проведения касательной в точке трехфазного контакта R (Фиг.1). Здесь y(r) - расстояние точки A профиля капли от плоской подложки для радиальной координаты r.

Для порошковых материалов такой способ определения краевого угла затруднен из-за малости размеров частиц порошка (вплоть до субмикронных) и отсутствия, как правило, плоских поверхностей у частиц. Для порошков известен ряд косвенных способов определения характеристик смачиваемости, основанных на измерении величин, связанных с явлением смачиваемости.

Известен способ определения краевого угла для порошков, заключающийся в помещении капли жидкости на пластину с нанесенным на нее тонким слоем связующего раствора и монослоем порошка [1]. При этом порошок образует слой прилипших частиц. Этот способ обладает низкой точностью, вызванной шероховатостью поверхности за счет неоднородности дисперсного состава порошка и наличием промежутков между частицами.

Известны способы определения краевого угла порошковых материалов, основанные на измерении профиля капли y(r), помещенной на брикет, полученный прессованием порошка [6, 7]. К недостаткам этих способов относятся проблема получения стационарной капли, связанная с просачиванием жидкости в поры, и деформация частиц порошка в процессе прессования брикета, в результате которой возможно нарушение идентичности частиц порошка в брикете исходным частицам.

Известен способ определения смачиваемости порошковых материалов путем измерения скорости впитывания влаги слоем порошка при контакте его с влажной поверхность [8]. При этом по результатам измерений строят кривые кинетики смачивания слоя порошка; смачиваемость тем больше, чем больше объем поглощенной влаги. Данный способ дает лишь качественную оценку смачиваемости.

Наиболее близким по технической сущности является способ определения смачиваемости порошков методом пленочной флотации [9]. Этот способ основан на определении доли массы затонувших за определенное время частиц порошка, насыпанных тонким равномерным слоем на поверхность жидкости. Массовую долю осевших частиц порошка (смоченных частиц) или параметр смачиваемости определяют по формуле

β = m c m 100 % ,

где mc - масса осевших частиц;

m - масса исходной навески порошка.

Данный способ также позволяет получить лишь качественную оценку смачиваемости и разделить порошки на три группы - плохо смачиваемые (β<30%), средне смачиваемые (β=30÷80%) и хорошо смачиваемые (β>80%).

Техническим результатом настоящего изобретения является разработка более точного способа определения смачиваемости порошков, обеспечивающего проведение измерений непосредственно в пылевоздушной смеси.

Технический результат изобретения достигается тем, что разработан способ определения смачиваемости мелкодисперсных порошков, основанный на расчете доли смоченных частиц порошка. В кювете с прозрачными плоско-параллельными стенками создают взвесь равномерно распределенных частиц порошка с максимальным диаметром не более 5 мкм и измеряют спектральный коэффициент пропускания зондирующего лазерного излучения взвеси, в кювету подают поток монодисперсных капель диаметром 0.8÷2.5 мм из равномерно распределенных по поперечному сечению кюветы капельниц и повторно измеряют спектральный коэффициент пропускания, причем начальную концентрацию частиц порошка выбирают из условия T0≤0.2, промежуток времени подачи капель определяют из условия Tk>2T0. Параметр смачиваемости β рассчитывают по формуле

β = 4 V ln [ ( ln 1 T 0 ) ( ln 1 T k ) 1 ] η π D 2 h n f t k ,

где V - объем кюветы;

T0, Tk - спектральный коэффициент пропускания до и после осаждения капель;

η = ( S t k S t k + 0.125 ) 2 - коэффициент захвата;

S t k = ρ p D 20 u 18 μ D - осредненное число Стокса;

ρp - плотность частиц порошка;

D20 - среднеквадратичный диаметр частиц порошка;

u - скорость гравитационного осаждения капли;

µ - коэффициент динамической вязкости воздуха;

D - диаметр капли;

h - высота кюветы;

n - количество капельниц;

f - частота падения капель;

tk - промежуток времени подачи капель в кювету.

Рассмотрим обоснование предлагаемого способа. В качестве характеристики смачиваемости примем массовую долю осевших на одиночной капле частиц порошка (смоченных частиц)

β = m c m ,                                                                               ( 1 )

где mc - масса смоченных частиц порошка (осевших на каплю); m - масса частиц порошка, столкнувшихся с каплей в процессе ее гравитационного осаждения в кювете.

При осаждении капли жидкости диаметром D в кювете высотой h величина m рассчитывается по формуле (Фиг.2)

m = π D 2 4 h c η ,

где c - массовая концентрация частиц порошка в кювете;

η≤1 - коэффициент захвата.

Масса смоченных частиц порошка с учетом (1) равна

m c = β m = β π D 2 4 h c η .                                                        ( 2 )

При анализе осаждения частиц порошка на движущуюся каплю необходимо учитывать искривление линий тока запыленного потока пылевоздушной среды (Фиг.2). Коэффициент захвата η - это отношение числа частиц, соударяющихся с препятствием (каплей), к числу частиц, которые соударились бы, если линии тока не отклонились бы препятствием. В результате этого эффекта не все частицы, расположенные в сечении S=nD2/4 (миделевом сечении капли), столкнутся с ней. Доля столкнувшихся частиц определяется (для потенциального обтекания) формулой Лэнгмюра-Блоджетта [10]

η = ( S t k S t k + 0.125 ) 2 ,                                                            ( 3 )

где Stk - число Стокса.

Для монодисперсных частиц порошка диаметром Dp число Стокса определяется выражением

S t k = ρ p D p 2 u 18 μ D .

Поскольку взвесь порошка представляет собой совокупность полидисперсных частиц, то необходимо использовать осредненное число Стокса [10]:

S t k = 0 ρ p D p 2 ϕ ( D p ) u 18 μ D d D p = ρ p u 18 μ D 0 D p 2 ϕ ( D p ) d D p = ρ p u 18 μ D D 20 ,

где φ(Dp) - дифференциальная функция счетного распределения частиц порошка по размерам;

D 20 = 0 D p 2 ϕ ( D p ) d D p - среднеквадратичный диаметр частиц порошка.

Для подачи потока монодисперсных капель в верхней части кюветы (Фиг.3) установлены n капельниц, расположенных равномерно в поперечном сечении кюветы. Все капельницы образуют капли одинакового диаметра D с частотой подачи f (количество образующихся капель в секунду). Таким образом, за промежуток времени t через кювету пройдет N капель:

N=nft.

Поскольку масса частиц порошка, осевших на одной капле, определяется формулой (2), то для N капель суммарная масса смоченных частиц равна

M c = β π D 2 4 h c N η = β π D 2 4 h c n f t η .                                                    ( 4 )

Для определения параметра смачиваемости β необходимо учесть изменение во времени массовой концентрации частиц порошка в кювете, так как некоторая доля частиц осаждается на каплях. Для этого запишем уравнение (4)в виде

d M c ( t ) = β π D 2 4 h c ( t ) n f η d t ,                                                    ( 5 )

где dMc(t) - масса смоченных частиц за время dt.

Смоченные частицы вместе с каплями осаждаются на дно кюветы, поэтому уменьшение суммарной массы частиц M(t), взвешенных в кювете, равно

d M ( t ) = d M c ( t ) .                                                                       ( 6 )

С учетом (6) уравнение (5) примет вид

d M ( t ) = β π D 2 4 h c ( t ) n f η d t .

Разделив это уравнение почленно на объем кюветы V, получим:

d c ( t ) = β B c ( t ) d t ,                                                                       ( 7 )

где

B = π D 2 4 V h n f η = c o n s t .                                                               ( 8 )

Уравнение (7) представим в виде

d c ( t ) c ( t ) = β B d t .                                                                            ( 9 )

Интегрируя (9) в пределах от t=0 до t, получим:

ln [ c ( t ) c 0 ] = β B t .

Отсюда следует, что

c ( t ) = c 0 exp ( β B t ) ,                                                        ( 10 )

где c(t) - массовая концентрация частиц порошка в произвольный момент времени t>0;

c0 - начальная массовая концентрация частиц порошка.

Из уравнения (10) можно определить параметр смачиваемости β:

β = ln [ c 0 / c ( t ) ] B t .                                                                   ( 11 )

Подставляя в (11) выражение для В из уравнения (8), получим:

β = 4 V ln [ c 0 / c k ] π D 2 h n f t k η ,                                                                    ( 12 ) ,

где ck - концентрация в момент времени tk, соответствующий прекращению подачи капель.

Для определения параметра смачиваемости β по формуле (12) необходимо определить массовую концентрацию частиц порошка в кювете в начальный момент времени c0 (начало подачи капель) и после осаждения капель ck.

Для этого равномерно распределенную в воздухе взвесь частиц порошка создают в кювете с плоско-параллельными стенками из прозрачного материала, например, оптического стекла (Фиг.3). С помощью источника зондирующего излучения (лазера) и приемника излучения измеряют спектральный коэффициент пропускания в кювете

T = I I 0 ,

где I - интенсивность прошедшего через взвесь частиц излучения;

I0 - интенсивность излучения входящего пучка.

В соответствии с законом Бугера [11]

T=exp(-τ),

где τ=Kcl - спектральная оптическая плотность слоя частиц порошка;

K - спектральный показатель ослабления, который характеризует ослабление света единичным объемом среды, содержащим независимо рассевающие частицы;

l - ширина кюветы (толщина слоя частиц порошка).

Для слоя полидиснерсных частиц с функцией распределения φ(Dp) показатель ослабления равен [11]

K = 3 c 2 ρ p 0 Q ( α , m ¯ ) D p 2 ϕ ( D p ) d D p 0 D p 3 ϕ ( D p ) d D p ,

где

Q ( α , m ¯ ) - фактор эффективности ослабления;

α=πDp/λ - безразмерный параметр дифракции (параметр Ми);

λ - длина волны зондирующего излучения;

m ¯ - комплексный показатель преломления материала частиц.

В предположении, что в процессе осаждения частиц порошка на каплю функция распределения φ(Dp) не изменяется, можно записать

c 0 c k = τ 0 τ k = ln ( 1 T 0 ) ln ( 1 T 0 ) ,                                                                     ( 13 )

где τ0, τk - спектральная оптическая плотность слоя частиц порошка до и после осаждения капель соответственно.

Подставляя (13) в (12), получим рабочую формулу для расчета β

β = 4 V ln [ ( ln 1 T 0 ) ( ln 1 T k ) 1 ] π D 2 h n f t k η .                                                    ( 14 )

Полученный положительный эффект изобретения связан со следующими факторами:

1. Измерение смачиваемости частиц порошка проводится непосредственно в пылевоздушной смеси. В процессе измерений порошковые материалы не подвергаются механическим воздействиям (брикетирование, полировка и т.д.).

2. Выбор диаметра капли в диапазоне 0.8÷2.5 мм связан с тем, что при осаждении в кювете капля должна сохранять сферическую форму. Согласно экспериментальным данным [12, 13] капля не деформируется и сохраняет сферическую форму при значениях числа Вебера We<0.15. В работе [13] экспериментальные данные по деформации капли аппроксимированы выражением

ψ = exp ( 0.03 W e 1.5 ) 100 % ,                                                           ( 15 )

где ψ - мера деформации.

Скорость стационарного осаждения капель воды определялась путем решения уравнения гравитационного осаждения сферической частицы для значения коэффициента сопротивления C D = 24 / Re + 4 / Re 3 [10], где Re=ρuD/µ - число Рейнольдса; ρ - плотность воздуха; µ - коэффициент динамической вязкости воздуха.

Число Вебера рассчитывалось по формуле [10] We=ρu2D/σ, где σ - коэффициент поверхностного натяжения жидкости. Расчеты проводились для следующих значений параметров: ρ=1.205 кг/м3; ρl=1000 кг/м3 - плотность воды; µ=1.808·10-5 кг/(м·с). Результаты расчетов (таблица 1) показали, что для капель воды диаметром 0.8 мм и 2.5 мм при осаждении в воздухе значение числа Вебера составляет We=0.13 и We=2.5 соответственно. Согласно (15) при данных значениях числа Вебера мера деформации формы капли не превышает ψ≈0.1÷5%. Использование капелл меньшего диаметра связано с технической проблемой получения мелкодисперсных капель. В таблице 1 приведены также экспериментально определенные значения скорости осаждения капель воды в воздухе при давлении p=100 кПа и температуре T=20°C [14], которые хорошо согласуются с расчетными данными.

Таблица 1
Параметры осаждения капли воды в воздухе
D, мм 0.1 0.5 0.8 1 1.5 2 2.5 3
u, м/с 0.25 2.01 3.15 3.9 5.5 7 7.8 8.6
uэксп, м/с 0.27 - - 4.03 - 6.49 - 8.06
We 10-4 0.03 0.13 0.25 0.75 1.6 2.5 3.7

3. Выбор диаметра частиц порошка Dp≤5 мкм связан с тем, что при Dp>5 мкм время осаждения частиц мало и частицы быстро осаждаются на дно измерительного объема. Результаты проведенных расчетов для скорости и времени осаждения частиц угольного порошка приведены в таблице 2.

Скорость и время осаждения частиц угля рассчитывались по формулам для Стоксовского режима [10]

u p = g ρ p D p 2 18 μ , tp=h/up,

где h=0.2 м - высота измерительного объема;

ρp=1200 кг/м3 - плотность угольных частиц.

При значении диаметра частиц Dp=5 мкм время их осаждения составляет более 2 мин. Этого времени достаточно для измерения коэффициента пропускания до и после подачи совокупности капель.

4. Выбор начального коэффициента пропускания T0≤0.2 связан с тем, что погрешность расчета оптической плотности τ тем меньше, чем больше чувствительность τ от коэффициента пропускания. На Фиг.4 приведены зависимости τ(T) и d τ d T ( T ) , из которых видно, что при значении T0≤0.2 наблюдается большая чувствительность оптической плотности от коэффициента пропускания.

5. Выбор Tk>2T0 определяется из условия максимальной точности измерения коэффициента пропускания.

Таблица 2
Параметры осаждения частиц угольного порошка в воздухе
Dp=20 мкм
Stk 5.8 5.7 5.4 5.2 4.6
η 0.96 0.96 0.96 0.95 0.95
tp, с 14 14 14 14 14
Dp=10 мкм
Stk 1.5 1.4 1.4 1.3 1.2
η 0.85 0.85 0.84 0.83 0.81
tp, с 55 55 55 55 55
Dp=5 мкм
Stk 0.36 0.36 0.34 0.32 0.29
η 0.55 0.55 0.53 0.52 0.49
tp, с 221 221 221 221 221
Dp=4 мкм
Stk 0.23 0.23 0.22 0.21 0.18
η 0.42 0.42 0.40 0.39 0.35
tp, с 346 346 346 346 346
Dp=3 мкм
Stk 0.13 0.13 0.12 0.12 0.10
η 0.26 0.26 0.24 0.23 0.21
tp, с 615 615 615 615 615
Dp=2 мкм
Stk 0.06 0.06 0.05 0.05 0.05
η 0.1 0.01 0.09 0.09 0.07
tp, мин 23 L23 L23 23 23
Dp=1 мкм
Stk CL02| 0.01 0.01 0.01 0.01
η 0.01 0.01 0.009 0.008 0.007
tp, мин 92 92 92 92 92

Сущность изобретения поясняется чертежами и графиками.

На Фиг.1 приведена равновесная форма капли, помещенной на горизонтальную твердую поверхность.

На Фиг.2 приведена схема осаждения капли.

На Фиг.3 приведена схема экспериментальной установки для определения смачиваемости порошковых материалов.

На Фиг.4 приведена зависимости оптической плотности τ и ее производной dτ/dT от коэффициента пропускания.

На Фиг.5 приведена дифференциальная функция счетного распределения частиц угольного порошка по размерам.

На Фиг.6 приведена зависимость концентрации частиц угольной пыли с распределением (16) от времени подачи капель для значения параметра смачиваемости β=0.8, рассчитанная по формуле (10).

На Фиг.7 приведена зависимость отношения оптических плотностей τ0 и τk частиц с распределением (16) от времени подачи капель для значения параметра смачиваемости β=0.8, рассчитанная по формуле (13).

Пример реализации заявляемого способа (Фиг.3). В кювете 1 с прозрачными плоско-параллельными стенками создают равномерную взвесь 2 частиц порошка. С помощью лазера 3 и приемника излучения 4 измеряют спектральный коэффициент пропускания T0 взвеси частиц. Из системы подачи капель 5 в кювету поступает поток капель в течение некоторого промежутка времени tk. После чего повторно измеряют спектральный коэффициент пропускания Tk и определяют параметр смачиваемости частиц порошка по формуле (14).

Эффективность заявляемого способа, схема которого приведена на Фиг.2, определяли проведением прямых расчетов изменения концентрации и оптической плотности среды на примере частиц угольной пыли при их осаждении в воздухе при подаче капель воды для значений параметров, приведенных в таблице 3. Функция распределения угольных частиц, полученная с помощью установки Mastersizer 2000 (MALVERN, Великобритания), приведена на Фиг.5. Среднеквадратичный диаметр частиц равен D20=1.9 мкм. Полученная функция аппроксимирована гамма-распределением

ϕ ( D p ) = 15.9 D p 5.5 exp ( 3.6 D p ) ,                                                   ( 16 )

где [φ(Dp)]=мкм-1; [Dp]=мкм.

Таблица 3
Значения параметров для расчета β
ρр=1200 кг/м3 µ=1.808·10-5 кг/м·с n=50 f=2c-1
ρ=1.205 кг/м3 h=0.2 м V=0.002 м3 η=0.53
ρl=1000 кг/м3 D=l.5 мм c0=1000 кг/м3

Результаты расчетов представлены на Фиг.6, 7. На Фиг.6 приведена зависимость концентрации взвеси частиц угольной пыли от времени подачи капель для значения параметра смачиваемости β=0.8. На Фиг.7 приведена зависимость оптической плотности от времени подачи капель в кювету при значении β=0.8. Проверку адекватности способа можно провести, используя Фиг.6 и Фиг.7.

Выбираем промежуток времени подачи капель tk=100 c, при котором заметно изменение начальной концентрации взвеси и выполняется условие Tk>2Т0 для спектрального коэффициента пропускания (Фиг.6, 7). При значении времени tk=100 c концентрация взвеси и отношение оптических плотностей равны ck=470 кг/м3, τ0k=2.1 соответственно.

Подставляем найденные значения в конечную формулу (14) для расчета параметра β

β = 4 0.002 ln ( 2.1 ) 3.14 ( 1.5 10 3 ) 2 0.2 50 2 100 0.53 = 0.8 .

Как видно из приведенного примера, заданное и рассчитанное значения параметра смачиваемости совпадают (β=0.8). Аналогичные результаты получаются и для любого значения параметра смачиваемости в диапазоне β=0÷1.0. Таким образом, предлагаемый способ позволяет повысить точность определения характеристик смачиваемости мелкодисперсных порошков и проводить измерение непосредственно в пылевоздушной смеси. Данный способ может найти применение для исследований широкого класса органических и неорганических порошковых материалов.

Литература:

1. Зимон А.Д. Адгезия жидкости и смачивание. - М.: Химия, 1974. - 416 с.

2. Годэн A.M. Основы обогащения полезных ископаемых. - М.: Государственное научно-техническое издательство литературы по черной и цветной металлургии, 1946. - 535 с.

3. Пирумов А.И. Обеспыливание воздуха. - М.: Стройиздат, 1981. - 296 с.

4. Де Жен П.Ж. Смачивание: статика и динамика // Успехи физических наук. - 1987. - Т.151. - Вып.4. - С.619-678.

5. Пат. РФ 2460987, МПК G01N 13/02. Способ определения коэффициента поверхностного натяжения и угля смачивания / М.А.Пономарева, В.А.Якутенок - №2011122481/28; заявл. 02.06.2011; опубл. 10.09.2012.

6. Kossen N.W., Heertjes P.M. The determination of the contact angle for systems with powder // Chemical Engineering Science. - 1965. - V.20. - №6. - P.593-599.

7. Пат. РФ 2457464, МПК G01N 13/00. Способ определения смачиваемости порошковых материалов / В.А. Архипов, Д.Ю. Палеев, В.Ф. Трофимов, А.С. Усанина. - №2011107818; заявл. 28.02.2011; опубл. 27.07.2012.

8. Коузов П.А., Скрябина Л.Я. Методы определения физико-химических свойств промышленных пылей. - Л.: Химия, 1983. - 143 с.

9. Биргер М.И., Вальдберг А.Ю., Мягков Б.И. Справочник по пыле- и золоулавливанию. - М.: Энергоатомиздат, 1983. - 312 с.

10. Шиляев М.И., Шиляев A.M. Аэродинамика и тепломассообмен газодисперсных потоков. - Томск.: Издательство Томского государственного архитектурно-строительного университета, 2003. - 272 с.

11. Архипов В.А., Бондарчук С.С.Оптические методы диагностики гетерогенной плазмы продуктов сгорания: учеб. пособие. - Томск: Томский государственный университет, 2010. - 265 с.

12. Гонор А.Л., Ривкинд В.Я. Динамика капли. Итоги науки и техники. Сер. Механика жидкости и газа. - М.: ВИНИТИ. 1982. Т.17. - С.86-159.

13. Раушенбах Б.В., Белый С.А., Беспалов И.В., Бородачев В.Я., Волынский М.С., Прудников А.Г. Физические основы рабочего процесса в камерах сгорания воздушно-реактивных двигателей. - М.: Машиностроение, 1964. - 525 с.

14. Матвеев Л.Т. Физика атмосферы. - СПб.: Гидрометеоиздат, 2000. - 751 с.

Способ определения смачиваемости мелкодисперсных порошков, основанный на расчете доли смоченных частиц порошка, отличающийся тем, что в кювете с прозрачными плоско-параллельными стенками создают взвесь равномерно распределенных в воздухе частиц порошка с максимальным диаметром не более 5 мкм и измеряют спектральный коэффициент пропускания зондирующего лазерного излучения взвеси, в кювету подают поток монодисперсных капель диаметром 0.8÷2.5 мм из равномерно распределенных по поперечному сечению кюветы капельниц и повторно измеряют спектральный коэффициент пропускания, причем начальную концентрацию частиц порошка выбирают из условия T0≤0.2, промежуток времени подачи капель определяют из условия Tk>2T0, a параметр смачиваемости рассчитывают по формуле

где V - объем кюветы;
T0, Tk - спектральный коэффициент пропускания до и после осаждения капель;
- коэффициент захвата;

ρp - плотность частиц порошка;
D20 - среднеквадратичный диаметр частиц порошка;
u - скорость гравитационного осаждения капли;
µ - коэффициент динамической вязкости воздуха;
D -диаметр капли;
h - высота кюветы;
n - количество капельниц;
f - частота падения капель;
tk - промежуток времени подачи капель в кювету.



 

Похожие патенты:

Изобретения относятся к области определения значений параметров, характеризующих физико-химические свойства материалов, например коэффициентов диффузии, по величине электропроводности, и могут найти применение в порошковой металлургии, в изучении процессов самораспространяющегося высокотемпературного синтеза, в материаловедении и физике твердого тела.

Изобретение относится к методам металлографического анализа образцов стали и определения трехмерной топографии поверхности и ее структуры при помощи сканирующей зондовой микроскопии (СЗМ).

Изобретение относится к нанотехнологиям и методам проведения металлографического анализа образцов и определения трехмерной топографии их поверхности и структуры с помощью атомно-силовой микроскопии при разрешающей способности в нанометровом диапазоне.

Изобретение относится к области малых энергий в химии и может быть использовано при разработке нанотехнологий в разных отраслях промышленности: химической, легкой, кожевенной и меховой, пищевой, медицинской, строительной индустрии, а также в разных областях знаний.

Изобретение относится к области оценки поверхностных свойств материалов и может быть использовано для разработки энергетических нанотехнологий в различных отраслях промышленности: химической, кожевенной и меховой, легкой, пищевой, медицинской, строительной индустрии и т.д.

Изобретение относится к области исследования смачиваемости поверхностей применительно к различным отраслям промышленности. Для определения смачиваемости поверхности исследуемого материала по меньшей мере один образец исследуемого материала помещают в по меньшей мере одну герметичную ячейку калориметра.

Изобретение относится к измерительной технике и может быть использовано в строительных материалах и изделиях, а также в пищевой, химической и других отраслях промышленности.

Изобретение относится к электрохимии и может быть использовано для исследований межфазных границ между электропроводящими твердыми электродами, находящимися в контакте с расплавленными, преимущественно высокотемпературными электролитами.

Изобретение относится к области исследования свойств взаимодействия поверхности с флюидами и может быть использовано для определения теплоты адсорбции и смачивания поверхности. Заявлена измерительная ячейка калориметра, состоящая из изолированных друг от друга верхней и нижней частей, сообщающихся между собой посредством подвижного разъемного герметичного соединения. Ячейка снабжена двумя коаксиально расположенными трубками, выполненными с возможностью независимого подключения к внешним устройствам. Внешняя трубка подсоединена к верхней части ячейки, а внутренняя трубка подсоединена к нижней части ячейки через указанное подвижное разъемное герметичное соединение и выполнена подвижной. Технический результат - расширение функциональных возможностей устройства. 1 н. и 7 з.п. ф-лы, 10 ил.

Изобретение относится к области определения физико-химических свойств поверхностей и может быть использовано для оценки степени гидрофильности хвои, предварительно обработанной водяным паром. Способ определения краевого угла смачивания хвои, предварительно обработанной водяным паром, состоит в нанесении на испытуемую поверхность дозированной капли жидкости, измерении ее размеров и определения краевого угла смачивания по формуле Θ = a r c t g ( − 2 L ⋅ D 2 − d 2 d 2 ) . Техническим результатом является упрощение повышения точности измерения величины краевого угла смачивания хвои, предварительно обработанной водяным паром.1 ил.

Изобретение относится к области оценки свойств дисперсных материалов и может быть использовано для разработки энергетических нанотехнологий в разных отраслях промышленности и областях знаний, а также для разработки и управления самоорганизующихся систем, открывает возможности для изучения новых принципов построения технических устройств. Для установления дальности перемещения движущихся объектов, направления их перемещения, определения количества и размеров частиц в секторах ограничительной окружности используют объект-препарат из бумаги с нанесенной на нее ограничительной линией шириной 5-6 мм в виде окружности с помеченным центром, направлением расположения видеокамеры и разбитой на сектора тонкими линиями окружности из гидрофобного материала. При этом в помеченном центре ограничительной окружности размещают шаблон, в который помещают дисперсный материал. Затем в ограничительную окружность вносят изучаемую жидкость в количестве, обеспечивающем толщину слоя жидкости над изучаемым материалом. Далее подводят его к центру капилляр на высоте 1-6 мм, содержащий поверхностно-активное вещество, включают видеокамеру на фиксирование изменений поверхности. После завершения процесса перемещения самоорганизующихся объектов на поверхности изучаемого материала видеокамеру отключают, пластину с объектом-препаратом и изучаемым материалом внутри шаблона оставляют высыхать, не сливая воду с поверхности объекта-препарата. Затем с помощью микроскопа определяют в каждом секторе количество частиц и их размеры возле ограничительной окружности, по которым определяют, в каком направлении объекты преимущественно перемещались и примерный состав движущихся объектов. Техническим результатом является обеспечение возможности установления дальности перемещения движущихся объектов, направления их перемещения, определения количества и размеров частиц в секторах ограничительной окружности. 9 ил., 4 пр.

Изобретение относится к способам определения аэрационной способности пенообразователей, используемых в технологии пенобетонов, и может быть использовано для оценки эффективности использования пенообразующих добавок, корректировки рецептуры пенобетонных смесей. Способ определения аэрационного потенциала пенообразователей, используемых в технологии пенобетонов, включает приготовление рабочего раствора пенообразователя, измерение температуры рабочего раствора пенообразователя и приготовление пены. Также способ включает отбор проб пены, выкладывание проб пены в предварительно взвешенные емкости известного объема и определение физико-механических характеристик пены. Причем перед приготовлением рабочего раствора пенообразователя все исходные компоненты выдерживаются в испытательном помещении при стандартных условиях до выравнивания температуры, а приготовление пены осуществляют в турбулентном бетоносмесителе в течение до 5 минут начиная с малой концентрации раствора. При этом объем раствора подбирают в зависимости от конструкционных особенностей смесителя и кратности пенообразователя, а отбор проб производят из верхнего загрузочного и нижнего выгрузочного отверстий бетоносмесителя в период до 30 секунд после приготовления пены. В качестве физико-механической характеристики определяется плотность пены для каждой из проб путем взвешивания фиксированного объема пены в предварительно взвешенных емкостях и деления массы пены на ее объем. Затем определяется среднее значение плотности пены, полученной из рабочего раствора пенообразователя с заданной концентрацией пенообразователя в воде, определяется температура пены, на основании предварительно установленного значения средней плотности пены, а также известных плотностей и дозировок исходных компонентов определяется показатель аэрационного потенциала, который вычисляется по формуле: A = m р − р а m п о ⋅ ( 1 ρ п − 1 ρ р − р а ) , где А - показатель аэрационного потенциала, л/кг; ρп - плотность пены, кг/л; ρр-ра - плотность рабочего раствора пенообразователя в воде, кг/л; mр-ра - масса рабочего раствора пенообразователя в воде, г; mпо - масса пенообразователя, г. Техническим результатом является расширение числа критериев оценки качества пенообразователей. 5 ил.

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса в капиллярно-пористых материалах для определения коэффициентов диффузии влаги в строительных материалах и конструкциях, а также в пищевой, химической и других отраслях промышленности. Способ определения коэффициента диффузии влаги заключается в создании в исследуемом образце равномерного начального влагосодержания, приведении плоской поверхности образца в контакт со средой с отличным от образца влагосодержанием. Также способ включает измерение изменения во времени сигнала гальванического преобразователя, определение времени достижения максимума на кривой изменения ЭДС гальванического преобразователя и расчет коэффициента диффузии. При этом производят импульсное увлажнение плоской поверхности исследуемого образца по прямой линии, после чего гидроизолируют эту поверхность, располагают электроды гальванического преобразователя в двух точках этой плоской поверхности на линии, параллельной линии нанесения импульсного увлажнения и на заданном расстоянии от нее, и рассчитывают искомый коэффициент по формуле: D = r 0 2 / ( 4 τ max ) , где τmax - время достижения максимума на кривой изменения ЭДС гальванического преобразователя, r0 - расстояние между линией импульсного увлажнения и линией расположения электродов гальванического преобразователя. Техническим результатом является повышение оперативности эксперимента и обеспечение возможности неразрушающего контроля коэффициента диффузии в массивных изделиях из капиллярно-пористых материалов. 1 ил., 1 табл.

Изобретение относится к области поверхностных явлений и может быть использовано для оценки свойств жидкостей, различных поверхностей и свойств веществ в разных отраслях промышленности и в том числе в нанотехнологиях и порошковой металлургии. Устройство содержит светонепроницаемый кожух, состоящий из вертикально установленных боковых 6, 7, передней 8 и задней 9 стенок ограждения, а также верхней 10 стенки ограждения. Внутри на боковой стенке 6 ограждения установлен осветитель рассеянного света 12 с установленной на нем индикаторной сеткой 13, а на другой боковой стенке ограждения установлена кинокамера или видеокамера 14 с возможностью вертикального перемещения. На задней стенке 9 ограждения шарнирно закреплена вертикально расположенная ось 18, на которой установлен узел 15 для нанесения на объект-препарат 4 или кювету с бортиком поверхностно-активного вещества, выполненный в виде капельницы 16 с капилляром 17 и оснащенный механизмом 19 двухкоординатного перемещения с возможностью горизонтального смещения для установки капилляра 17 капельницы 16 в центр объекта-препарата 4 или кюветы с бортиком и с возможностью вертикального измерительного смещения края капилляра 17 капельницы 16 для внесения поверхностно-активного вещества на изучаемую поверхность. На задней 9 стенке ограждения установлена автоматическая бюретка 20 для заполнения ограничительной фигуры объекта-препарата 4 или кюветы с бортиком слоем жидкости известной толщины. На верхней 10 стенке ограждения выполнено отверстие 23, края которого соединены со светонепроницаемым рукавом 24, а отверстие 23 расположено над ручкой 25 для вертикального перемещения капилляра 17 капельницы 16. На передней стенке 8 ограждения выполнена крышка 22. Вертикально расположенные две боковые 6, 7, задняя 9 и передняя 8 стенки ограждения светонепроницаемого кожуха в нижней части имеют уплотнения 21, выполненные из мягкого упругого светонепроницаемого материала, например резины или пластических масс. Техническим результатом является повышение точности изображения изучаемой поверхности, упрощение конструкции. 1 з.п. ф-лы, 5 ил., 1 табл.

Изобретение относится к гироскопическим устройствам. Может быть преимущественно использовано для исследования поверхностных явлений смачивания и растекания при нагреве в вакууме и инертной или активной газовых средах. Самогоризонтируемое устройство включает корпус 1, выполненный из керамики, молибдена или стали, в верхней части которого установлен промежуточный элемент 2, выполненный из такого же материала, что и корпус 1 или отличающийся от него, закрепленный двумя стержнями 3 к стенке корпуса 1, самогоризонтируемый столик 4, выполненный из такого же материала, что и корпус 1 или отличающийся от него, в нижней части которого расположен массивный груз 5, который может быть выполнен съемным и соединяться через соединительный стержень 6; самогоризонтируемый столик 4 закреплен двумя стержнями 7 в промежуточном элементе 2, причем стержни 3 и 7 расположены взаимно - перпендикулярно друг другу. В нижней части корпуса 1 расположены упоры 8 для фиксирования массивного груза 5. Техническим результатом является то, что устройство позволяет проводить исследования при размещении его в печи с контролируемой атмосферой и в печи с воздушным нагревом. 8 з.п. ф-лы, 2 ил.

Изобретение относится к микробиологии и может быть использовано для количественной оценки способности микроорганизмов к биопленкообразованию на различных биотических и абиотических поверхностях. Способ заключается в том, что в подготовленные для посева стерильные чашки Петри с питательным бульоном и двумя агаровыми пластинками вносят микробную взвесь. Чашки Петри с посевами инкубируют при 37°C. После инкубации пластинки с выросшей биопленкой вынимают из культуральной жидкости, отмывают стерильной дистиллированной водой от планктонных клеток и высушивают в термостате. Проводят замеры углов смачивания через 3 и 9 ч. По изменению краевого угла смачивания судят об удельной скорости образования биопленки. При этом рассчитывают удельную скорость биопленкообразования по формуле: μ b = 1 t 2 − t 1 l n ( θ 1 θ 2 ) , где µb - удельная скорость биопленкообразования, ч-1; t1 и t2 - продолжительность инкубации, ч (3 и 9 ч); θ1,2 - краевые углы смачивания (°), измеренные после инкубации в течение 3 и 9 ч. Изобретение позволяет ускорить и упростить процесс количественной оценки биопленкообразования микроорганизмов и повысить чувствительность метода. 3 табл.

Изобретение направлено на высокоточное измерение коэффициентов диффузии горючих газов в азоте или иных инертных газах в широком температурном диапазоне посредством кислородпроводящего твердого электролита. Способ заключается в пропускании электрического тока через электрохимическую ячейку, величину которого изменяют до получения предельного тока, протекающего через границу раздела фаз, а также вычислении коэффициента диффузии. При этом в поток газа с известным содержанием горючего газа, находящегося в смеси с азотом, помещают электрохимическую ячейку с полостью, образованной герметично соединенными между собой двумя дисками из кислородпроводящего твердого электролита, на противоположных поверхностях одного из дисков расположена пара электродов, и капилляром, соединяющим полость с потоком газа. Затем к электродам подают напряжение постоянного тока в пределах 300÷500 мВ с подачей положительного полюса на электрод, находящийся внутри ячейки, и по величине возникающего при этом предельного тока рассчитывают коэффициент диффузии горючего газа в азоте. Техническим результатом является возможность измерения коэффициентов диффузии горючих газов в азоте в широком температурном диапазоне посредством хорошо изученного кислородпроводящего твердого электролита, а также повышение точности. 1 ил.

Использование: для исследования процессов массопереноса и для определения коэффициентов диффузии растворителей в изделиях из ортотропных капиллярно-пористых материалов в строительной, химической и других отраслях промышленности. Сущность изобретения заключается в том, что способ определения коэффициента диффузии растворителей в массивных изделиях из ортотропных капиллярно-пористых материалов заключается в создании в исследуемом образце равномерного начального содержания распределенного в твердой фазе растворителя, приведении плоской поверхности образца в контакт с источником дозы растворителя, измерении изменения во времени сигнала гальванического преобразователя, определении времени достижения максимума на кривой изменения ЭДС гальванического преобразователя и расчете коэффициента диффузии, импульсное воздействие на плоскую поверхность исследуемого изделия дозой растворителя осуществляют по прямой линии в заданном направлении ортотропного материала, выполняют электроды гальванического преобразователя в виде прямолинейных отрезков и располагают их с обеих сторон линии импульсного воздействия на прямых, параллельных линии импульсного воздействия и расположенных на одинаковом заданном расстоянии от нее, и рассчитывают искомый коэффициент по заданной формуле. Технический результат: обеспечение возможности повышения точности контроля и определения коэффициента диффузии в различных направлениях ортотропного капиллярно-пористого материала. 2 табл.
Наверх