Электробаромембранный аппарат рулонного типа

Изобретение относится к конструкциям мембранных аппаратов рулонного типа. Электробаромембранный аппарат рулонного типа содержит корпус из диэлектрического материала, монополярных электродов анода и катода, выполненных из графитовой ткани, устройство для подвода электрического тока, перфорированную трубку, непористую пленку, опирающуюся на диэлектрические пластины с перфорированными отверстиями, при этом пленка расположена по обе стороны от сетки-турбулизатора, между которыми с одной стороны находится прикатодная мембрана и прикатодная дренажная сетка, а с другой стороны прианодная мембрана и прианодная дренажная сетка, которые создают межмембранный канал, торцевые поверхности элементов сетки-турбулизатора и расположенные с обеих сторон от нее прикатодной мембраны, прикатодной дренажной сетки и непористой пленки и прианодной мембраны, прианодной дренажной сетки и непористой пленки залиты клеевой композицией. Техническим результатом изобретения является повышение качества разделения растворов, увеличение площади мембран в единице объема аппарата и улучшение охлаждения электродов катода и анода. 1 табл., 6 ил.

 

Изобретение относится к конструкциям мембранных аппаратов рулонного типа и может быть использовано для осуществления процессов мембранной технологии: электроультрафильтрации, электронанофильтрации, электромикрофильтрации и электроосмофильтрации.

Аналогом данной конструкции является баромембранный аппарат рулонного типа, конструкция которого приведена в работе Дытнерского Ю.И. «Баромембранные процессы. Теория и расчет». - М.: Химия. 1986 г., с. 47. Аппарат рулонного типа, предназначенный для разделения растворов под действием градиента давления, состоит из корпуса, перфорированной раствороотводящей трубки с обернутыми вокруг нее несколькими многослойными листами мембран. Недостатком аппарата является низкая эффективность разделения растворов, в особенности при разделении многокомпонентных смесей электролитов, при отделении электролитов от неэлектролитов. Эти недостатки частично устранены в прототипе.

Прототипом данной конструкции является электробаромембранный аппарат рулонного типа, конструкция которого приведена в патенте № RU 2326721 С2, 31.07.2006, МПК B01D 61/42. Прототип состоит из корпуса, выполненного из диэлектрического материала, перфорированной трубки, служащей для подвода исходного раствора, обратноосмотической мембраны, монополярных электродов-турбулизаторов анода и катода, выполненных из графитовой ткани, подложек мембран, устройства для подвода электрического тока, коллекторов отвода ретентата. Недостатком аппарата является малая площадь разделения растворов в единице объема аппарата, невозможность охлаждения электродов катода и анода в результате подвода внешнего постоянного электрического поля, низкая эффективность разделения растворов, в особенности при выделении ценных веществ из многокомпонентных растворов природных и сточных вод.

Технический результат выражается повышением качества и эффективности разделения растворов, увеличении площади мембран в единице объема аппарата и улучшении охлаждения электродов катода и анода, за счет изменения конструкции аппарата: перфорированная трубка выполнена с перфорацией двумя прямоугольными щелями, совпадающими друг относительно друга на всю ширину непористой пленки от одной до другой внутренней части торцевых поверхностей перфорированной трубки, которая опирается на диэлектрические пластины с перфорированными отверстиями в пять рядов по всей длине приклеенных по всему периметру к внутренней части перфорированной трубки, а расстояние между диэлектрическими пластинами с перфорированными отверстиями в пять рядов по всей длине составляет такое же расстояние, которое имеет высота прямоугольной щели перфорированной трубки, герметично уложенная непористая пленка имеет перфорированные отверстия в пять рядов по всей длине совпадающих с перфорированными отверстиями в пять рядов по всей длине на диэлектрических пластинах, и она расположена по обе стороны от сетки-турбулизатора, между которыми с одной стороны находится прикатодная мембрана и прикатодная дренажная сетка, а с другой стороны - прианодная мембрана и прианодная дренажная сетка, которые создают межмембранный канал, торцевые поверхности элементов сетки-турбулизатора и расположенные с обеих сторон от нее прикатодной мембраны, прикатодной дренажной сетки и непористой пленки и прианодной мембраны, прианодной дренажной сетки и непористой пленки залиты клеевой композицией, а на торцевых поверхностях перфорированной трубки с одной и другой стороны под углом π/2 и - π/2 от горизонтальной оси имеются отверстия с штуцерами отвода прианодного и прикатодного пермеата, и расположенными на расстоянии 0,025 м от края кромки торцевой поверхности перфорированной трубки, а также на торцевых поверхностях перфорированной трубки с одной и другой стороны под углом -π/2 и π/2 от горизонтальной оси имеются полимерные заливки с электрическими проводами расположенные на расстоянии 0,025 м от края кромки торцевой поверхности перфорированной трубки, которые присоединены с одной стороны через отверстия в диэлектрических пластинах и отверстия в непористой пленке перфорированных отверстий в пять рядов по всей длине, с прикатодной и прианодной дренажной сеткой, а с другой стороны с клеммами устройства для подвода электрического тока, коллекторы подачи исходного раствора и отвода ретентата образованы пространством между полуцилиндрами корпуса аппарата, и корпусом аппарата в котором имеются проточки прямоугольной формы, при этом на торцевой поверхности первого полуцилиндра корпуса аппарата с одной его стороны под углом -π/2 от горизонтальной оси имеется центральное отверстие, в которой на резьбе вмонтирован штуцер подачи исходного раствора, и с этой же стороны торцевой поверхности второго полуцилиндра корпуса аппарата под углом π/2 от горизонтальной оси имеется центральное отверстие, в которой на резьбе вмонтирован штуцер отвода ретентата, а на торцевых поверхностях корпуса аппарата с одной и другой стороны имеются отверстия с резьбой, в которую вкручены штуцера для вывода и ввода охлаждающей воды, которые расположены под углами π/2 и -π/2 от горизонтальной оси и находятся на расстоянии 0,05 м от края кромки корпуса аппарата, коллекторы отвода прикатодного и прианодного пермеата образованы пространством между диэлектрическими пластинами с перфорированными отверстиями в пять рядов по всей длине и внутренней поверхностью перфорированной трубки, в которой расположены электрические провода, сетка-турбулизатор выполнена гофрированной формой вместе с уложенными с обеих сторон от нее прикатодной, прианодной мембранами, прикатодной, прианодной дренажными сетками и непористыми пленками на всем участке от коллектора подачи исходного раствора до перфорированной трубки и от перфорированной трубки до коллектора отвода ретентата, и сетка-турбулизатор вместе с уложенными с обеих сторон от нее прикатодной, прианодной мембранами, прикатодной, прианодной дренажными сетками и непористыми пленками не гофрированы на участке, расположенном внутри перфорированной трубки с перфорацией двумя прямоугольными щелями, поверхность которых приклеена вместе с непористой пленкой по всему периметру, а две сетки-турбилизатора охлаждающей воды расположены между непористыми пленками, корпусом аппарата и перфорированной трубкой, которые по форме также являются гофрированными, и все вместе с сеткой-турбулизатором с уложенными с обеих сторон от нее прикатодной, прианодной мембранами, прикатодной, прианодной дренажными сетками и непористыми пленками обернуты вокруг перфорированной трубки, а в местах соединения с корпусом аппарата, в котором имеются проточки прямоугольной формы, непористые пленки приклеены вокруг проточек прямоугольной формы по всему периметру со стороны коллекторов подачи исходного раствора и отвода ретентата.

На фиг.1 показан в разрезе электробаромембранный аппарат рулонного типа; фиг.2 - вид А слева; фиг.3 - вид Б справа; фиг.4 - сечение В-В на фиг.1; фиг.5 - вид Г увеличенный на фиг.4; фиг.6 - вид Д увеличенный, на фиг.4.

Электробаромембранный аппарат рулонного типа состоит из перфорированной трубки 2, выполненной с перфорацией двумя прямоугольными щелями, совпадающими друг относительно друга на всю ширину непористой пленки 32 от одной до другой внутренней части торцевых поверхностей перфорированной трубки 2, которая опирается на диэлектрические пластины 21 с перфорированными отверстиями 22 в пять рядов по всей длине приклеенных по всему периметру к внутренней части перфорированной трубки 2, а расстояние между диэлектрическими пластинами 21 с перфорированными отверстиями 22 в пять рядов по всей длине составляет такое же расстояние, которое имеет высота прямоугольной щели перфорированной трубки 2, герметично уложенная непористая пленка 32 имеет перфорированные отверстия 23 в пять рядов по всей длине совпадающих с перфорированными отверстиями 22 в пять рядов по всей длине на диэлектрических пластинах 21, и она расположена по обе стороны от сетки-турбулизатора 5, между которыми с одной стороны находится прикатодная мембрана 4 и прикатодная дренажная сетка 27, а с другой стороны прианодная мембрана 3 и прианодная дренажная сетка 28, которые создают межмембранный канал, торцевые поверхности элементов сетки-турбулизатора 5 и расположенные с обеих сторон от нее прикатодной мембраны 4, прикатодной дренажной сетки 27 и непористой пленки 32 и прианодной мембраны 3, прианодной дренажной сетки 28 и непористой пленки 32 залиты клеевой композицией 17, а на торцевых поверхностях перфорированной трубки 2 с одной и другой стороны под углом π/2 и - π/2 от горизонтальной оси имеются отверстия 25 и 24 с штуцерами отвода прианодного и прикатодного пермеата 11 и 12 расположенными на расстоянии 0,025 м от края кромки торцевой поверхности перфорированной трубки 2, а также на торцевых поверхностях перфорированной трубки 2 с одной и другой стороны под углом - π/2 и π/2 от горизонтальной оси имеются полимерные заливки 31 с электрическими проводами 20, расположенные на расстоянии 0,025 м от края кромки торцевой поверхности перфорированной трубки 2, которые присоединены с одной стороны через отверстия 22 в диэлектрических пластинах 21 и отверстия 23 в непористой пленке 32 перфорированных отверстиями в пять рядов по всей длине, с прикатодной и прианодной дренажной сеткой 27 и 28, а с другой стороны с клеммами устройства для подвода электрического тока 6, коллекторы подачи исходного раствора и отвода ретентата 36 и 35 образованы пространством между полуцилиндрами корпуса аппарата 19 и 18 и корпусом аппарата 1, в котором имеются проточки прямоугольной формы 30 и 29, при этом на торцевой поверхности первого полуцилиндра корпуса аппарата 19 с одной его стороны под углом -π/2 от горизонтальной оси имеется центральное отверстие 8, в которой на резьбе вмонтирован штуцер подачи исходного раствора 7, и с этой же стороны торцевой поверхности второго полуцилиндра корпуса аппарата 18 под углом π/2 от горизонтальной оси имеется центральное отверстие 9, в которой на резьбе вмонтирован штуцер отвода ретентата 10, а на торцевых поверхностях корпуса аппарата 1 с одной и другой сторон имеются отверстия с резьбой 16 и 14, в которую вкручены штуцера для вывода и ввода охлаждающей воды 15 и 13, которые расположены под углами π/2 и -π/2 от горизонтальной оси и находятся на расстоянии 0,05 м от края кромки корпуса аппарата 1, коллекторы отвода прикатодного и прианодного пермеата 33 и 34 образованы пространством между диэлектрическими пластинами 21 с перфорированными отверстиями 22 в пять рядов по всей длине и внутренней поверхностью перфорированной трубки 2, в которой расположены электрические провода 20, сетка-турбулизатор 5 выполнена гофрированной формой вместе с уложенными с обеих сторон от нее прикатодной, прианодной мембранами 4 и 3, прикатодной, прианодной дренажными сетками 27 и 28 и непористыми пленками 32 на всем участке от коллектора подачи исходного раствора 36 до перфорированной трубки 2 и от перфорированной трубки 2 до коллектора отвода ретентата 35, и сетка-турбулизатор 5 вместе с уложенными с обеих сторон от нее прикатодной, прианодной мембранами 4 и 3, прикатодной, прианодной дренажными сетками 27 и 28 и непористыми пленками 32 не гофрированы на участке, расположенном внутри перфорированной трубки 2 с перфорацией двумя прямоугольными щелями, поверхность которых приклеена вместе с непористой пленкой 32 по всему периметру, а две сетки-турбилизатора охлаждающей воды 26 расположены между непористыми пленками 32, корпусом аппарата 1 и перфорированной трубкой 2, которые по форме также являются гофрированными и все вместе с сеткой-турбулизатором 5 с уложенными с обеих сторон от нее прикатодной, прианодной мембранами 4 и 3, прикатодной, прианодной дренажными сетками 27 и 28 и непористыми пленками 32 обернуты вокруг перфорированной трубки 2, а в местах соединения с корпусом аппарата 1, в котором имеются проточки прямоугольной формы 30 и 29, непористые пленки 32 приклеены вокруг проточек прямоугольной формы по всему периметру со стороны коллекторов подачи исходного раствора и отвода ретентата 36 и 35

Корпус аппарата 1, перфорированная трубка 2, полуцилиндры корпуса аппарата 19 и 18, диэлектрические пластины 21, штуцер отвода ретентата 10, штуцер подачи исходного раствора 7, штуцера для вывода и ввода охлаждающей воды 15 и 13, штуцерами отвода прианодного и прикатодного пермеата 11 и 12 могут быть изготовлены из капролона, текстолита ПТК.

Непористая пленка 32 может быть изготовлена из полиэтилена и полиэтилена высокой плотности.

Прикатодная и прианодная дренажные сетки 27 и 28 являются монополярными электродами катодом и анодом соответственно и могут быть выполнены из графитовой ткани типа «Вискум».

Прикатодная и прианодная мембраны 4 и 3 могут быть изготовлены в виде ленты из мембран типа МГА-95, МГА-70П, МГА-80П, МГА-90П, МГА-95П-Н, МГА-95П-Т, МГА-100П, ОПМ-К, ESPA, ESNA, УАМ-150П, УАМ-300П, УАМ-500П, УАМ-1000П, УПМ-200, УПМ-П, УПМ-ПП, УФМ-100, УФМ-П, УФМ-ПТ, ОПМН-К, ОПМН (ОФМН)-П, МФФК-0, МФФК-3.

Сетка-турбилизатор охлаждающей воды 26 и сетка-турбулизатор 5 могут быть изготовлены из пластмассы или углепластика, которые обеспечивают необходимую скорость движения и турбулизацию раствора и охлаждающей воды.

Полимерная заливка 31 может изготавливаться из углепластика, пластмассы, эпоксидной смолы.

Клеевая композиция 17 может быть выполнена из влагостойкого клея «Момент», эпоксидной смолы.

В качестве охлаждающей воды может использоваться водопроводная вода с температурой от 5 до 15°C.

Аппарат работает следующим образом.

Исходный раствор под давлением, превышающим осмотическое давление растворенных в нем веществ, подается через штуцер подачи исходного раствора 7, фиг.1, 3, который вмонтирован на резьбе в центральное отверстие 8, торцевой поверхности первого полуцилиндра корпуса аппарата 19 с одной его стороны под углом -π/2 от горизонтальной оси и попадает в коллектор подачи исходного раствора 36, фиг.1, образованный пространством между полуцилиндром корпуса аппарата 19 и корпусом аппарата 1, в котором имеется проточка прямоугольной формы 30, в которой также проходит исходный раствор и попадает в межмембранный канал, в котором расположена сетка-турбулизатор 5 выполненной гофрированной формой вместе с уложенными с обеих сторон от нее прикатодной, прианодной мембранами 4 и 3, фиг.1, 4, прикатодной, прианодной дренажными сетками 27 и 28 и непористыми пленками 32 на всем участке от коллектора подачи исходного раствора 36 до перфорированной трубки 2 и от перфорированной трубки 2 до коллектора отвода ретентата 35, раствор протекает последовательно по всему межмембранному каналу и через проточку прямоугольной формы 29, имеющейся на корпусе аппарата 1, попадает в коллектор отвода ретентата 35, который образован пространством между полуцилиндром корпуса аппарата 18 и корпусом аппарата 1, далее раствор проходит через центральное отверстие 9, фиг.1, 3, торцевой поверхности второго полуцилиндра корпуса аппарата 18, расположенной под углом π/2 от горизонтальной оси, в которой на резьбе вмонтирован штуцер отвода ретентата 10, и выводится из аппарата. Сетка-турбулизатор 5 вместе с уложенными с обеих сторон от нее прикатодной, прианодной мембранами 4 и 3, прикатодной, прианодной дренажными сетками 27 и 28 и непористыми пленками 32, фиг.4 не гофрированы на участке расположенном внутри перфорированной трубки 2 с перфорацией двумя прямоугольными щелями, поверхность которых приклеена вместе с непористыми пленками 32 по всему периметру, а раствор также протекает в том же межмембранном канале.

В этот же момент времени к аппарату подводится внешнее постоянное электрическое поле с заданной плотностью тока путем подключения клемм устройства для подвода электрического тока 6, фиг.1, через электрические провода 20 проходящих через полимерные заливки 31, расположенные на торцевых поверхностях перфорированной трубки 2 с одной и другой стороны под углом - π/2 и π/2 от горизонтальной оси и расположенные на расстоянии 0,025 м от края кромки торцевой поверхности перфорированной трубки 2, которые присоединены через отверстия 22 в диэлектрических пластинах 21 и отверстия 23 в непористой пленке 32 перфорированных отверстиями в пять рядов по всей длине, с прикатодной и прианодной дренажной сеткой 27 и 28.

Раствор, проходя межмембранный канал от коллектора подачи исходного раствора 36, фиг.1, 4, до коллектора отвода ретентата 35, двигаясь, турбулизируется с помощью сетки-турбулизатора 5, и поступает к прикатодным и прианодным мембранам 4 и 3.

В межмембранном канале фиг.5, катионы и анионы, проникающие через прикатодную и прианодную мембраны 4 и 3, попадают в пространство между непористыми пленками 32 и прикатодными, прианодными мембранами 4 и 3, где расположены прикатодные и прианодные дренажные сетки 27 и 28, которые являются каналами для прикатодного и прианодного пермеата соответсвенно. Далее прикатодный и прианодный пермеат фиг.4, 6, двигаясь самотеком по всем канал для прикатодного и прианодного пермеата, раздельно для каждого случая через перфорированные отверстия 23 в пять рядов по всей длине герметично уложенной непористой пленки 32 совпадающих с перфорированными отверстиями 22 в пять рядов по всей длине на диэлектрических пластинах 21 попадают в коллекторы отвода прикатодного и прианодного пермеата 33 и 34 соответственно, которые образованы пространством между диэлектрическими пластинами 21 с перфорированными отверстиями 22 в пять рядов по всей длине и внутренней поверхностью перфорированной трубки 2, в которой расположены электрические провода 20. Далее прикатодный и прианодный пермеат, фиг.1, выводятся через отверстия 24 и 25, в которые вкручены на резьбе штуцера отвода прикатодного и прианодного пермеата 12 и 11 имеющиеся на торцевых поверхностях перфорированной трубки 2 с одной и другой стороны под углом - π/2 и π/2 от горизонтальной оси, расположенные на расстоянии 0,025 м от края кромки торцевой поверхности перфорированной трубки 2, в виде оснований и кислот и выделившихся различных газов в результате электрохимических реакций.

Одновременно с подачей исходного раствора, через отверстие с резьбой 14 с одной стороны торцевой поверхности корпуса аппарата 1 и вкрученный в нее штуцер для ввода охлаждающей воды 13, расположенный под углом -π/2 от горизонтальной оси и находящийся на расстоянии 0,05 м от края кромки корпуса аппарата 1, заполняется коллектор для протекания охлаждающей воды, фиг.1, 4, в котором находятся две сетки-турбилизатора охлаждающей воды 26, расположенные между непористыми пленками 32, корпусом аппарата 1 и перфорированной трубкой 2, которые по форме также являются гофрированными и все вместе с сеткой-турбулизатором 5 с уложенными с обеих сторон от нее прикатодной, прианодной мембранами 4 и 3, прикатодной, прианодной дренажными сетками 27 и 28 и непористыми пленками 32, обернутыми вокруг перфорированной трубки 2. Далее охлаждающая вода выводится через отверстие с резьбой 16, фиг.1, 2 с другой стороны торцевой поверхности корпуса аппарата 1 и вкрученный в нее штуцер для вывода охлаждающей воды 15, расположенный под углом π/2 от горизонтальной оси и находящийся на расстоянии 0,05 м от края кромки корпуса аппарата 1.

Исходный раствор, протекая по всему межмембранному каналу от коллектора подачи исходного раствора 36, фиг.1, 4, до коллектора отвода ретентата 35 последовательно, очищается от катионов и анионов.

Под повышением качества и эффективности разделения растворов, увеличении площади мембран в единице объема аппарата и улучшении охлаждения электродов катода и анода, соответсвенно прикатодной дренажной сетки 27 и прианодной дренажной сетки 28 понимается возможность при данном конструктивном исполнении электробаромембранного аппарата рулонного типа фиг.1, 4, совместить электробаромембранное разделение растворов с процессом интенсивного охлаждения электродов (прикатодных и прианодных дренажных сеток) за счет наличия в аппарате коллектора для протекания охлаждающей воды, в котором находятся две сетки-турбилизатора охлаждающей воды 26, фиг.4, расположенные между непористыми пленками 32, корпусом аппарата 1 и перфорированной трубкой 2, которые по форме также являются гофрированными и все вместе с сеткой-турбулизатором 5 с уложенными с обеих сторон от нее прикатодной, прианодной мембранами 4 и 3, прикатодной, прианодной дренажными сетками 27 и 28 и непористыми пленками 32 обернутыми вокруг перфорированной трубки 2. Исполнение сетки-турбулизатора 5, фиг.4, гофрированной формы с уложенными с обеих сторон от нее прикатодной, прианодной мембранами 4 и 3, прикатодной, прианодной дренажными сетками 27 и 28 и непористыми пленками 32 на всем участке от коллектора подачи исходного раствора 36 до перфорированной трубки 2 и от перфорированной трубки 2 до коллектора отвода ретентата 35, позволит увеличить площадь мембран в единице объема аппарата для разделения растворов.

Площадь мембран с гофрированными элементами в единице объема аппарата рассчитывается по формуле:

S ед. аппарата с гофр. элем.=n·k·(π·d/2)·b+2·(h·b),

где n - количество гофр мембраны;

k - количество мембран, уложенных с обоих сторон сетки-турбулизатора на всем участке от коллектора подачи исходного раствора до перфорированной трубки и от перфорированной трубки до коллектора отвода ретентата;

(d/2) - радиус одной гофры мембраны;

b - ширина мембраны;

h - длина мембраны проходящей внутри перфорированной трубки.

Площадь мембран с гладкими элементами в единице объема аппарата рассчитывается по формуле:

S ед. аппарата с гладк. элем.=k·(b·1)+2·(h·b),

где 1 - длина мембраны.

Таблица 1
Площадь мембран в единице объема аппарата
Элемент 1, м d, м n k b, м h, м S, м2
гофрированный
- 0,02 75 4 0,4 0,065 3,82
гладкий 1,5 - - 4 0,4 0,065 2,45

Необходимость охлаждения прикатодных и прианодных дренажных сеток 27 и 28 заключается в том, что раствор, прокачиваемый над поверхностью прикатодных и прианодных мембран 4 и 3 и прошедший через их поры в виде прикатодного и прианодного пермеата с температурой от 20 до 40°C и попадающие в пространство между непористыми пленками 32 и прикатодными, прианодными мембранами 4 и 3, где расположены прикатодные и прианодные дренажные сетки 27 и 28, которые являются каналами для прикатодного и прианодного пермеата соответсвенно, охлаждаются через теплопередающую стенку, которой является непористая пленка 32, при помощи охлаждающей воды с температурой от 5 до 15°C, фиг.4, при интенсивном перемешивании из-за изготовления двух сеток-турбилизаторов охлаждающей воды 26 гофрированнными.

Под герметично уложенными непористыми пленками 32, фиг.1, 4, с перфорированными отверстиями 23 в пять рядов по всей длине совпадающих с перфорированными отверстиями 22 в пять рядов по всей длине на диэлектрических пластинах 21 понимается возможность приклейки данного места непористой пленки 32 по всей длине к диэлектрической пластине 21 с совпадающими в них отверстиями, причем непористые пленки 32 также приклеены по всему периметру перфорированной трубки 2 в местах перфорации прямоугольными щелями и в местах соединения с корпусом аппарата 1, в котором имеются проточки прямоугольной формы 30 и 29, непористые пленки 32 приклеены также по всему периметру со стороны коллекторов подачи исходного раствора и отвода ретентата 36 и 35 вокруг проточек прямоугольной формы, что позволит предотвратить попадание охлаждающей воды в коллекторы отвода прикатодного и прианодного пермеата 33 и 34.

Перфорированная трубка 2, фиг.4, выполненная с перфорацией двумя прямоугольными щелями, совпадающими друг относительно друга на всю ширину непористой пленки 32 от одной до другой внутренней части торцевых поверхностей перфорированной трубки 2, данная перфорация позволит пропустит сквозь две прямоугольные щели, совпадающие друг относительно друга на всю ширину непористой пленки 32 от одной до другой внутренней части торцевых поверхностей перфорированной трубки 2, весь мембранный пакет, образованный двумя непористыми пленками 32, прикатодными, прианодными дренажными сетками 27 и 28, прикатодными, прианодными мембранами 4 и 3, между которыми находится сетка-турбулизатор 5.

На разработанной конструкции электробаромембранного аппарата рулонного типа без наложения электрического поля можно проводить баро-мембранные процессы, например ультрафильтрацию, нанофильтрацию, микрофильтрацию и обратный осмос.

Электробаромембранный аппарат рулонного типа, состоящий из корпуса, выполненного из диэлектрического материала, перфорированной трубки, мембран, монополярных электродов анода и катода, выполненных из графитовой ткани, устройства для подвода электрического тока, коллектора отвода ретентата, отличающийся тем, что перфорированная трубка выполнена с перфорацией двумя прямоугольными щелями, совпадающими друг относительно друга на всю ширину непористой пленки от одной до другой внутренней части торцевых поверхностей перфорированной трубки, которая опирается на диэлектрические пластины с перфорированными отверстиями в пять рядов по всей длине приклеенных по всему периметру к внутренней части перфорированной трубки, а расстояние между диэлектрическими пластинами с перфорированными отверстиями в пять рядов по всей длине составляет такое же расстояние, которое имеет высота прямоугольной щели перфорированной трубки, герметично уложенная непористая пленка имеет перфорированные отверстия в пять рядов по всей длине совпадающих с перфорированными отверстиями в пять рядов по всей длине на диэлектрических пластинах, и она расположена по обе стороны от сетки-турбулизатора, между которыми с одной стороны находится при катодная мембрана и прикатодная дренажная сетка, а с другой стороны - прианодная мембрана и прианодная дренажная сетка, которые создают межмембранный канал, торцевые поверхности элементов сетки-турбулизатора и расположенные с обеих сторон от нее прикатодной мембраны, прикатодной дренажной сетки и непористой пленки и прианодной мембраны, прианодной дренажной сетки и непористой пленки залиты клеевой композицией, а на торцевых поверхностях перфорированной трубки с одной и другой стороны под углом π/2 и -π/2 от горизонтальной оси имеются отверстия с штуцерами отвода прианодного и прикатодного пермеата и расположенными на расстоянии 0,025 м от края кромки торцевой поверхности перфорированной трубки, а также на торцевых поверхностях перфорированной трубки с одной и другой стороны под углом -π/2 и π/2 от горизонтальной оси имеются полимерные заливки с электрическими проводами, расположенные на расстоянии 0,025 м от края кромки торцевой поверхности перфорированной трубки, которые присоединены с одной стороны через отверстия в диэлектрических пластинах и отверстия в непористой пленке перфорированных отверстиями в пять рядов по всей длине, с прикатодной и прианодной дренажной сеткой, а с другой стороны с клеммами устройства для подвода электрического тока, коллекторы подачи исходного раствора и отвода ретентата образованы пространством между полуцилиндрами корпуса аппарата и корпусом аппарата, в котором имеются проточки прямоугольной формы, при этом на торцевой поверхности первого полуцилиндра корпуса аппарата с одной его стороны под углом -π/2 от горизонтальной оси имеется центральное отверстие, в которой на резьбе вмонтирован штуцер подачи исходного раствора, и с этой же стороны торцевой поверхности второго полуцилиндра корпуса аппарата под углом π/2 от горизонтальной оси имеется центральное отверстие, в которой на резьбе вмонтирован штуцер отвода ретентата, а на торцевых поверхностях корпуса аппарата с одной и другой стороны имеются отверстия с резьбой, в которую вкручены штуцера для вывода и ввода охлаждающей воды, которые расположены под углами π/2 и -π/2 от горизонтальной оси и находятся на расстоянии 0,05 м от края кромки корпуса аппарата, коллекторы отвода прикатодного и прианодного пермеата образованы пространством между диэлектрическими пластинами с перфорированными отверстиями в пять рядов по всей длине и внутренней поверхностью перфорированной трубки, в которой расположены электрические провода, сетка-турбулизатор выполнена гофрированной формой вместе с уложенными с обеих сторон от нее прикатодной, прианодной мембранами, прикатодной, прианодной дренажными сетками и непористыми пленками на всем участке от коллектора подачи исходного раствора до перфорированной трубки и от перфорированной трубки до коллектора отвода ретентата, и сетка-турбулизатор вместе с уложенными с обеих сторон от нее прикатодной, прианодной мембранами, прикатодной, прианодной дренажными сетками и непористыми пленками не гофрированы на участке, расположенном внутри перфорированной трубки с перфорацией двумя прямоугольными щелями, поверхность которых приклеена вместе с непористой пленкой по всему периметру, а две сетки-турбилизатора охлаждающей воды расположены между непористыми пленками, корпусом аппарата и перфорированной трубкой, которые по форме также являются гофрированными и все вместе с сеткой-турбулизатором с уложенными с обеих сторон от нее прикатодной, прианодной мембранами, прикатодной, прианодной дренажными сетками и непористыми пленками, обернуты вокруг перфорированной трубки, а в местах соединения - с корпусом аппарата, в котором имеются проточки прямоугольной формы, непористые пленки приклеены вокруг проточек прямоугольной формы по всему периметру со стороны коллекторов подачи исходного раствора и отвода ретентата.



 

Похожие патенты:
Изобретение относится к молочной промышленности и может быть использовано для получения натуральной и концентрированной творожной сыворотки, деминерализованной методом электродиализа, и предназначенной для получения молочных, молокосодержащих, кисломолочных продуктов, мороженого и замороженных десертов, молочных консервов, детских и диетических продуктов, хлебобулочных и кондитерских изделий, колбасных изделий.

Изобретение относится к способу извлечения аммиака, содержащегося в газообразном продувочном потоке, получаемом в процессе синтеза мочевины. .

Изобретение относится к конструкциям мембранных аппаратов рулонного типа и может быть использовано для осуществления процессов мембранной технологии: электроультрафильтрации, электронанофильтрации, электромикрофильтрации и электроосмофильтрации.

Изобретение относится к устройствам для разделения, концентрирования и очистки растворов методами электромикрофильтрации, электроультрафильтрации, электроосмофильтрации и может быть использовано в химической и других отраслях промышленности.

Изобретение относится к области судостроения. .

Изобретение относится к аппаратам для разделения, концентрирования и очистки растворов методами электромикрофильтрации, электроультрафильтрации, электроосмофильтрации и может быть использовано в химической, текстильной, пищевой и других отраслях промышленности.

Изобретение относится к способу концентрирования растворов электролитов путем обработки их в электродиализаторе, включающем вертикально расположенные чередующиеся катионообменные, анионообменные мембраны, образующие проточные камеры обессоливания, в которых расположены прокладки безрамочной конструкции, и непроточные камеры концентрирования, в которых расположены прокладки рамочной конструкции, в нижней части которых выполнены щелевые пазы.

Изобретение относится к мембранному аппарату рулонного типа и может быть использовано в процессах электромикрофильтрации, электроультрафильтрации и электроосмофильтрации, преимущественно для разделения многокомпонентных смесей.
Изобретение относится к области изготовления и применения мембранных фильтров из неорганических материалов и может быть использовано в различных отраслях производства для очистки и концентрирования растворов, обработки сточных вод, очистки питьевой и технологической воды и т.д.

Изобретение относится к области разделения, концентрирования и очистки растворов методом электрофильтрации и может быть использовано в химической, текстильной, целлюлозно-бумажной, микробиологической, пищевой и других отраслях промышленности. Техническим результатом изобретения является увеличение площади прикатодных или прианодных мембран в единице объема аппарата, предотвращение отложений растворенных веществ на поверхности мембран, а также повышение качества и эффективности разделения растворов. В заявленном электробаромембранном аппарате переточные эллиптические окна увеличены в площади, а круговые сегменты переточного эллиптического окна заполнены полимерным компаундом по всему объему от прокладки до прокладки с одной до другой стороны диэлектрической камеры. В пространстве между ними сверху и снизу переточного эллиптического окна уложены друг на друга дренажная сетка, монополярно-пористый электрод-пластина, пористая подложка из ватмана и мембрана, проходящие в виде непрерывного полотна через переточное эллиптическое окно с одной стороны диэлектрической камеры корпуса по другую, при этом в пространстве переточного эллиптического окна диэлектрической камеры корпуса образован межмембранный канал, в котором находится сетка-турбулизатор, которая представляет собой расположенный под углом 90 градусов в одной плоскости набор прямолинейных элементов одинаковой длины прямоугольной формы в разрезе. 10 ил.

Изобретение относится к области разделения, концентрирования и очистки растворов методами электрогиперфильтрации, электромикрофильтрации, электроультрафильтрации и электронанофильтрации и может быть использовано в химической, текстильной, целлюлозно-бумажной, микробиологической, пищевой и других отраслях промышленности. Электробаромембранный аппарат с плоскими фильтрующими элементами включает первый и второй фланцы корпуса аппарата, выполненные с выступом и впадиной соответственно по плоской уплотнительной поверхности, между которыми имеются камеры корпуса с отверстиями для циркуляции раствора и прокладки, в которых также имеются отверстия для циркуляции раствора. Между первой и второй, третьей и четвертой, пятой и шестой, седьмой и восьмой камерами корпуса расположены с обеих сторон от паронитовых прокладок диэлектрические пластины, которые в паре образуют охлаждающую камеру. На камерах корпуса расположены штуцера для ввода и вывода охлаждающего агента, а на первом и втором фланцах корпуса имеются каналы и штуцера для ввода и вывода раствора. В аппарате чередуются камеры разделения раствора и камеры охлаждения прикатодного и прианодного пермеата. На камерах корпуса имеются штуцера для отвода прикатодного и прианодного пермеата в зависимости от того, через какой монополярный пористый электрод и мембрану проходит пермеат. Для предотвращения утечек исходного и концентрированного раствора на внешней уплотнительной поверхности фланцев и камер корпуса имеются внешние паронитовые прокладки. Для обеспечения циркуляции разделяемого раствора в межмембранном пространстве и между фланцами корпуса и мембранами установлены паронитовые прокладки с отверстиями, совмещенными с цилиндрическими каналами камер корпуса. У поверхности мембран расположены ионообменные спейсеры, состоящие из гранул ионообменного вещества и сетки. Подвод электрического тока к монополярным пористым электродам осуществлен от источника питания постоянного тока через электрические провода и отверстия, расположенные в камерах корпуса и на фланце и заполненные герметизирующей композицией. Для обеспечения прочности и жесткости конструкции электробаромембранного аппарата с плоскими фильтрующими элементами установлены металлические пластины на внешней поверхности фланцев корпуса. Технический результат - увеличение площади мембран и повышение эффективности разделения в аппарате за счет снижения степени нагрева раствора вследствие изменения конструкции путем подвода охлаждающего агента. 7 ил.

Изобретение относится к конструкциям мембранных аппаратов трубчатого типа и может быть использовано для осуществления процессов мембранной технологии. Электробаромембранный аппарат трубчатого типа содержит цилиндрический корпус с расположенными на его внешней поверхности патрубком для ввода разделяемой жидкости и на внутренней поверхности продольными каналами, устройство для подвода электрического тока, микропористые подложки, внешняя поверхность которых служит электродом-катодом, а внутренняя поверхность которых служит электродом-анодом, прикатодные мембраны, прианодные мембраны, последовательно соединенные камеры разделения, образованные концентрическими трубчатыми фильтрующими элементами, имеющими различные площади поверхности фильтрации и диаметры, с переточными каналами, центральную трубу и торцевые крышки, имеющие патрубки для вывода анионов и катионов с пермеатом. Изобретение обеспечивает повышение качества и эффективности разделения растворов. 6 ил.

Изобретение относится к области промышленной рекуперации жидких щелочных высокоминерализованных отходов. Установка включает блок предварительной очистки промышленных стоков 1, блок рециркуляции щелочного раствора, блок многокамерных электромембранных аппаратов, состоящий из блока 2 первой ступени электромембранной обработки для отделения диализата от очищенного щелочного стока, а также получения умягченного солевого раствора, и блока 3 второй ступени электромембранной обработки для получения дилюата и концентрированного щелочного раствора. Блок рециркуляции щелочного раствора содержит первый бак 4, заполняемый щелочным раствором, и второй бак 5, заполняемый очищенным щелочным стоком и соединенный с блоком предварительной очистки. Установка содержит линию 6 подачи дилюата второй ступени электромембранной обработки в блок первой ступени электромембранной обработки и линию подачи щелочного раствора из первого бака в камеру концентрирования блока второй ступени электромембранной обработки. Технический результат - повышение производительности получения умягченного солевого раствора и концентрированного щелочного раствора, снижение удельного потребления электроэнергии, упрощение технологической схемы. 1 ил.

Изобретение относится к мембранным аппаратам рулонного типа и может быть использовано для фильтрации и обратного осмоса. Аппарат содержит коллекторы отвода прикатодного и прианодного пермеата, образованные пространством между полуцилиндрами корпуса аппарата, корпусом аппарата и полимерной перфорированной перегородкой с перфорацией в три ряда отверстиями в шахматном порядке по всей длине. Со стороны торцевых поверхностей полуцилиндров корпуса аппарата на торцевых крышках имеются отверстия с резьбой, в которую вкручены штуцера для отвода пермеата и ретентата. Пространство между корпусом аппарата, прикатодными, прианодными мембранами и перфорированной трубкой образует коллектор для протекания исходного раствора, в котором расположены сетки-турбулизаторы, в которые вплетены металлические трубки. Межмембранный канал образован последовательно уложенными с двух сторон от сетки-турбулизатора двумя парами прикатодной, прианодной мембран, подложек мембран, дренажных сеток - катода и анода, которые все вместе проклеены с торцевых поверхностей и с сетками-турбулизаторами, в которые вплетены металлические трубки, обернуты вокруг перфорированной трубки, при этом дренажные сетки - катод и анод расположены между подложками мембран и уложенными на них прикатодными и прианодными мембранами, приклеенными в месте перфорации к перфорированной трубке. Технический результат - повышение качества разделения растворов при улучшенном охлаждении пермеата и монополярных электродов. 5 ил., 1 табл.

Изобретение относится к области энергетики, предназначено для одновременного получения пресной воды, холода и электроэнергии. Достигаемые технические результаты - более высокая экономия потребляемой электроэнергии, вплоть до полной компенсации энергозатрат на собственные нужды установки, сопровождающаяся снижением количества выбросов токсичных и парниковых газов судовой энергетической установки, больший коэффициент полезного действия, а также возможность получать холод - получены путем совмещения процесса опреснения воды с получением холода и электроэнергии. 3 н.п. ф-лы, 3 ил.

Изобретение относится к области разделения, концентрирования и очистки растворов методами электромикрофильтрации, электроультрафильтрации, электронанофильтрации, электроосмофильтрации. Электробаромембранный аппарат плоскокамерного типа, состоящий из двух фланцев, каналов ввода и вывода разделяемого раствора и отвода пермеата, устройства для подвода постоянного электрического тока, чередующихся диэлектрических камер корпуса, соединенных типа выступ-впадина, отверстий для подвода электрических проводов, отличается тем, что чередующиеся диэлектрические камеры корпуса с "выступом" и "впадиной" имеют прямоугольные переточные окна, в которых уложены на всю их длину и ширину в виде непрерывного полотна сверху и снизу с одной стороны чередующейся диэлектрической камеры корпуса с "выступом" и "впадиной" по другую последовательно дренажные сетки, монополярно-пористые пластины электрод-катод и электрод-анод, пористые подложки из ватмана, прикатодные и прианодные мембраны соответственно до внешнего периметра прокладок, за исключением тех мест пористых подложек из ватмана, прикатодных и прианодных мембран, где расположены прямоугольные пластины вставки толщиной 2 мм, соединяющие монополярно-пористые пластины электрод-катод и электрод-анод, по внутреннему периметру прокладок расположены центральные прямоугольные углубления величиной 0,5 мм от их толщины и одной третьей их части по ширине, причем в эти центральные прямоугольные углубления по всему внутреннему периметру прокладок вставлены концы сеток-турбулизаторов, представляющих собой переплетенные под углом 90 градусов в одной плоскости набор из нарезок катионообменных и анионообменных мембран, в пространстве прямоугольного переточного окна чередующейся диэлектрической камеры корпуса с "выступом" и "впадиной" образован межмембранный канал, который на всю ширину и высоту под прокладкой и от прокладки до прокладки с одной стороны чередующихся диэлектрических камер корпуса с "выступом" и "впадиной" по другую залит полимерной заливкой, межмембранный канал также образован в тех местах, где расположена сетка-турбулизатор, внутренние поверхности диэлектрических фланцев корпуса снабжены уложенными последовательно друг на друга дренажными сетками, монополярно-пористыми пластинами, электродом-катодом, пористыми подложками из ватмана, прикатодными мембранами соответственно, на чередующихся диэлектрических камерах корпуса с "выступом" и "впадиной" имеются двусторонние отверстия для подвода электрических проводов, залитые полимерным компаундом от отрицательной и положительной клемм устройства для подвода постоянного электрического тока, соединенные с дренажными сетками, на внутренней стороне диэлектрических фланцев корпуса имеется отверстие для подвода электрического провода от отрицательной клеммы устройства для подвода постоянного электрического тока к дренажной сетке и канал для отвода прикатодного пермеата с диэлектрической сеткой по всей площади, расположенные в тех же местах, что и на чередующихся диэлектрических камерах корпуса с "выступом" и "впадиной", на которых расположены каналы для отвода прикатодного и прианодного пермеата и отверстия для подвода электрических проводов в зависимости от схемы подключения электродов "минус" или "плюс". Технический результат - увеличение способности дифференцированного выделения прикатодного и прианодного пермеата, увеличение качества и эффективности разделения растворов, снижение гидравлического сопротивления в аппарате, увеличение площади прикатодных и прианодных мембран в единице объема аппарата, в предотвращение смещения сетки-турбулизатора от рабочей части поверхности. 8 ил.

Изобретение относится к области разделения, концентрирования и очистки растворов методами электрогиперфильтрации, электромикрофильтрации, электроультрафильтрации и электронанофильтрации. Предложен электробаромембранный аппарат с плоскими охлаждающими камерами, в котором первый и последний фланцы корпуса аппарата выполнены с выступом и впадиной соответственно по плоской уплотнительной поверхности, в которых установлены монополярные пористые электроды и уложены мембраны, а между первым и последним фланцами имеются унифицированные промежуточные фланцы корпуса с каналами для циркуляции раствора и прокладки, в которых также имеются отверстия для циркуляции раствора. Между первым и вторым, третьим и четвертым, пятым и шестым, седьмым и восьмым промежуточными фланцами корпуса расположены с обеих сторон от резиновых прокладок диэлектрические пластины, которые в паре образуют охлаждающую камеру. На соответствующих промежуточных фланцах корпуса расположены штуцера для ввода и вывода охлаждающего агента, а на первом и последнем фланцах корпуса имеются каналы и штуцера для ввода и вывода разделяемого раствора. В аппарате чередуются камеры разделения раствора и камеры охлаждения прикатодного и прианодного пермеата. На всех фланцах корпуса имеются штуцера для отвода прикатодного и прианодного пермеата в зависимости от того, через какой монополярный пористый электрод и мембрану проходит пермеат. Для предотвращения утечек исходного и концентрированного раствора, а также для обеспечения необходимой траектории циркуляции раствора в аппарате, на внешней уплотнительной поверхности фланцев корпуса имеются унифицированные внешние паронитовые прокладки, размер внутреннего выреза которых, в целях упрощения совмещения цилиндрических каналов фланцев и отверстий прокладки при сборке, соответствует размерам выступа фланцев корпуса. Для обеспечения циркуляции разделяемого раствора в межмембранном пространстве установлены резиновые прокладки с отверстиями, совмещенными с цилиндрическими каналами промежуточных фланцев корпуса. У поверхности мембран расположены ионообменные спейсеры, состоящие из гранул ионообменного вещества и сетки. Подвод электрического тока к монополярным пористым электродам осуществлен от источника питания постоянного тока через электрические провода и отверстия, расположенные в промежуточных фланцах корпуса и на последнем фланце корпуса, и заполненные герметизирующей композицией. Для обеспечения прочности и жесткости конструкции электробаромембранного аппарата с плоскими охлаждающими камерами установлены металлические пластины на внешней поверхности первого и последнего фланцев корпуса. Технический результат – увеличение эффективной площади мембран, упрощение изготовления и упрощение сборки за счет изменения конструкции аппарата. 7 ил.

Изобретение относится к аппаратам, предназначенным для очистки, разделения и концентрирования растворов электрогиперфильтрационным и электронанофильтрационным методами. Электробаромембранный аппарат плоскокамерного типа состоит из двух фланцев и камер корпуса с каналами ввода и вывода разделяемого раствора и каналами для отвода прикатодного и прианодного пермеата, отверстиями для шпилек, устройством для подвода постоянного электрического тока к камерам аппарата, прикатодных и прианодных мембран, переточных отверстий, шпилек, прокладок, отличающийся тем, что аппарат между камерами корпуса в верхней и нижней частях пространства, образованного соседними камерами корпуса либо фланцем корпуса и камерой корпуса, имеет профильные трубы, образующие каналы подачи и вывода охлаждающей воды, втулки для разделения потоков рабочего раствора и охлаждающей жидкости, впаянные по центру в трубы, образующие каналы подачи и вывода охлаждающей воды, по шесть охлаждающих трубок в каждом межмембранном пространстве, соединяющих между собой указанные выше каналы, равномерно распределенных по их ширине, покрытых ионообменными мембранами и скрученных вокруг своей оси в спираль диаметром 12 мм, а также гранулы амфотерной ионообменной смолы в форме, напоминающей однополостной гиперболоид, но при этом верхняя и нижняя поверхности гранул выпуклые, которые расположены на витках двух соседних охлаждающих трубок, повернутых друг к другу, через шаг в 40 мм. Технический результат - одновременное равномерное охлаждение всех разделительных камер, увеличение скорости миграции катионов и анионов, увеличение турбулизации потока раствора в камере разделения. 7 ил.
Наверх