Оптоэлектронное устройство для передачи аналоговых сигналов



Оптоэлектронное устройство для передачи аналоговых сигналов
Оптоэлектронное устройство для передачи аналоговых сигналов

 

H04B10/00 - Передающие системы, использующие потоки корпускулярного излучения или электромагнитные волны, кроме радиоволн, например световые, инфракрасные (оптические соединения, смешивание или разделение световых сигналов G02B; световоды G02B 6/00; коммутация, модуляция и демодуляция светового излучения G02B,G02F; приборы или устройства для управления световым излучением, например для модуляции, G02F 1/00; приборы или устройства для демодуляции, переноса модуляции или изменения частоты светового излучения G02F 2/00; оптические мультиплексные системы H04J 14/00)

Владельцы патента RU 2522890:

Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") (RU)
Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр-Всероссийский научно-исследовательский институт экспериментальной физики"-ФГУП "РФЯЦ-ВНИИЭФ" (RU)

Изобретение относится к измерительной технике для передачи аналоговых электрических сигналов с использованием светового канала. Технический результат состоит в расширении динамического диапазона, отношения сигнал/шум волоконно-оптического канала в условиях сильных электромагнитных помех. Для этого оптоэлектронное устройство для передачи аналоговых сигналов содержит лазерный передатчик, оптически связанный с оптическим приемником, выход которого соединен со входом цифрового регистратора; введены блок стабилизации лазера и блок логарифмирования входного сигнала, вход которого является входом устройства, а выход соединен с первым входом лазерного передатчика, второй вход и выход которого соединены соответственно с выходом и входом блока стабилизации лазера. 2 ил.

 

Изобретение относится к измерительной технике для передачи аналоговых электрических сигналов с использованием светового канала в условиях сильных электромагнитных помех.

Известно оптоэлектронное устройство для передачи аналоговых сигналов (см. а.с. №543167 от 26.09.73 г., опуб. в БИ №2 от 15.01.77 г.). Вышеуказанное устройство содержит последовательно соединенные датчик, первый согласующий блок, первый излучатель, например светодиод, связанный через оптический канал с фотоприемником, и последовательно соединенные пороговый блок, второй согласующий блок и второй излучатель, связанный через оптический канал с фотоприемником, причем выход датчика подключен к входам порогового блока и второго согласующего блока.

Недостатком устройства является низкий динамический диапазон по амплитуде входного сигнала.

Вышеуказанное устройство является наиболее близким к заявляемому устройству по технической сущности и поэтому выбрано в качестве прототипа.

Решаемой технической задачей является создание оптоэлектронного устройства для передачи аналоговых сигналов с расширенными функциональными возможностями.

Достигаемым техническим результатом является расширение динамического диапазона (отношения сигнал/шум) волоконно-оптического канала.

Для достижения технического результата в оптоэлектронном устройстве для передачи аналоговых сигналов, содержащем лазерный передатчик, оптически связанный с оптическим приемником, выход которого соединен с входом цифрового регистратора, дополнительно введены блок стабилизации лазера и блок логарифмирования входного сигнала, вход которого является входом устройства, а выход соединен с первым входом лазерного передатчика, второй вход и выход которого соединены соответственно с входом и выходом блока стабилизации лазера.

Введение блока логарифмирования входного сигнала позволяет сжать измерительный сигнал по амплитуде перед подачей его на лазерный передатчик, а введение блока стабилизации лазера обеспечивает стабилизацию рабочей точки лазера и уменьшает погрешность передачи мощности оптического сигнала в оптический приемник.

Схема заявляемого устройства приведена на фигуре 1. Оптоэлектронное устройство для передачи аналоговых сигналов содержит лазерный передатчик 1, оптический выход которого через оптический кабель 2 связан с оптическим приемником 3, выход которого соединен со входом цифрового регистратора 4, блок стабилизации лазера 5 и блок логарифмирования входного сигнала 6, вход которого является входом устройства, а выход соединен с первым входом лазерного передатчика 1, второй вход и выход которого соединены соответственно со входом и выходом блока стабилизации лазера 5.

Устройство работает следующим образом.

При отсутствии входного сигнала с помощью цепи обратной связи по мощности излучения блок стабилизации 5 обеспечивает неизменной начальную мощность излучения лазерного передатчика 1, удерживая его выходную мощность в начале линейного участка ватт-амперной характеристики. Входной аналоговый электрический сигнал подается на вход блока логарифмирования 6, сжимается в нем по логарифмическому закону и подается на вход модуляции мощности излучения лазерного передатчика 1. С оптического выхода лазерного передатчика 1 оптическое излучение через оптический кабель 2 поступает на вход линейного оптического приемника 3, преобразуется в нем в электрический сигнал напряжения и поступает на вход цифрового регистратора 4. Переданный, сжатый по логарифмическому закону сигнал записывается в память цифрового регистратора 4. Восстановление исходной формы входного сигнала производится программным способом с помощью ЭВМ, подключаемой к регистратору 4, путем антилогарифмирования записанного в регистратор сигнала.

Проведенные испытания макетного образца оптоэлектронного устройства для передачи аналоговых сигналов, изготовленного по схеме, приведенной на фигуре 1, подтвердили его работоспособность.

На фигуре 2 приведены осциллограммы работы макетного образца устройства при передаче сигнала степенной функции от внешнего генератора. Генератор с помощью 12-разрядного цифроаналогового преобразователя формирует на своем выходе ступенчато нарастающий по экспоненциальному закону сигнал напряжения таким образом, что размах каждой последующей ступеньки увеличивается в 2 раза по отношению к предыдущей, то есть с шагом 6 дБ по амплитуде. Сигнал с генератора подается на вход устройства. Блок логарифмирования усиливает сигнал с малой амплитудой и ослабляет сигнал с большой амплитудой. По напряжению 6 дБ=20 Log10 1, 995, поэтому на выходе блока логарифмирования из экспоненциально нарастающего сигнала генератора формируется линейно ступенчато нарастающий сигнал, каждая ступенька которого соответствует изменению входного сигнала по амплитуде на 6 дБ. Сжатый по логарифмическому закону сигнал модулирует мощность излучения лазера и передается через оптический кабель в оптический приемник, который преобразует оптический сигнал в электрический сигнал напряжения, который записывается в память цифрового регистратора TDS3052B (верхняя кривая на фигуре 2).

Из приведенных осциллограмм сигнала генератора и сигнала генератора, прошедшего через заявляемое устройство, видно, что при развертывании сигналов по Y на полную шкалу регистратора в сигнале генератора (нижняя кривая) различимы только 9 ступенек, что соответствует динамическому диапазону регистратора 29=512 уровней, в то время как верхний луч - линейно ступенчато нарастающий сигнал через волоконно-оптический канал - четко прописывает 12 ступенек, что соответствует 212=4096 уровней.

Следует отметить, что у типовых лазеров линейный динамический диапазон по выходной мощности излучения (отношение максимальной выходной мощности в линейном режиме к мощности шумов) в полосе частот 100 МГц не превышает 500.

Таким образом, при введении заявляемого устройства в измерительный волоконно-оптический канал его динамический диапазон увеличивается не менее чем в 8 раз.

Оптоэлектронное устройство для передачи аналоговых сигналов, содержащее лазерный передатчик, оптически связанный с оптическим приемником, выход которого соединен со входом цифрового регистратора, отличающееся тем, что дополнительно введены блок стабилизации лазера и блок логарифмирования входного сигнала, вход которого является входом устройства, а выход соединен с первым входом лазерного передатчика, второй вход и выход которого соединены соответственно с выходом и входом блока стабилизации лазера.



 

Похожие патенты:

Изобретение относится к защищенным волоконно-оптическим системам передачи и может быть использовано в качестве дуплексного волоконно-оптического канала передачи информации ограниченного доступа по неконтролируемой территории.

Изобретение относится к технике волоконно-оптической связи и может использоваться в волоконно-оптических линиях связи (ВОЛС) для организации нескольких независимых каналов связи.

Изобретения относятся к автомобильной технике. Устройство для управления транспортным средством содержит рулевое колесо, оптический излучатель и оптически сопряженные с ним приемники излучения, подключенные к специализированному вычислителю.

Изобретение относится к технике связи и может использоваться в оптических системах связи. Технический результат состоит в обеспечении регулировки диапазона волн компенсатора дисперсии.

Изобретение относится к технике связи и может использоваться в системах оптической связи. Технический результат состоит в повышении помехоустойчивости передачи.

Изобретение относится к технике связи и может использоваться при передаче информации на расстояние на основе нелокальной квантовой корреляции между квантовыми частицами, одними из которых являются фотоны.

Предлагаемое изобретение относится к области радиотехники и связи и может использоваться в оптических системах передачи информации, датчиках оптических излучений малой интенсивности, измерителях оптических сигналов в физике высоких энергий и т.п.

Изобретение относится к технике связи и может использоваться в оптических системах связи. Технический результат состоит в обеспечении адаптации фильтра в частотной области.

Изобретение относится к технике связи и может использоваться в системах оптической связи. Технический результат состоит в повышении надежности связи за счет повышения оперативности восстановления связи.

Изобретение относится к способам контроля волоконно-оптических линий передачи на основе одномодовых оптических волокон и может быть использовано в качестве способа отделения локальных дефектов, образованных несанкционированными отводами, от локальных дефектов, вызванных неразъемными оптическими соединениями.

Изобретение относится к устройствам контроля потерь в волоконно-оптических линиях и может быть использовано в качестве универсального технического средства защиты информации ограниченного доступа, передаваемой по неконтролируемой территории. Техническим результатом является создание устройства контроля ВОЛП, независимого от параметров информационных сигналов: скорости передачи и способа кодирования. Для этого устройство содержит передающий оптоэлектронный модуль, вход которого соединен с выходом цифрового генератора, и последовательно соединенные приемный оптоэлектронный модуль, усилитель с автоматической регулировкой усиления, полосовой фильтр, детектор уровня, микроконтроллер, устройство сигнализации, введены оптический коммутатор, первый и второй оптические ответвители, согласующее устройство, выход которого соединен со вторым входом усилителя с автоматической регулировкой усиления, а вход - с первым выходом микроконтроллера, второй выход которого соединен с входом управления оптического коммутатора, оптический выход которого является выходом устройства в волоконно-оптическую линию, а оптический вход соединен с выходом первого оптического ответвителя, первый вход которого является входом устройства, а второй вход соединен с выходом передающего оптоэлектронного модуля. 2 ил.

Изобретение относится к технике электрической связи и может использоваться в системах двусторонней оптической связи. Технический результат заключается в расширении функциональных возможностей устройства двусторонней оптической связи в подводных условиях. Для этого в аппаратуру оптической подводной беспроводной оптической связи, содержащую оптический приемник и передатчик со схемами их управления, дополнительно введены поворотное устройство, позиционно-чувствительный элемент и контроллер управления, при этом все оптические подсистемы жестко связаны друг с другом, укреплены на поворотном устройстве, а их угловые апертуры связаны соотношением θt<θR<θp, где θt - угол расходимости излучения передатчика; θR - угловое поле зрения приемника; θp - угловое поле зрения позиционно чувствительного элемента. 3 з.п. ф-лы, 3 ил.

Изобретение относится к технике связи и может использоваться в оптических системах связи. Технический результат состоит в обеспечении внедрения данных в излучаемый свет и повышении эффективности передачи данных. Для этого предложен световой модуль, содержащий по меньшей мере два первичных источника света, способных к излучению первичного цветного света. Это позволяет световому модулю излучать свет, имеющий интенсивность (Y) и цветовые координаты (x, y), посредством аддитивного смешения цветов составляющих первичных цветов. Световой модуль также содержит модулятор, способный к модуляции первичных источников света, позволяя внедрять данные в излучаемый свет. Модулятор скомпонован, чтобы модулировать цветовые координаты излучаемого света, для внедрения данных. Это особенно выгодно, поскольку чувствительность человеческого глаза к изменениям в цвете ниже, чем к изменениям в интенсивности. Таким образом, данные внедряют в свет, излучаемый из световых модулей системы освещения.3 н. и 10 з.п. ф-лы, 4 ил.

Изобретение относится технике связи и может использоваться для управления динамическим изменением размеров в сетях транспортировки данных без прерывания передачи. Технический результат состоит в повышении пропускной способности передачи. Для этого сетевое соединение содержит М компонентных интервалов, определенных в области полезной нагрузки схемы транспортировки более высокого порядка сети транспортировки данных, и способ содержит этапы, на которых принимают сигнал управления изменением размера соединения в каждом из узлов маршрута сетевого соединения; добавления в каждом узле маршрута сетевого соединения, в ответ на сигнал управления изменением размера соединения, к первому набору М компонентных интервалов второго набора N компонентных интервалов так, чтобы сетевое соединение содержало M+N компонентных интервалов; и увеличивают скорость транспортировки данных после получения в каждом узле маршрута сетевого соединения для сетевого соединения M+N компонентных интервалов. 10 н. и 18 з.п. ф-лы, 40 ил.

Изобретение относится к области радиотехники. Технический результат - получение направленного потока волн, энергия которых в свободном пространстве не будет ослабляться (зависеть) обратно пропорционально квадрату пройденного пути и будет самофокусироваться. Для этого в способе преобразования в открытом пространстве двух направленных в одну сторону линейно поляризованных моногармоничных потоков электромагнитных волн в направленный поток волн де Бройля, в котором получают когерентную резонансную интерференцию идущих в одном направлении двух пересекающихся в свободном пространстве ортогональных линейно поляризованных потоков радиоизлучения от по меньшей мере одной пары возбудителей: Электрического Диполя Герца (ЭГД) и Магнитного Диполя Герца (МГД), размещенных на близком расстоянии друг от друга при параллельном расположении их продольных осей, создающих моногармоническую радиацию с высоким уровнем стабильности несущей частоты и направленные раздельно в одну и ту же сторону, которые в заданной зоне на заданном расстоянии их пересечения имеют равную друг другу эффективную изотропно излучаемую мощность (ЭИИМ), при этом направление поляризации потоков у каждой пары МГД и ЭГД возбудителей взаимно ортогонально. 8 з.п. ф-лы, 35 ил.

Изобретение относится к технике связи и может использоваться в системах оптической связи. Технический результат состоит в расширении арсенала методов решения задачи миниатюризации в микроэлектронике. Для этого в способе, заключающемся в том, что корпуса электронных модулей соединяют непосредственно с использованием ключа, который предварительно изготавливают и устанавливают так, чтобы их соответствующие оптические окна, которые предварительно располагают заподлицо с внешними поверхностями, которые выполняют с заданными параметрами плоскостности и шероховатости, совпали с заданной точностью. 6 ил.

Изобретение относится к средствам построения цифровых систем. Технический результат заключается в повышении скорости обработки информации с уменьшением числа электронно-оптических преобразований в системе и вносимых ими искажений. В способе передают метку в адресной части оптического блока, используют канал синхронизации с выделенной длиной волны λN+1 и передают синхроимпульсы, общие для всех оптических каналов передачи и формирующие кадры. Блоки состоят из адреса и поля данных (пакета данных), в поле адреса находится метка, представляющая собой признак коммутатора, которому адресовано сообщение. До и после метки находятся защитные интервалы t1и t2. В конце кадра может находиться защитный интервал t3. Каждому коммутатору соответствует индивидуальная битовая последовательность, а при отсутствии блока данных в адресе записывается последовательность бит «Метка пустого блока», формируя так называемый «пустой блок». 2 н.п. ф-лы, 2 ил.

Устройство относится к средствам построения цифровых сетей. Технический результат заключается в уменьшении числа электронно-оптических преобразований в системе, что уменьшает вносимые ими искажения. Сеть состоит из N последовательно соединенных узлов коммутации маршрутизации, которые могут замыкаться в кольцо, с разделением маршрутизации, которая производится в электронном виде в маршрутизаторах, и коммутации, которая производится в оптическом виде в фотонных коммутаторах. Применение данной волоконно-оптической сети позволит строить телекоммуникационные сети кольцевой и линейной топологии с оптической пакетной коммутацией, использующие существующую структуру сетей SDH путем замены терминальных мультиплексоров на узел коммутации и маршрутизации. 4 ил.

Группа изобретений относится к области лазерной локации, лазерной связи, а также к системам доставки лазерного излучения на движущийся объект. Технический результат состоит в повышении точности наведения и доставки лазерного излучения на движущийся объект. Для этого на движущийся объект посылают импульсы лазерного излучения с длиной волны λ на объект с формированием на нем теплового пятна, принимают излучение теплового пятна в спектральных интервалах ИК-диапазона, содержащих длину волны λ, ширину спектральных интервалов суживают в процессе приема излучения теплового пятна так, что спектральные границы интервалов сближаются с λ, а усредненное значение яркости изображения теплового пятна сохраняется примерно неизменным в процессе приема излучения, при этом лазерное излучение, отраженное от объекта, в процессе приема излучения теплового пятна селективно ослабляют, корректируют посылку импульсов лазерного излучения в направлении наиболее яркой точки теплового пятна, направление определяют по координатам точки максимальной яркости в изображении теплового пятна, которое получают после доставки на объект каждого импульса лазерного излучения. Устройство, реализующее способ, включает в себя источник лазерного излучения, связанный с блоком управления направлением пучка лазерного излучения, оптически сопряженные двухкоординатную оптическую систему наведения, телескоп, светоделитель, реотражатель, селективный ослабитель интенсивности лазерного излучения, сменный светофильтр из набора пропускающих светофильтров, входящего в блок светофильтров, объектив, матричный фотоприемник, чувствительный в ИК-диапазоне спектра, включающем длину волны лазерного излучения, связанный с блоком обработки изображения, связанным, в свою очередь, с измерителем амплитуды сигнала и центральным блоком управления, при этом блок светофильтров связан с измерителем амплитуды сигнала и выполнен с возможностью замены сменного светофильтра из набора светофильтров по командам от измерителя амплитуды сигнала, центральный блок управления связан с приводами и датчиками двухкоординатной оптической системы наведения, приводом телескопа, также с источником лазерного излучения, выполнен с возможностью заданий режимов их работы и имеет входы и выходы для связи с внешними устройствами. 2 н. и 3 з.п. ф-лы, 1 ил.

Изобретение относится к технике оптической связи и может использоваться в системах фазовой синхронизации по ВОЛС. Техническим результатом является повышение фазовой стабильности, точности и надежности передачи по ВОЛС высокочастотного аналогового сигнала. Для этого устройство содержит генератор опорных сигналов, генераторы сигналов, объединитель сигналов, оптический передатчик, оптическое волокно, оптический приемник, радиочастотные делители, фильтр верхних частот, управляемый фазовращатель, фильтры, преобразователь частоты, фазовый детектор и масштабирующий усилитель. В устройство введены четвертый генератор сигнала, радиочастотный делитель, подстроечный фазовращатель и управляемый аттенюатор, а гетеродин и один из фильтров и преобразователей исключены, генераторы синхронизированы с генератором опорных сигналов. 1 ил.
Наверх