Инерционный датчик

Изобретение относится к области приборостроения, а именно к инерционным датчикам порогового действия, и предназначено для контроля за достижением ускорениями, действующими на объект при столкновении с другими объектами, например, при транспортных авариях, пороговых уровней. Инерционный датчик содержит размещенное в корпусе с упором инерционное тело, поджатое к одной стороне упора и имеющее со стороны опорной поверхности хвостовую часть. Датчик имеет неподвижный контакт в виде кольца, размещенного на другой стороне упора и соединенного с одним токовыводом, и подвижный контакт, который закреплен на хвостовой части инерционного тела и соединен гибким токопроводом с другим токовыводом. Технический результат - повышение надежности замыкания электрических контактов датчика и отсутствие самопроизвольного срабатывания датчика при поломке рабочей пружины. 1 ил.

 

Изобретение относится к области приборостроения, а именно к инерционным датчикам порогового действия.

Инерционные датчики порогового действия устанавливаются, как правило, на движущихся объектах для контроля за достижением ускорениями, действующими на объект при столкновении с другими объектами, например при транспортных авариях, пороговых уровней.

Известны инерционные датчики порогового действия (см. патент США №4789762, кл. Н01Н 35/14, опубл. в 1988 г., авторское свидетельство №922906, кл. Н01Н 35/14, опубл. в БИ №15 в 1982 г.), у которых чувствительный элемент представляет собой инерционное тело, установленное на винтовой пружине в корпусе датчика. При этом на инерционном теле датчика размещается подвижный электрический контакт, а на корпусе датчика - неподвижный электрический контакт. Винтовая пружина является упругим элементом, обеспечивающим начальное усилие поджатия инерционного тела к корпусу датчика. Величина отношения начального усилия поджатия к массе инерционного тела определяет величину порога по ускорению срабатывания датчика. При действии на датчик ускорения возникает сила инерции, которая стремится переместить инерционное тело в том случае, когда ее величина превышает начальное усилие поджатия пружины. При перемещении инерционного тела на величину межконтактного зазора происходит замыкание электрического контакта. Замыкание электрического контакта используется в качестве сигнала о достижении ускорением порогового значения.

Недостатком аналога (патент США №4789762) является ненадежная гальваническая связь между токовыводом и подвижным электрическим контактом вследствие того, что токоподвод к подвижному электрическому контакту, являющемуся одновременно инерционным телом, осуществляется через корпус и (или) винтовую пружину. Кроме того, в связи с тем, что корпус датчика является токопроводом, то при необходимости электрической изоляции корпуса датчика от места его установки изоляционный материал будет искажать входной сигнал (импульс ударного ускорения), передаваемый чувствительному элементу датчика.

Общие недостатки аналогов заключаются в следующем. Размещение токовыводов на противоположных торцах корпуса датчика приводит к тому, что при установке датчика необходимо предусматривать в поверхности, на которую он устанавливается, места для размещения токовыводов, что усложняет как крепление датчика, так и размещение электрических проводов, идущих от датчика. Наличие неподвижного электрического контакта в зоне размещения опорной поверхности рабочей пружины усложняет или делает невозможным установку регулировочного устройства, изменяющего степень сжатия пружины и позволяющего более точно настраивать датчик на необходимый порог по ускорению срабатывания.

Прототипом предлагаемого технического решения является инерционный датчик, описанный в патенте DE №2826306 С3, кл. Н01Н 35/14, опубл. в 1982 г.

Датчик содержит размещенное в корпусе с упором инерционное тело, поджатое рабочей пружиной к одной стороне упора. На другой стороне упора расположены два неподвижных контакта, имеющих форму полуколец. Неподвижные контакты электрически изолированы от корпуса датчика и соединены с токовыводами. При этом оба токовывода расположены со стороны одной торцевой поверхности корпуса датчика. Инерционное тело имеет хвостовую часть, к которой поджат пружиной подвижный контакт в виде тонкостенной втулки. Подвижный контакт обеспечивает перемыкание неподвижных контактов при перемещении инерционного тела на величину межконтактного зазора.

Основной недостаток прототипа состоит в ненадежном перемыкании двух неподвижных электрических контактов подвижным контактом - втулкой, так как разместить рабочие поверхности двух электрических контактов на одном уровне технологически очень сложно. Поэтому касание втулкой обоих электрических контактов при перемещении инерционного тела на величину межконтактного зазора - расстояния между неподвижными контактами и втулкой - будет происходить неодновременно и для надежного перемыкания контактов требуются дополнительное поджатие пружиной втулки к неподвижным контактам и нежесткое соединение втулки с инерционным телом для обеспечения возможного поворота, необходимого для касания втулкой обеих поверхностей неподвижных контактов.

Наличие пружины, поджимающей втулку к хвостовой части инерционного тела, а затем к неподвижным контактам при перемещении инерционного тела на величину межконтактного зазора, существенно снижает надежность датчика. Это связано с тем, что направление силы поджатия противоположно направлению восстанавливающей силы рабочей пружины, поэтому при поломке рабочей пружины втулка, перемещаясь под действием пружины, перемкнет контакты, и датчик выдаст ложный сигнал о срабатывании при отсутствии ускорения, действующего на датчик.

Кроме того, для обеспечения более широкой диаграммы чувствительности датчика необходимо, чтобы инерционное тело дополнительно имело возможность поворота относительно оси датчика. При этом втулка будет касаться только одного контакта и перемыкания неподвижных электрических контактов не произойдет.

Задача, на решение которой направлено заявляемое техническое решение, заключается в создании датчика, имеющего повышенную надежность.

Технические результаты, получаемые при осуществлении изобретения, заключаются в повышении надежности замыкания электрического контакта и отсутствии самопроизвольного срабатывания датчика при поломке рабочей пружины.

Эти технические результаты получены за счет того, что в инерционном датчике, содержащем размещенное в корпусе с упором инерционное тело, поджатое к одной стороне упора и снабженное со стороны опорной поверхности хвостовой частью, контактную систему, включающую неподвижный контакт, размещенный на другой стороне упора, подвижный контакт и токовыводы, расположенные со стороны хвостовой части инерционного тела, новым является то, что неподвижный контакт выполнен в виде кольца, соединенного с одним из токовыводов, а подвижный контакт закреплен на хвостовой части инерционного тела и соединен гибким токопроводом с другим токовыводом.

Выполнение неподвижного электрического контакта в виде кольца, соединение его с одним токовыводом и закрепление подвижного электрического контакта на хвостовой части инерционного тела позволяет обеспечить надежное замыкание электрического контакта при любом виде перемещения инерционного тела.

Благодаря тому, что подвижный контакт, закрепленный на хвостовой части инерционного тела, соединен с токовыводом гибким токопроводом, выполненным, например, в виде винтовой пружины, повышается надежность датчика, так как указанная пружина, работая в исходном состоянии на растяжение, обеспечивает дополнительное усилие поджатия инерционного тела к упору. При этом параметры пружин выбираются из условия - рабочая пружина обеспечивает 60-80% суммарного усилия поджатия, необходимого для обеспечения требуемого порога по ускорению срабатывания, а пружина-токоподвод, соответственно, - остальные 20-40%. Поэтому в случае поломки рабочей пружины пружина-токоподвод не даст переместиться инерционному телу и замкнуться электрическому контакту при отсутствии инерционных нагрузок. То есть самопроизвольного срабатывания датчика не произойдет.

На приведенном чертеже изображена конструктивная схема датчика.

Датчик состоит из корпуса 1, инерционного тела 2, поджатого рабочей пружиной 3 к упору в корпусе. Пружина 3 опирается на регулировочный винт 6. На противоположной стороне упора расположен неподвижный электрический контакт 4 в виде кольца, который электрически изолирован от корпуса 1 датчика. Неподвижный электрический контакт 4 соединен с одним из двух токовыводов 7, расположенных со стороны одной торцевой поверхности корпуса 1 датчика. Подвижный электрический контакт 5 закреплен на хвостовой части инерционного тела 2. Подвижный контакт 5 связан с другим токовыводом 7 гибким токопроводом, например, в виде конической винтовой пружины 8.

Электрические контакты 4 и 5 могут иметь разнообразную форму поперечного сечения, но их форма и диаметры должны быть подобраны таким образом, чтобы при любом перемещении инерционного тела, включая поворот относительно оси датчика, происходило их контактирование, то есть замыкание электрического контакта.

Для точной регулировки межконтактного зазора подвижный контакт 5 имеет с хвостовой частью инерционного тела 2 резьбовое соединение. После выставления необходимого межконтактного зазора контакт 5 закрепляется неподвижно на хвостовой части инерционного тела 2, например, с помощью сварки.

Для обеспечения более широкой диаграммы чувствительности датчика рабочую пружину 3 целесообразно использовать конической формы с опорой витка малого диаметра на головку регулировочного винта 6. В этом случае пружину 3 можно расположить внутри инерционного тела 2. При этом масса пружины 3 будет существенно меньше массы инерционного тела 2, что положительно скажется на динамические характеристики чувствительного элемента датчика. Кроме того, такое расположение рабочей пружины 3 и регулировочного винта 6 позволит также уменьшить габариты датчика.

Датчик работает следующим образом.

При действии на датчик ускорения а возникает действующая на чувствительный элемент сила инерции Р=m·а, где m - масса инерционного тела. В случае превышения силой инерции начального значения восстанавливающей силы F, которую генерирует рабочая пружина 3, инерционное тело 2 перемещается и происходит контактирование подвижного электрического контакта 5 с неподвижным контактом 4. Замыкание электрического контакта будет свидетельствовать о достижении действующим на датчик ускорения порогового значения, определяемого отношением F/m.

Инерционный датчик, содержащий размещенное в корпусе с упором инерционное тело, поджатое к одной стороне упора и снабженное со стороны опорной поверхности хвостовой частью, и контактную систему, включающую неподвижный контакт, размещенный на другой стороне упора, подвижный контакт и токовыводы, расположенные со стороны хвостовой части инерционного тела, отличающийся тем, что неподвижный контакт выполнен в виде кольца, соединенного с одним из токовыводов, а подвижный контакт закреплен на хвостовой части инерционного тела и соединен гибким токопроводом с другим токовыводом.



 

Похожие патенты:

Изобретение относится к приборостроению, к исполнительным магнитным механизмам. Магнитное пороговое устройство содержит постоянный магнит, магнитопроводы, примыкающие к его полюсам и образующие рабочий зазор для размещения в нем якоря, упор исходного положения якоря и стержень из магнитомягкого материала, установленный в одном из магнитопроводов с возможностью перемещения параллельно направлению намагниченности постоянного магнита.

Изобретение предназначено для регистрации действующих линейных ускорений в системах автоматики летательных аппаратов и систем безопасности автомобилей. Инерционный включатель содержит корпус, осевую направляющую, расположенное на ней инерционное тело с радиальными выступами, привод контактов, коаксиально расположенные друг в друге и относительно инерционного тела подвижные поворотные втулки с наклонными пазами на боковых стенках для взаимодействия с радиальными выступами инерционного тела при его поступательном перемещении.

Изобретение предназначено для измерения действующих линейных ускорений в системах автоматики летательных объектов. Инерционный включатель, содержит установленные на оси основное инерционное тело, удерживаемое магнитной системой, и подвижный поворотный привод с пазом в боковой стенке и размещенным на нем перемыкателем для переключения контактов контактной системы, корпус с выполненным наклонным пазом с угловой протяженностью, превышающей угловую протяженность паза в подвижном поворотном приводе на угол, достаточный для переключения контактов, два выступа, диаметрально расположенные на дополнительном инерционном теле в виде втулки, взаимодействующие с пазом корпуса и пазом подвижного поворотного привода, втулка установлена на основное инерционное тело и поджата в осевом направлении пружиной с возможностью взаимного осевого перемещения, при этом осевой ход основного инерционного тела относительно втулки не меньше его возможного осевого хода до упора, усилие, создаваемое пружиной, превышает усилие, создаваемое основным инерционным телом при действии уставочного значения ускорения, на которое настроен инерционный включатель, а диаметральные выступы закреплены на втулке, при этом выступающие внутренние концы выступов заходят в кольцевую проточку, выполненную на основном инерционном теле.

Изобретение относится к исполнительным коммутирующим устройствам датчиков требуемого физического параметра систем автоматики взрывоопасных технических объектов, которые могут подвергаться аварийным воздействиям.

Изобретение относится к области приборостроения, а именно к инерционным датчикам порогового действия, и предназначено для контроля за достижением ускорений движущихся объектов пороговых уровней, в том числе при столкновении с другими объектами, например, при транспортных авариях.

Изобретение относится к исполнительным коммутирующим устройствам пороговых датчиков физических параметров для систем автоматики взрывоопасных технических объектов, которые могут подвергаться аварийным воздействиям.

Изобретение относится к исполнительным коммутирующим устройствам пороговых датчиков физических параметров для систем автоматики взрывоопасных технических объектов, которые могут подвергаться аварийным воздействиям.

Изобретение относится к исполнительным коммутирующим устройствам пороговых датчиков физических параметров для систем автоматики взрывоопасных технических объектов, которые могут подвергаться аварийным воздействиям.

Изобретение относится к инерционным переключателям для систем автоматики различных технических объектов, подвергающихся воздействиям линейных ускорений. .

Изобретение относится к инерционным включателям для систем автоматики различных технических объектов, подвергающихся воздействиям линейных ускорений. .

Изобретение относится к инерционным датчикам порогового действия и предназначено для контроля над достижением ускорений движущихся объектов пороговых уровней, в том числе при столкновении с другими объектами. Включатель инерционный содержит герметичный корпус, направляющую втулку для свободного перемещения инерционного тела и панель с контактными парами. Выключатель снабжен также устройством блокировки, состоящим из запирающей втулки и шариков, расположенных в выборках на торце запирающей втулки, и поворотным поляризованным электромагнитным приводом, соединенным с устройством блокировки. Инерционное тело выполнено в виде шара и прижато цилиндрической пружиной к стенке направляющей втулки, причем на шаре закреплена через изолятор подвижная часть главного контакта. Технический результат - расширение области применения за счет повышения стойкости к внешним механическим воздействиям и обеспечения замыкания главного контакта при воздействии перегрузки, направленной вдоль и под углом к оси выключателя. 3 ил.

Инерционный включатель содержит корпус, инерционное тело на направляющей оси, контакты, а также неподвижную направляющую и подвижный поворотный привод контактов, расположенные коаксиально с инерционным телом и имеющие на боковых стенках пазы. Выключатель снабжен внешней втулкой, коаксиально расположенной между неподвижной направляющей и подвижным поворотным приводом с возможностью поворота относительно них и с наклонным пазом на боковой стенке. Выключатель снабжен подпружиненной и охватывающей инерционное тело втулкой, радиальные выступы которой взаимодействуют с пазами поворотного привода, внешней втулки и неподвижной направляющей. Один выступ с внутренней стороны взаимодействует с инерционным телом при его перемещении на направляющей оси. Пазы во внешней втулке и в неподвижной направляющей выполнены с наклоном в противоположные стороны. Паз в подвижном поворотном приводе выполнен со стенками, параллельными направляющей оси. По крайней мере со стороны одного торца неподвижной направляющей установлены постоянные магниты с магнитопроводами. Неподвижная направляющая выполнена из немагнитного металла, а внешняя втулка - из немагнитного металла с высокой электрической проводимостью. Технический результат - повышение надежности работы выключателя при высокоинтенсивных ударных и вибрационных ускорениях и сохранение исходного состояния контактов при аварийных падениях в составе объекта использования. 1 з.п. ф-лы, 7 ил.

Инерционный включатель содержит корпус, инерционное тело, размещенное на центральной оси, неподвижную направляющую, имеющую на боковых стенках наклонные пазы, контакты, перемыкатель и поворотный привод контактов. Включатель снабжен втулкой с радиальными выступами, закрепленной на инерционном теле, и внешней втулкой с наклонными пазами, коаксиально расположенной между неподвижной направляющей и втулкой, поджатой пружиной. С торцов на неподвижной направляющей размещены по окружности по две группы постоянных магнитов чередующейся полярности, между полюсами которых расположены цилиндрические кольца из материала с высокой электрической проводимостью, закрепленные на торцах внешней втулки. Пазы на боковых стенках неподвижной направляющей и внешней втулки наклонены во взаимно противоположные стороны и взаимодействуют с радиальными выступами втулки. Привод снабжен радиальным выступом, закрепленным на центральной оси и входящим в паз инерционного тела с возможностью его осевого перемещения. На торце центральной оси размещен диск с пазом на внешнем диаметре для захода поворотного рычага зубчатого сектора, взаимодействующего через зубчатую передачу с поджатым пружиной перемыкателем контактов. Технический результат - расширение области применения путем обеспечения работоспособности инерционного включателя при действии высокоинтенсивных ударных и вибрационных ускорений при полете и сохранения исходного состояния контактов при аварийных падениях в составе объекта использования. 2 з.п. ф-лы, 11 ил.

Изобретение относится к области приборостроения, а именно - к инерционным датчикам порогового действия, осуществляющим регистрацию и запоминание в автономном режиме (без источника электропитания) информации о достижении ускорением заданных предельных уровней. Датчик предельных ускорений содержит корпус с установленным в нем инерционным телом, предварительно поджатым к упору упругим элементом, установленным с возможностью перехода из одного устойчивого положения в другое путем прощелкивания. Упругий элемент выполнен в виде гибкой тарельчатой пружины с краевыми гофрами, имеющей на участке рабочего хода отрицательную жесткость, при этом в центральном отверстии тарельчатой пружины установлено инерционное тело сферической формы. Технический результат: повышение точности срабатывания датчика при действии ускорений, действующих вдоль и под углом к оси датчика, в том числе ударных импульсов произвольной формы, и повышение устойчивости в условиях вибронагружений. 2 ил.

Изобретение относится к области приборостроения, в частности для использования в системах автоматики взрывоопасных технических объектов, которые могут подвергаться аварийным воздействиям. Исполнительное коммутирующее устройство содержит корпус, в котором расположены пороговый датчик разности давления с каналом приема давления и с соосно установленными упругими мембранами, оснащенными контактирующими элементами, основную и дополнительную контактные системы, электромагнитный привод с поворотным якорем. Пороговый датчик разности давления помещен в отдельный (изолированный) корпус, состоящий из стакана и втулки с образованием герметичной полости между ними, в которой помещены упругие мембраны, установленные на кронштейнах, закрепленных в стакане и втулке соответственно. В стакане в непосредственной близости к каналу приема давления установлен электромагнит. Стакан оснащен извне консольно закрепленной упругой пластиной из ферромагнитного материала с возможностью перемещения незакрепленной стороны до перекрытия канала приема давления от взаимодействия с электромагнитом при подаче напряжения на его обмотки. Изобретение обеспечивает срабатывание исполнительного коммутирующего устройства при изменении давления на уставочное значение относительно давления в определенный требуемый момент времени. 9 ил.
Наверх