Способ получения нанокристаллических композиционных катодных материалов lixfeymzsio4/c



Способ получения нанокристаллических композиционных катодных материалов lixfeymzsio4/c
Способ получения нанокристаллических композиционных катодных материалов lixfeymzsio4/c
Способ получения нанокристаллических композиционных катодных материалов lixfeymzsio4/c
Способ получения нанокристаллических композиционных катодных материалов lixfeymzsio4/c
Способ получения нанокристаллических композиционных катодных материалов lixfeymzsio4/c

 


Владельцы патента RU 2522918:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный политехнический университет" (ФГБОУ ВПО "СПбГПУ") (RU)

Изобретение относится к области электротехники, а именно к технологии получения нанокристаллических катодных материалов, применяемых в литий-ионных аккумуляторных батареях. Для получения нанокристаллических композиционных катодных материалов LixFeyMzSiO4/C в качестве исходных компонентов выбирают SiO2 или титаномагнетит и SiO2, которые смешивают с карбонатом Li(Li2CO3) в соотношении 55-70 мол.% от исходных, остальное Li2CO3 и FeCO3 в равных количествах, после чего порошок расплавляют при температуре 1180±5°С, после охлаждения осуществляют размол полученного сплава с одновременным введением в качестве высокомолекулярного соединения полиметилметакрилата или сажи в количестве от 2 до 5% от сплава, далее осуществляют термическую обработку в режиме циклирования, для чего нагревают до температуры ≥600°С, выдерживают в течение 55-65 минут, охлаждают до комнатной температуры, осуществляя 5-10 циклов и совмещая при нагреве с модифицированием поверхности порошка углеродом. Повышение удельной разрядной емкости аккумуляторной батареи с предложенным катодным материалом является техническим результатом заявленного изобретения. 5 ил., 8 пр.

 

Изобретение относится к технологии получения нанокристаллических катодных материалов, применяемых в литий-ионных аккумуляторах, используемых в автомобилестроении, машиностроении, энергетике, аэрокосмической и морской технике.

Известен способ получения высокодисперсных катодных материалов LixFeyMzPO4/C [Патент РФ №2444815]. Проводят смешение соединений лития с оксидом железа, а также с одним или несколькими соединениями металлов со степенью окисления 2+, 3+, 4+, 5+, являющихся поставщиками ионов-заместителей, из числа оксидов, гидроксидов или солей, соединений фосфора, содержащими PO43+ группы, и углеродсодержащими соединениями.

Исходные компоненты смешивают и активируют в механохимическом активаторе, после чего полученную смесь подвергают термической обработке при 650-800°С, охлаждают до комнатной температуры и диспергируют в механохимическом активаторе, при этом все процессы проводят в инертной атмосфере, а поверхностное модифицирование осуществляют с помощью углеродсодержащих соединений, которые одновременно участвуют в качестве восстановителя и покрывающего агента.

Недостатком способа является получение низких значений емкости. Способ достаточно дорогой, сложный и неэкологичный.

Известен способ получения катодных материалов золь-гель методом [С.Deng, S.Zhang Sinthesis and characterization of Li2Fe0.97Zn0.03SiO4 (M=Zn2+, Cu2+, Ni2+) cathode materials for lithium ion batteries // Power sources, 196 (2011), p.386-392]. В данном методе был синтезирован Li2Fe0.97Zn0.03SiO4. Гидрат ацетата лития, цитрат железа, ацетат цинка, тетраэтилортосиликат и лимонная кислота были использованы в качестве исходных материалов. Гидрат ацетата лития, железа и цинка сначала растворяют в дистиллированной воде. Насыщенный водный раствор лимонной кислоты медленно добавляют к вышеуказанному раствору при перемешивании магнитной мешалкой. К образовавшемуся однородному раствору добавляют раствор этанола тетраэтилортосиликата. Под магнитной мешалкой перемешивание было проведено при 80°С в течение 12 ч до получения прозрачного зеленоватого раствора. Затем раствор снова перемешивали магнитной мешалкой при 75°С для испарения этанола и воды. В результате влажный гель сушили в вакуумной печи при 100°С. Сухой гель затем обжигают при температуре 700°С в течение 12 ч в потоке аргона. Вместо ацетата цинка также могут быть использованы в качестве исходных материалов ацетат меди и ацетат никеля.

Недостаток: способ является затратным, а также золь-гель метод не является промышленным по сравнению с твердофазными реакциями и реакциями в жидкой фазе.

Известен способ получения композитного материала катода 0.8Li2FeSiO4/0.4Li2SiO3/C и Li2FeSiO4/C в стехиометрическом соотношении Li:Fe:Si1/43:1:1,5 (с пониженным содержанием Fe, по сравнению с чистым Li2FeSiO4) с применением синтеза, выбранный за прототип [Jingyu Bai, Zhengliang Gong Nanostructured 0,8Li2FeSiO4/0,4Li2SiO3/C composite cathode material with enhanced electrochemical performance for lithium-ion batteries // J. Mat. Chem., №22, 2012, p.12128-12132]. В качестве прекурсора был использован 0,8Li2FeSiO4/0,4Li2SiO3/C. Для синтеза был использован золь-гель метод. 0,008 моль железного порошка и 0,016 моль лимонной кислоты смешивали в 30 мл деионизированной воды и перемешивали при 80°С. Тогда стехиометрический LiAc·2H2O (0,024 моль) и Si(OC2H5)4 (0,012 моль) растворяются и далее продолжают перемешивание еще в течение 4 часов. 0,01 моль этиленгликоля добавляют в раствор и нагревают до 120°С, выдерживают в течение 2 ч для полимеризации и сушат при 70°С в вакууме. После сушки измельчают в порошок и прокаливают в потоке аргона при 650°С в течение 10 ч. После чего полученный материал катода смешивают с ацетиленом и связующим поливинилиденфторида (ПВДФ) в весовом соотношении 80:10:10 в шаровой мельнице со скоростью 500 рмин-1 в течение 4 часов, используя в качестве растворителя N-метил-2-пиролидон (НМП). Затем суспензию наносят на алюминиевую фольгу и высушивают в вакууме при 70°С в течение 2 часов. В способе использован аморфный Li2SiO3 (литий-ионного проводника) в качестве канала передачи для улучшения ионно-литиевой диффузии в Li2Fe-SiO4 и 0.8Li2FeSiO4/0.4Li2SiO3/C композитном материале, который содержит активный материал катода Li2FeSiO4 в кристаллической фазе, окруженной аморфным Li2SiO3. В полученном материале образуются вторичные микронные размеры частиц с первичными нанокристаллитами (20 нм), состоящих из активного материала катода Li2FeSiO4 в кристаллической фазе, окруженной аморфным Li2SiO3 и аморфным углеродом.

Недостатком способа является высокая стоимость процесса, его сложность и достаточно большие временные затраты, а также достаточно низкие значения удельной разрядной емкости материала.

Задачей является разработка простого, быстрого и дешевого способа получения нанокристаллических композиционных катодных материалов LixFeyMzSiO4/C и увеличение удельной разрядной емкости материала.

Для решения задачи предложен способ получения нанокристаллических композиционных катодных материалов LixFeyMzSiO4/C, заключающийся в том, что в качестве исходных компонентов выбирают SiO2 или титаномагнетит и SiO2 в равных количествах, которые смешивают с карбонатом Li (Li2CO3) в соотношении 55-70 мол.% от исходных, остальное Li2CO3 и FeCO3 в равных количествах. Расплавляют порошок при температуре 1180±5°С. Далее охлаждают сплав до образования аморфной структуры. По данным рентгенофазового анализа и электронной микроскопии полученные материалы являются аморфными (фиг.1). Таким образом, достигается однородность структуры.

Для равномерного распределения углерода и покрытия частиц материала осуществляют размол аморфного сплава с высокомолекулярным соединением полиметилметакрилата (ПММА) или сажи в количестве от 2 до 5% от сплава. Размер частиц после размола составляет 100-2000 нм. Далее проводят термическую обработку в режиме циклирования, а именно нагревают до температуры ≥600°С, выдерживают в течение 55-65 минут, охлаждают до комнатной температуры, осуществляют 5-10 циклов, совмещая при нагреве с модифицированием поверхности порошка углеродом.

Размол позволяет осуществить привитую полимеризацию радикалов группы СН к частичкам порошка и тем самым равномерное покрытие. ПММА используется для получения высокодисперсного состояния вещества при минимальном времени размола. Режим термоциклирования позволяет получать нанокристаллический композиционный материал Li2FeSiO4, состоящий из нанокристаллической и аморфной фаз, с модифицированием поверхности частиц углеродом. По данным электронной микроскопии на просвет структура материала состоит из кристаллической фазы Li2FeSiO4 и аморфной фазы (фиг.2). Охлаждение из жидкого состояния исходных фаз с последующей циклической термообработкой позволяет получать стабильное количество нанокристаллической фазы Li2FeSiO4 и аморфной фазы, что обеспечивает высокую характеристику удельной разрядной емкости материала, ускоряет процесс термообработки до 6 часов. Добавление высокомолекулярного соединения в определенном количестве позволяет упростить модифицирование поверхности порошка, что приводит к улучшению удельной разрядной емкости материала катода. Использование в качестве исходных материалов оксида кремния и смеси титаномагнетита и оксида кремния значительно удешевляет процесс.

Совокупность отличительных признаков является необходимой и достаточной для решения поставленной задачи.

При температуре плавления 1180±5°С происходит образования аморфной фазы, нагрев далее не целесообразен, ±5°С составляет погрешность измерения температуры.

Соотношение исходных веществ 55-70 мол.% SiO2 выбрано исходя из того, что данные пределы соответствуют легкоплавкой эвтектике в системе Li2O-SiO2.

При температуре циклов, равной 600°С, происходит необходимый рост кристаллической фазы Li2FeSiO4, размер которой превышает 200 нм. При температуре <600°С значительно увеличивается время термической обработки, достигающее более 10 суток.

При количестве циклов от 5 до 10 доля аморфной фазы составляет от 10 до 30% от общего объема порошка. При таком соотношении аморфной и кристаллической фаз возможно достичь высоких показателей удельной разрядной емкости.

При содержании ПММА <2% от сплава содержание углерода соответствует менее 0,7%, что дает низкие значения электропроводности материала и, следовательно, низкие значения удельной разрядной мощности. При содержании ПММА >5% от сплава содержание углерода более 2,3%, что также дает низкие значения удельной разрядной емкости.

На фиг.3 и 4 приведены результаты рентгеновского анализа модифицированного углеродом катодного материала и его фотография.

Пример 1. Для получения нанокристаллических композиционных катодных материалов LixFeyMzSiO4/C выбрана смесь из SiO2, Li2CO3 и FeCO3 в соотношении SiO2 55 мол.%, остальное Li2CO3 и FeCO3. Нагреваем до температуры 1180°С. Охлаждаем на воздухе до образования аморфной структуры. Осуществляем размол с одновременным введением 2% ПММА от сплава в энергонапряженной мельнице. После этого полученный порошок подвергают термоциклированию, а именно нагревают до температуры 600°С, выдерживают в течение 60 мин, осуществляют 5 циклов (фиг.5). Удельная разрядная емкость полученного катодного материала составляет 169 мА·ч/г при скорости С/10

Пример 2. В условиях примера 1 соотношение SiO2 - 70 мол.%, остальное Li2CO3 и FeCO3. Удельная разрядная емкость полученного катодного материала составляет 139 мА·ч/г при скорости С/10.

Пример 3. В условиях примера 1 соотношение SiO2 - 63 мол.%, остальное Li2CO3 и FeCO3. Удельная разрядная емкость полученного катодного материала составляет 165 мА·ч/г при скорости С/10.

Пример 4. В условиях примера 1 размол осуществляется с добавлением полиметилметакрилата (ПММА) в количестве 5% от сплава. Удельная разрядная емкость полученного катодного материала составляет 165 мА·ч/г при скорости С/10.

Пример 5. В условиях примера 1 размол осуществляется с добавлением сажи в количестве 3% от сплава. Удельная разрядная емкость полученного катодного материала составляет 164 мА·ч/г при скорости С/10.

Пример 6. В условиях примера 1 проводят термоциклирование в количестве 10 циклов. Удельная разрядная емкость полученного катодного материала составляет 166 мА·ч/г при скорости С/10.

Пример 7. В условиях примера 1 проводят термоциклирование в количестве 7 циклов. В качестве углеродосодержащего соединения используют полиметилметакрилат (ПММА) в количестве 3% от сплава. Удельная разрядная емкость полученного катодного материала составляет 171 мА·ч/г при скорости С/10.

Пример 8. В условиях примера 2 используют смесь титаномагнетита и SiO2 в равных долях при общем количестве 70%, остальное Li2CO3 и FeCO3. Удельная разрядная емкость полученного катодного материала составляет 163 мА·ч/г при скорости С/10.

Предлагаемый способ позволяет более быстро, просто и дешево по сравнению с прототипом получить нанокристаллический композиционный катодный материал LixFeyMzSiO4/C с одновременным увеличением удельной разрядной емкости.

Способ получения нанокристаллических композиционных катодных материалов LixFeyMzSiO4/C, заключающийся в смешивании исходных компонентов, их измельчении, дальнейшей термической обработке и охлаждении до образования аморфной структуры с последующим добавлением высокомолекулярного соединения, отличающийся тем, что в качестве исходных компонентов выбирают SiO2 или титаномагнетит и SiO2, которые смешивают с карбонатом Li(Li2CO3) в соотношении 55-70 мол.% от исходных, остальное Li2CO3 и FeCO3 в равных количествах, после чего порошок расплавляют при температуре 1180±5°С, после охлаждения осуществляют размол полученного сплава с одновременным введением в качестве высокомолекулярного соединения полиметилметакрилата или сажи в количестве от 2 до 5% от сплава, далее осуществляют термическую обработку в режиме циклирования, а именно нагревают до температуры ≥600°С, выдерживают в течение 55-65 минут, охлаждают до комнатной температуры, осуществляя 5-10 циклов и совмещая при нагреве с модифицированием поверхности порошка углеродом.



 

Похожие патенты:
Изобретение относится к способу изготовления материала электрода для электрохимического получения водорода, который заключается в том, что на поверхность электрода наносят порошкообразную композицию Fe-C и осуществляют синтез нанокристаллических элементов Fe-C со средним размером в пределах 10-15 нм обработкой лазерными импульсами с длиной волны 1-1,5 мкм при плотности излучения 107-109 Вт/см2, скорости сканирования лазером 8-15 см/с, частоте импульсов 33-60 кГц в вакууме или в среде аргона, не доводя при этом процесс до плавления и появления карбида железа Fe3C.

Раскрытое в настоящей заявке изобретение предусматривает различные составы и способы их получения, которые могут быть использованы, например, для получения одного или более анодов по настоящему изобретению.

Изобретение относится к твердотельной батарее и предназначено для получения батареи, имеющей высокую плотность энергии за счет подавления повышения резистивности поверхности раздела между активным материалом положительного электрода и твердым электролитическим материалом.

Изобретение относится к неорганическим материалам. .

Изобретение относится к активному материалу положительного электрода, имеющему состав в соответствии с формулой LiFe(P 1-xO4), где Р имеет мольную долю от 0,910 до 0,999. .

Изобретение относится к химическим источникам тока и касается получения фторированного углеродного материала для положительных электродов первичных литиевых источников тока, а именно полифторфуллеренов формулы C60Fn , фторированной фуллереновой сажи и может быть использован для тонкопленочных покрытий, водоотталкивающих красок, нанокомпозитов, как антифрикционная противоизносная добавка в масла и консистентные смазки.

Изобретение относится к технологии получения катодных материалов для литий-ионных аккумуляторов. .

Изобретение относится к области химии. .

Изобретение относится к сепараторам аккумуляторных батарей. .

Изобретение относится к технологии получения композитных наномодифицированных мембран и может быть использовано при изготовлении мембранно-электродных блоков, применяемых в электрохимических устройствах, в том числе в электролизерах воды низкого и высокого давления, портативных электронных устройствах.
Изобретение относится к составам асфальтобетонных смесей и может быть использовано при производстве износостойких долговечных дорожных покрытий с регулируемыми эксплуатационно-технологическими свойствами.

Изобретение относится к области медицины, в частности к материалам из нано/ультратонких волокон, используемых для изготовления медицинских изделий, в частности раневых покрытий, клеточных субстратов, медицинских масок, назальных фильтров, а также фильтров для воздушной и жидкостной фильтрации, сорбентов радионуклидов.

Изобретение относится к способу модификации оболочек полиэлектролитных капсул наночастицами магнетита. Заявленный способ включает получение матрицы-контейнера, в качестве которой используют пористые микрочастицы карбоната кальция, формирование оболочки полиэлектролитных капсул путем последовательной адсорбции полиаллиламина и полистиролсульфоната и модификацию наночастицами магнетита на поверхности матрицы-контейнера или после растворения матрицы путем синтеза наночастиц магнетита методом химической конденсации.

Изобретение относится к автодорожной отрасли, к получению материалов дорожностроительного назначения с использованием вяжущего на основе битума с применением в качестве модификатора битума резиновой крошки из отходов резин общего, в том числе шинного назначения.

Изобретение может быть использовано в датчиках магнитного поля и тока, головках считывания с магнитных дисков и лент, устройствах диагностики печатных плат и микросхем, биообъектов (бактерий и вирусов), идентификации информации, записанной на магнитные ленты, считывания информации, записанной магнитными чернилами.

Группа изобретений относится к медицине, а более конкретно к лекарственному препарату, используемому в качестве фотосенсибилизатора (ФС), и к способу фотодинамической терапии с его использованием.

Изобретение относится к области квантовой электроники, а более конкретно - к активным лазерным средам. Активная лазерная среда включает наночастицы металла и люминофор, при этом в качестве активных лазерных центров используют наночастицы металлов, окруженные оболочкой, представляющей собой кремнезем и содержащей люминофор, спектр люминесценции которого перекрывается с пиком поверхностного плазмонного резонанса металлических наночастиц.

Использование: для определения амплитуды нановибраций. Сущность изобретения заключается в том, что освещают вибрирующий на частоте Ω объект лазерным излучением, преобразуют отраженное от объекта излучение в электрический автодинный сигнал, раскладывают сигнал в спектральный ряд, при этом лазерное излучение частотой ω0 модулируют с частотой Ω, равной частоте колебаний объекта, добиваются совпадения начальных фаз колебаний объекта и частотной модуляции лазера, измеряют амплитуду второй C2 и четвертой C4 гармоник спектра автодинного сигнала, по зависимости С2/С4(σ) вычисляют значение аргумента функции Бесселя первого рода σ, затем модулированным лазерным излучением освещают невибрирующий объект, измеряют значение амплитуд второй C2cal и четвертой C4cal гармоник спектра отраженного автодинного сигнала, по зависимости C2cal/C4cal(σM) вычисляют значение аргумента функции Бесселя первого рода σM, амлитуду нановибраций ξ находят по определенному математическому выражению.

Изобретение относится к измерительной технике и может быть использовано для измерения давлений жидких и газообразных агрессивных сред в условиях воздействия широкого диапазона стационарных и нестационарных температур.

Изобретение относится к медицине. Описано устройство зонтичное (окклюдер) с модифицированным поверхностным слоем для окклюзии ушка левого предсердия. Устройство зонтичное (окклюдер) с модифицированным поверхностным слоем выполнено из сплава на основе никелида титана, при этом оно имеет поверхностный модифицированный слой толщиной 80-95 нм, который состоит, по меньшей мере, из двух подслоев: наружный подслой толщиной 20-25 нм содержит кислород, углерод, кремний и титан при следующем соотношении элементов, ат.%: кислород 25-65, углерод 1-5, кремний 1-10, титан остальное; промежуточный подслой толщиной 60-70 нм содержит кислород, углерод, кремний, титан и никель при следующем соотношении элементов, ат.%: кислород 5-30, углерод 1-5, кремний 10-30, никель 1-50, титан остальное, причем максимальную концентрацию кремний достигает на глубине 30-35 нм от поверхности. Модифицированный поверхностный слой устройства зонтичного (окклюдера) не обладает выраженной поверхностью раздела между подслоями, характерной для осажденного слоя. Устройство зонтичное с модифицированным поверхностным слоем обладает биосовместимостью, коррозионной стойкостью и отсутствием токсичности. 8 з.п.ф-лы, 2 ил.
Наверх