Способ получения кетоозонидов



Способ получения кетоозонидов
Способ получения кетоозонидов
Способ получения кетоозонидов
Способ получения кетоозонидов
Способ получения кетоозонидов
Способ получения кетоозонидов
Способ получения кетоозонидов
Способ получения кетоозонидов
Способ получения кетоозонидов
Способ получения кетоозонидов
Способ получения кетоозонидов
Способ получения кетоозонидов
Способ получения кетоозонидов
Способ получения кетоозонидов
Способ получения кетоозонидов
Способ получения кетоозонидов
Способ получения кетоозонидов
Способ получения кетоозонидов

 


Владельцы патента RU 2523014:

Федеральное государственное бюджетное учреждение науки Институт органической химии им. Н.Д. Зелинского Российской академии наук (ИОХ РАН) (RU)

Изобретение относится к области химии органических пероксидов, производных кетонов, а именно к новому способу получения неописанных ранее кетоозонидов общей формулы:

где R=Н, Cl или Br, заключающемуся во взаимодействии β,δ-трикетонов общей формулы II:

где R имеет вышеуказанные значения, с пероксидом водорода в присутствии фосфорномолибденовой кислоты в качестве катализатора в среде ацетонитрила при комнатной температуре и мольном соотношении β,δ-трикетон II:фосфорномолибденовая кислота:пероксид водорода 1:(0,1-0,2):(1,5-2,0). Полученные соединения могут представить интерес в качестве инициаторов радикальной полимеризации полимеров, а также в медицине и фармакологии в качестве антипаразитарных средств. 3 пр.

 

Настоящее изобретение относится к области химии органических пероксидов, производных кетонов, а именно, к новому способу получения неописанных ранее кетоозонидов общей формулы:

где R=Н, Cl или Br, которые могут представить интерес в качестве инициаторов радикальной полимеризации полимеров, а также в медицине и фармакологии в качестве антипаразитарных средств.

Химия органических пероксидов насчитывает уже более ста лет (Baeyer, A; Villiger, V. Einwirkung des Caro'schen Reagens auf Ketone. Chemische Berichte,. 1899, 32, 3625-3633; Baeyer, A; Villiger, V. Ueber die Einwirkung des Caro'schen Reagens auf Ketone. Chemische Berichte,. 1900, 33, 858-864). На протяжении этого периода времени кетоны являются ключевыми реагентами в синтезе пероксидов благодаря своей доступности и легкости протекания реакции между углеродным атомом карбонильной группы и атомом кислорода ООН группы (например, в H2O2). Пероксиды, полученные из кетонов, производятся в количестве тысяч тонн и широко используются как инициаторы радикальной полимеризации непредельных мономеров (Патент РФ №2352587, 20.04.2009; Патент РФ №2393173, 27.06.2010; Ullman's Encyclopedia of Industrial Chemistry, Elvers, В., Hawkins, S., and Russey, W., Eds., VCH: New York, 1995, 5th ed.).

С периода 1980 годов к химии органических пероксидов, в особенности циклического строения, растет интерес со стороны медицины и фармакологии, вследствие обнаружения у них высокой антималярийной (Dong, Y. Synthesis and Antimalarial Activity of 1,2,4,5-Tetraoxanes. Mini-Reviews in Med.Chem. 2002, 2, 113-123) и антигельминтной активности (Ingram, К.; Yaremenko, I.A.; Krylov, I.B.; Hofer, L.; Terent'ev, A.O.; Keiser, J. Identification of antischistosomal leads by evaluating peroxides of β-dicarbonyl compounds and their heteroanalogs: bridged 1,2,4,5-tetraoxanes and alphaperoxides, and β,δ-triketones: tricyclic monoperoxides. // J. Med. Chem. 2012, 55 (20), 8700-8711). Интерес к получению инициаторов радикальной полимеризации и лекарственных препаратов стимулирует развитие методов синтеза пероксидов, в которых карбонильные соединения и H2O2 играют ведущую роль.

Анализ научно-технической и патентной литературы за последние сто лет демонстрирует, что количество публикаций, связанных с получением пероксидов в реакции Н2О2 с монокетонами исчисляется тысячами (Zmitek, К.; Zupan, M.; Iskra, J. α-Substituted organic peroxides: synthetic strategies for a biologically important class of gem-dihydroperoxide and perketal derivatives. Org. Biomol. Chem. 2007, 5, 3895-3908; Terent'ev A.O., Platonov M.M., Ogibin Yu.N., Nikishin G.I. Convenient synthesis of geminal bishydroperoxides by the reaction of ketones with hydrogen peroxide. // Synth. Commun., 2007, 37(8), 1281-1287). Так, например, известны моноциклические дипероксидные соединения, содержащие в молекуле два пероксидных O-O фрагмента и/или моноциклический трипероксид, содержащий в молекуле три пероксидных O-O фрагмента, которые получают взаимодействием монокетонов с H2O2 (Kharasch, M.; Sosnovsky, G. Structure of Peroxides Derived from Cyclohexanone and Hydrogen Peroxide. J. Org. Chem. 1958, 23, 1322-1324) и трипероксиды (Story, P.; Lee, В.; Bishop, С.; Denson, D.; Busch, P. Macrocyclic synthesis. II. Cyclohexanone peroxides. J. Org. Chem. 1970, 35, 3059-3061) по следующей схеме (I):

Публикаций, связанных с получением пероксидов в реакции H2O2 с дикетонами, насчитывается несколько. Например, известны бициклические органические дипероксиды, содержащие в своей молекуле два пероксидных O-O фрагмента, которые получают взаимодействием дикетона с Н2О2 в присутствии кислот (Terent'ev, A.O.; Borisov, D.A.; Chemyshev, V.V.; Nikishin. G.I. Facile and Selective Procedure for the Synthesis of Bridged 1,2,4,5-Tetraoxanes; Strong Acids As Cosolvents and Catalysts for Addition of Hydrogen Peroxide to P-Diketones. J.Org.Chem. 2009, 74, 3335-3340; Terent'ev, A.O.; Yaremenko, I.A.; Vil', V.A.; Moiseev, I.K.; Kon'kov, S.A.; Dembitsky, V.M.; Levitsky, D.O.; Nikishin, G.I. Phosphomolybdic and phosphotungstic acids as efficient catalysts for the synthesis of bridged 1,2,4,5-tetraoxanes from β-diketones and hydrogen peroxide. // Org. Biomol. Chem., 2013, DOI: 10.1039/C3OB27239G; Патент РФ №2472799, 20.01.2013) по следующей схеме (2):

Известны также трициклические монопероксиды и способ их получения (патент РФ №2466133, 10.11.2012), в котором было показано, что фундаментальные органические соединения - β,δ-трикетоны могут реагировать с Н2О2; в результате происходит селективная сборка трициклических пероксидов, содержащих в своем составе один O-O фрагмент. Полученные трициклы содержат один ацетальный и два монопероксиацетальных фрагмента. Процесс протекает по следующей схеме:

Для полученных из β,δ-трикетонов и Н2О2 трициклических монопероксидов была показана высокая антипаразитарная активность. В литературе описан способ получения кетоозонидов общей формулы

, где R=алкил,

основанный на совместном озонолизе алкинов и кетонов в CH2Cl2 при -75°С; кетоозониды получаются с выходом от 12 до 79% в зависимости от строения исходных органических соединений [Griesbaum, К.; Dong, Y.; McCullough, K.J. Ozonolyses of Acetylenes: Trapping of a-Oxo Carbonyl Oxides by Carbonyl Compounds and Stabilization of a-Oxo Ozonides by Derivatizations. J. Org. Chem. 1997, 62, 6129-6136].

Также известен способ получения кетоозонида формулы под действием озона на соединение с циклогексеноновым фрагментом в CH2Cl2 при -78°С, в результате получается бициклический кетоозонид с выходом 92% [Wang, С.; Liu, J.; Ji, Y.; Zhao, J.; Li, L.; Zhang, H. Total Synthesis of (±)-Paeonilide. Org. Lett., 2006, 8, 2479-2481].

Известен способ получения кетоозонидов, в котором они образуются как промежуточные интермедиаты общей формулы, основанный на действии синглетного кислорода на ацилзамещенные фураны. Синтез проводят в растворе ацетонитрила при облучении кварцевой галогеновой лампой при 0°С в течение 5 минут, пробулькивая через раствор воздух; для превращения кислорода воздуха в синглетный кислород используют медиатор возбуждения - Розовый бенгальский. Однако в чистом виде кетоозонид выделен не был [Onitsuka, S.; Nishino, H.; Kurosawa, K. Photooxygenation of 3-acetyl-5-aryl-2-methylfurans via endoperoxide intermediate and the following reactions. Tetrahedron 2001, 57, 6003-6009].

Известен также способ получения кетоозонида формулы совместным озонолизом трикетона - индантриона с тетраметилэтиленом при - 20°С, в результате получается дикетоозонид, выход которого не определен; отмечается, что он устойчив при температуре около 0°С, при повышении которой кетоозонид разлагается [Kopecky, K.R. Luminescent Products from Ozonolysis Reactions. Quimica Nova, 1993, 16, 321-324].

Известные способы как правило основаны на использовании дорогостоящего и токсичного озона, процесс проводят при низких температурах. Кроме того, озон является химически очень активным соединением и легко при избыточном применении может образовывать продукты более глубокого окисления - взрывчатые озониды.

Задачей настоящего изобретения является разработка удобного, безопасного и простого в исполнении способа получения неописанных ранее кетоозонидов.

Поставленная задача достигается предлагаемым новым способом получения кетоозонидов общей формулы (I):

где R=Н, Cl или Br, заключающимся во взаимодействии β,δ-трикетонов общей формулы (II):

где R имеет вышеуказанные значения, с пероксидом водорода в присутствии фосфорномолибденовой кислоты в качестве катализатора в среде ацетонитрила.

Процесс получения кетоозонидов (I) проводят при комнатной температуре (20-25°С) в течение 6-10 часов и мольном соотношении β,δ-трикетон II:фосфорномолибденовая кислота (ФМК):пероксид водорода=1:(0,1-0,2):(1,5-2,0).

Процесс протекает по следующей схеме:

В результате реакции образуются кетоозониды формулы I, содержащие в своем составе озонидный цикл и кетогруппу.

Выход целевого продукта составляет от 30 до 42%.

Предлагаемый способ получения кетоозонидов является новым, так как до настоящего времени не было известно из уровня техники о получении кетоозонидов из трикетонов под действием пероксида водорода. Известно было, что в реакции β,δ-трикетонов с H2O2 образуются трициклические монопероксиды и все три карбонильные группы β,δ-трикетонов участвуют в реакции (патент РФ №2466133, 10.11.2012).

В настоящем изобретении удалось показать, что фундаментальный класс органических соединений - β,δ-трикетоны в определенных условиях (ацетонитрил как растворитель, фосфорномолибденовая кислота как катализатор, комнатная температура и соотношение исходных реагентов) могут реагировать с H2O2 с образованием кетоозонидов, а не трициклических монопероксидов, как следовало ожидать на основании уровня техники по пероксидированию β,δ-трикетонов, где все три карбонильные группы β,δ-трикетонов участвуют в реакции.

В предлагаемом изобретении один из Р-углеродных атомов (карбонильной группы) остается не затронутым, а другая карбонильная группа, находящаяся в β-положении, и карбонильная группа, находящаяся в δ-положении, реагируют с пероксидом водорода с образованием озонидного цикла, в котором углеродные атомы карбонильных групп соединены через пероксидный фрагмент -O-O- и через атом кислорода -O-. До настоящего времени на основании результатов работы [Terent'ev, A.O.; Borisov, D.A.; Chemyshev, V.V.; Nikishin. G.I. Facile and Selective Procedure for the Synthesis of Bridged 1,2,4,5-Tetraoxanes; Strong Acids As Cosolvents and Catalysts for Addition of Hydrogen Peroxide to P-Diketones. J.Org.Chem. 2009, 74, 3335-3340] ожидалось, что карбонильные группы, находящиеся в β-положениях друг относительно друга в реакции с пероксидом водорода, превратятся в тетраоксан, через пероксидирование пероксидом водорода, что не наблюдалось в данном случае. Необычно, что в реакции с пероксидом водорода вместо получения соединений исключительно с фрагментом -O-O-, углеродные атомы оказываются связанными через кислородный атом -O-. До начала исследования нельзя было предвидеть, что озонидный цикл будет образовываться с участием β,δ-карбонильных групп, а не β,β-карбонильных групп. Необычным является также факт мономолекулярной, а не межмолекулярной реакции кетонов с пероксидом водорода.

Полученные соединения и способ их получения могут быть использованы для производства веществ с высокой антипаразитарной активностью. Известно, что озониды, как класс соединений, обладают выраженной антипаразитарной активностью, на их основе ведется активный поиск антипаразитарных препаратов [Zhao, Q.; Vargas, M.; Dong, Y.; Zhou, L.; Wang, X.; Sriraghavan, K.; Keiser, J.; Vennerstrom, J.L. Structure-Activity Relationship of an Ozonide Carboxylic Acid (OZ78) against Fasciola hepatica. J. Med. Chem. 2010, 53, 4223-4233; Tang, Y.; Dong, Y.; Wittlin, S.; Charman, S. A.; Chollet J.; Chiu, F.C.K.; Charman, W.N.; Matile, H.; Urwyler, H.; Dom, A.; et al. Weak base dispiro-l,2,4-trioxolanes: Potent antimalarial ozonides. Bioorg. Med. Chem. Lett. 2007, 17(5), 1260-1265; Vennerstrom, J.L.; Arbe-Bames, S.; Brun, R.; Charman, S.A.; Chiu, F.C.K.; Chollet, J.; Dong, Y.; Dom, A. et al. Identification of an antimalarial synthetic trioxolane drug development candidate. Nature 2004, 430, 900-904].

Соединение с озонидным циклом (Артеролан) формулы: находится на клинических испытаниях для лечения малярии. Полученные кетоозониды интересны в плане поиска антипаразитарных средств еще и тем, что кето-группа легко модифицируется с использованием широкого ряда химических превращений, что позволит получать на основе кетоозонидов широкие ряды озонидов с другими заместителями.

Технический результат - разработан удобный, безопасный и простой в техническом исполнении новый способ получения неописанных ранее кетоозонидов формулы I из β,δ-трикетонов и доступного недорогого и нетоксичного пероксида водорода (H2O2) - реагента «Зеленой химии», который не обладает столь высоким окислительным потенциалом как озон, а следовательно, не приводит к непредвиденному образованию взрывчатых соединений. Процесс проводят при комнатной температуре. Предлагаемые соединения могут представить интерес в качестве инициаторов радикальной полимеризации мономеров, а также в медицине и фармакологии в качестве антипаразитарных средств.

Пример 1. Получение 1-(2-бензил-1,5-диметил-6,7,8-триоксабицкло[3.2.1]окт-2-ил)этанона (1а)

К раствору 3-ацетил-3-бензилгептан-2,6-диона (II) (0,1 г, 0,38 ммоль) в CH2CN (2 мл) при перемешивании и комнатной температуре последовательно добавляли эфирный раствор Н2О2 (0,57 ммоль; мольное соотношение β,δ-трикетон II:пероксид водорода 1:1,5) и фосфорномолибденовую кислоту (ФМК) (0,089 г; мольное соотношение β,δ-трикетон II:фосфорномолибденовая кислота 1:0,1). Перемешивали при 20-25°С в течение 6 ч. Далее добавляли CH2CCl2 (10 мл), органический слой промывали водой (10 мл), 5% водным раствором NaHCO3 и снова водой (10 мл). Сушили над Na2SO4, фильтровали, удаляли растворитель в вакууме водоструйного насоса. Продукт 1-(2-бензил-1,5-диметил-6,7,8-триоксабицкло[3.2.1]окт-2-ил)этанон (1а) выделяли хроматографией на SiO2. Выход 30% (31,5 мг).

1Н ЯМР (300.13 МГц CDCl3, δ, м.д.): 1.48 (с), 1.50 (с), 1.53-2.03 (м), 2.07 (с), 2.15 (с), 2.18-2.33 (м), 2.57-2.71 (м), 2.89 (д), 3.54 (д),3.55 (д), 7.01-7.10 (м), 7.15-7.29 (м).

Элементный анализ. Вычислено. (%): С, 69.54; Н, 7.30. Найдено (%): С, 69.49; Н, 7.39. C16H20O5.

Пример 2. Получение 1-[2-(4-хлорбензил)-1,5-диметил-6,7,8-триоксабицкло[3.2.1]окт-2-ил этанона (16).

К раствору 3-ацетил-3-хлорбензилгептан-2,6-диона (II) (0,1 г, 0,34 ммоль) в CH3CN (2 мл) при перемешивании и комнатной температуре последовательно добавляли эфирный раствор H2O2 (0,58 ммоль; мольное соотношение β,δ-трикетон II:пероксид водорода 1:1,7) и фосфорномолибденовую кислоту (ФМК) (0,140 г; мольное соотношение β,δ-трикетон II:фосфорномолибденовая кислота 1:0,18). Перемешивали при 20-25°С в течение 6 ч. Далее добавляли CH2Cl2 (10 мл), органический слой промывали водой (10 мл), 5% водным раствором NaHCO3 и снова водой (10 мл). Сушили над Na2SO4, фильтровали, удаляли растворитель в вакууме водоструйного насоса. Продукт 1-(2-хлорбензил-1,5-диметил-6,7,8-триоксабицкло[3.2.1]окт-2-ил)этанон (Iб) выделяли хроматографией на SiO2. Выход 35% (37,0 мг).

1Н ЯМР (300.13 МГц, CDCl3), δ: 1.44 (с), 1.48-1.74 (м), 1.76-2.00 (м), 2.08-2.31 (м), 2.54 (д), 2.58-2.73 (м), 2.85 (д), 3.35 (д), 3.51 (д), 6.99 (д), 7.01 (д), 7.19 (д), 7.20 (д).

Элементный анализ. Вычислено (%): С, 61.84; Н, 6.16; Cl, 11.41. Найдено (%): С, 61.80; Н, 6.11; Cl, 11.50; C16H19ClO4

Пример 3. Получение 1-[2-(4-бромбензил)-1,5-диметил-6,7,8-триоксабицкло[3.2.1]окт-2-ил этанона (Iв).

К раствору 3-ацетил-3-бромбензилгептан-2,6-диона (II) (0,1 г, 0,29 ммоль) в CH3CN (2 мл) при перемешивании и комнатной температуре последовательно добавляли эфирный раствор H2O2 (0,58 ммоль; мольное соотношение β,δ-трикетон II:пероксид водорода 1:2,0) и фосфорномолибденовую кислоту (ФМК) (0,136 г; мольное соотношение β,δ-трикетон II:фосфорномолибденовая кислота 1:0,2). Перемешивали при 20-25°С в течение 6 ч. Далее добавляли CH2Cl2 (10 мл), органический слой промывали водой (10 мл), 5% водным раствором NaHCO3 и снова водой (10 мл). Сушили над Na2SO4, фильтровали, удаляли растворитель в вакууме водоструйного насоса. Продукт 1-(2-бромбензил-1,5-диметил-6,7,8-триоксабицкло[3.2.1]окт-2-ил)этанон (Iв) выделяли хроматографией на SiO2. Выход 42% (43,2 мг)

1Н ЯМР (300.13 МГц, CDCl3), δ: 1.39-1.70 (м, 1Н), 1.76-2.00 (м), 2.11 (с), 2.13-2.28 (м), 2.52 (д), 2.59-2.74 (м), 2.84 (д), 3.33 (д), 3.50 (д), 6.93 (д), 6.96 (д), 7.35 (д).

Элементный анализ. Вычислено (%): С, 54.10; Н, 5.39; Вг, 22.49. Найдено (%): С, 54.15; Н, 5.45; Br, 22.55; C16H19BrO4

Способ получения кетоозонидов общей формулы I:

где R=Н, Cl или Br,
заключающийся во взаимодействии β,δ-трикетонов общей формулы II:

где R имеет вышеуказанные значения, с пероксидом водорода в присутствии фосфорномолибденовой кислоты в качестве катализатора в среде ацетонитрила при комнатной температуре и мольном соотношении β,δ-трикетон II: фосфорномолибденовая кислота:пероксид водорода 1:(0,1-0,2):(1,5-2,0).



 

Похожие патенты:
Изобретение относится к усовершенствованному способу получения терефталевой кислоты, включающему a) взаимодействие 2,5-фурандикарбоновой кислоты, 2,5-фурандикарбоксилата или их смеси с этиленом в присутствии растворителя с образованием бициклического простого эфира при температуре в интервале от 100°C до 250°C и давлении в интервале примерно от 10 фунт/кв.

Изобретение относится к соединению формулы (I) или его фармацевтически приемлемой соли, где G1 является фенилом или пиридилом, каждый из которых необязательно дополнительно замещен одним заместителем, представленным Т; G2 является фенилом, 1,3-тиазолилом или 1,3-оксазолилом, где G2 связан с G1 в пара-положении относительно места соединения G1 с группой NH в формуле (I), где, когда G2 означает фенил, G3 связан с G2 в пара-положении G2 относительно G1, и где, когда G2 представляет собой 1,3-тиазолил или 1,3-оксазолил, G2 связан с G1 в положении 5 G2 и G3 связан с G2 в положении 2 G2; Т в каждом случае независимо выбирают из группы, включающей С1-6алкил и галоген; G3 представлен формулой (а) или формулой (b); W1 является -С(R3)(R4)-С(R3)(R4)-, и W2 представляет сбой N; или W3 представляет собой О; W4 является -С(R3)(R4)-; R3 и R4 каждый является водородом; R5 и R6 каждый является водородом; Rc и Rd вместе с атомом углерода, к которому они присоединены, являются 4-5-членным циклоалкилом или моноциклическим гетероциклом формулы (с); где один атом водорода, присоединенный к атому углерода кольца циклоалкила и моноциклического гетероцикла, необязательно заменяют радикалом, выбранным из группы -C(O)O(R8); W5 является -СН2- или -СН2-СН2-; W6 является О или N(Rx), где Rx является водородом, С1-6алкилом или -C(O)O(Rz); Rz, в каждом случае, независимо является C1-6алкилом; R8 является водородом; L1 является О; и Х является водородом, С1-6алкилом, или - (CRgRh)u-C(O)O(R10); или L1 является -СН2- и Х является -С(O)ОН; R10 является водородом; или Q является G4 или Y1-Y3; или Q имеет формулу (d), где Z является фенилом; G4 является бензотиазолом или бензоксазолом, необязательно дополнительно замещенными 1 или 2 заместителями, выбранными из группы, состоящей из С1-6алкила, галогена и -OR1; Y1, в каждом случае, независимо является -С(O)-, -С(O)O- или -С(O)N(Rw)-, где правая сторона -С(O)O- и -С(O)N(Rw)- групп присоединена к Y3 или (CRjRk)v, Y3 в каждом случае независимо является фенилом, бензилом, пиперидинилом или бицикло[4.2.0]окта-1,3,5-триеном, где фенильный и бензильный остатки необязательно дополнительно замещены 1 или 2 заместителями, выбранными из группы, состоящей из галогена и галоС1-6алкила; Rg и Rh в каждом случае независимо являются водородом, или С1-6алкилом; R1 в каждом случае независимо является галогенС1-6алкилом; Rw является водородом; и u означает 1.

Изобретение относится к области химии органических пероксидов, производных кетонов, конкретно к способу получения мостиковых 1,2,4,5-тетраоксанов, а именно замещенных 2,3,5,6-тетраоксабицикло-[2.2.1]гептанов, которые могут найти применение в химии полимеров, а также в медицине и фармакологии.

Изобретение относится к способу получения ((1R,4S)-2,3,3-трифтор-2-(трифторметил)-7-окса-бицикло[2.2.1]гепт-5-ен-1ил)метантиола реакцией [4+2]-циклоприсоединения 2-фурфурилтиотриметилсилана к гексафторпропилену.

Изобретение относится к области фармацевтики, конкретно к новому 4,7-диметил-2-(2,4,5-триметоксифенил)-3,4,4а,5,8,8а-гексагидро-2Н-4,8-эпоксихромену формулы 1, обладающему высокой анальгезирующей активностью, и может быть использовано в медицине.

Изобретение относится к получению кетальных соединений, например имеющих формулу где R1 обозначает водород или атом углерода левулинатного фрагмента; R2 обозначает гидроксил, атом кислорода глицерина или атом кислорода этерифицированного глицеринового фрагмента и "p" обозначает целое число от 1 до 100, из глицерина и левулиновой кислоты, ее эфиров и к их применению.

Изобретение относится к улучшенному способу синтеза 13-(N-Boc- -изобутилсеринил)-14 -гидроксибаккатин III-1,14-карбоната (I), в котором карбонилирование 1,14-гидроксигрупп остова баккатина проводят бис(трихлорметилкарбонатом) и 7-гидроксигруппа защищена трихлороацетильной группой.

Изобретение относится к новым соединениям формулы (I) или к их солям: где R1 или R2 независимо представляет собой группу, состоящую из R1 , R2, N и/или О, выбранную из групп: Z1 представляет собой водород или гидроксил; Z2 представляет собой водород или гидроксил; Z3 представляет собой С6-С10 арил; Z4 представляет собой C1-С6 алкокси.

Изобретение относится к би- и полициклическим замещенным изохинолину и изохинолинонам формулы (I), или к его стереоизомерным и/или таутомерным формам и/или к его фармацевтически приемлемым солям, где R1 представляет собой ОН; R3, R4, R5 и R8 представляют собой Н; R7 представляет собой галоген или (C1-C6) алкил; R6 представляет собой один (С1-С4) алкилен, присоединенный к циклоалкильному кольцу, в котором (С1-С4)алкилен образует вторую связь с другим атомом углерода циклоалкильного кольца с образованием бициклической кольцевой системы, где в бициклической кольцевой системе один атом углерода замещен группой, независимо выбираемой из О, S или SO2; или если m и s равны 2 или m равно 3 и s равно 1, R6 представляет собой группу СН2-СН-(СН2)2, которая через одну группу СН2 присоединена к циклоалкильному кольцу, а две другие группы СН2 присоединены к различным атомам углерода циклоалкильного кольца, и если m равно 3 и s равно 3, R6 представляет собой две метиленовые группы, присоединенные к различным атомам углерода циклоалкильного кольца, где метиленовые группы или группа СН2-СН-(СН2)2 присоединены к атомам углерода циклоалкильного кольца и образуют систему адамантана формулы , где L может быть присоединен к любому вторичному или третичному атому углерода, или R6 вместе с R11 и атомом N образуют (С5) гетероциклоалкил, который соединен с циклоалкильным остатком в виде спироциклической кольцевой системы, где бициклическая кольцевая система, или система адамантана, или содержащая (С5) гетероциклоалкил кольцевая система представляют собой незамещенные или необязательно замещенные заместителем R9; R9 представляет собой (C1-C6)алкил, (С2-С6)алкенил, (С6)арил или циклопропил; R11 и R12 независимо друг от друга представляют собой Н или (C1-C6)алкилен-(C6)арил; n равно 0 или 1; m равно 2 или 3; s равно 1, 2 или 3; L представляет собой О; его стереоизомерные и/или таутомерные формы и/или его фармацевтически приемлемые соли. Также изобретение относится к применению соединения формулы (I). Технический результат: получены новые би- и полициклические производные изохинолина и изохинолинона, полезные в качестве ингибиторов Rho-киназы. 5 н. и 17 з.п. ф-лы, 22 пр.

Настоящее изобретение относится к области химии органических пероксидов, производных кетонов, а именно, к новому способу получения неописанных ранее кетотетраоксанов общей формулы I: где R=Н, CH3 или NO2, путем взаимодействия β,δ-трикетонов общей формулы II: где R имеет вышеуказанные значения, с пероксидом водорода в присутствии фосфорномолибденовой кислоты (ФМК) в среде смеси четыреххлористого углерода с диэтиловым эфиром при комнатной температуре и мольном соотношении β,δ-трикетон II:ФМК:пероксид водорода = 1:(0,3-0,5):(2,5-3,5). В процессе используют смесь четыреххлористого углерода и диэтилового эфира (CCl4-Et2O) при соотношении (4-5):1 соответственно. Полученные соединения могут представить интерес в качестве инициаторов радикальной полимеризации полимеров, а также в медицине и фармакологии в качестве антипаразитарных средств. Способ технологичный, одностадийный и безопасный. 1 з.п. ф-лы, 3 пр.

Настоящее изобретение относится к новым производным фенилэтинила формулы (I) или к их фармацевтически приемлемым кислотно-аддитивным солям возможно в виде рацемической смеси, или ей соответствующему энантиомеру, и/или оптическому изомеру, и/или стереоизомеру. Соединения обладают свойствами позитивных аллостерических модуляторов (РАМ) метаботропных глутаматных рецепторов подтипа 5 (mGluR5) и могут быть использованы при лечении шизофрении или когнитивных расстройств. В формуле (I) R1 представляет собой водород, галоген, низший алкил или низший алкил, замещенный галогеном; R2 представляет собой водород, низший алкил, =O, низший алкокси, фенил, гидрокси или низший алкил, замещенный гидрокси; X представляет собой N, CF или СН; L представляет собой -NR3-, -NHC(R3)2-, -O-, -OC(R3)2-, -CR4R4'-; R3 представляет собой водород или низший алкил; R4/R4' независимо друг от друга представляют собой водород или низший алкил; цик представляет собой циклоалкил или гетероциклоалкил, или представляет собой неароматический бицикл, выбранный из 7-окса-бицикло[2.2.1]гепт-1-ила или бицикло[2.2.1]гепт-1-ила; n представляет собой 1, 2 или 3. 3 н. и 20 з.п. ф-лы, 1 табл., 44 пр.
Наверх