Теплообменник, теплообменная пластина и способ изготовления теплообменника

Изобретение относится к теплотехнике и может быть использовано в пластинчато-трубчатых теплообменниках. В теплообменнике, содержащем ряд пар теплообменных пластин, изготовленных из металлического листа, имеющего трехмерную систематизированную структуру, причем внутри ряда указанных пар образован первый проточный канал, а между указанными парами образован второй проточный канал, при этом каждая пластина имеет по меньшей мере одно сквозное отверстие, сквозное отверстие окружено язычками, вырезанными в его зоне и отогнутыми наружу, причем язычки одной пластины введены в сквозное отверстие соседней пластины. Технический результат - обеспечение прочного соединения между смежными пластинами в зоне сквозного отверстия. 3 н. и 12 з.п.ф-лы, 7 ил.

 

Изобретение относится к теплообменнику, содержащему ряд пар теплообменных пластин, изготовленных из металлического листа, имеющего трехмерную систематизированную структуру, причем внутри ряда указанных пар образован первый проточный канал, а между указанными парами образован второй проточный канал, при этом каждая пластина имеет по меньшей мере одно сквозное отверстие.

Кроме того, изобретение относится к теплообменной пластине, изготовленной из металлического листа, имеющего трехмерную систематизированную структуру, и имеющей по меньшей мере одно сквозное отверстие.

Изобретение относится также к способу изготовления теплообменника, содержащего блок из пар теплообменных пластин, изготовленных из металлического листа, имеющего трехмерную систематизированную структуру, причем каждая пластина имеет по меньшей мере одно сквозное отверстие.

Теплообменник описанного выше типа известен из патентного документа US 2007/0261829. Пластины этого теплообменника имеют трехмерную систематизированную структуру, содержащую выгибы и углубления. Выгибы и углубления размещены напротив соответствующих углублений и выгибов смежной теплообменной пластины, образуя проточный канал на первой и второй сторонах контура теплообменника.

Другие возможные виды теплообменных пластин имеют форму типа "елочка".

Для теплообменника требуются четыре соединительных трубопровода, а именно две пары соединительных трубопроводов. Одна пара трубопроводов необходима на первой стороне контура, она содержит подводящий трубопровод и возвратный трубопровод. Другая пара трубопроводов необходима на второй стороне контура, она содержит трубопроводы для подвода и возврата текучей среды, нагреваемой или охлаждаемой посредством теплообменника.

Во многих случаях трубопроводы образованы проходящими насквозь отверстиями, кратко называемыми "сквозными отверстиями". Эти сквозные отверстия предусмотрены в углах теплообменных пластин. Теплообменник, образованный из блока пластин, должен быть выполнен таким образом, чтобы входной и выходной каналы, ограниченные сквозными отверстиями, были достаточно прочными, чтобы выдержать даже довольно высокие давления текучих сред. В частности, применительно к типу теплообменника, имеющего углубления, раскрытого в патентном документе US 2007/026182, каналы должны выдерживать довольно высокие давления.

В известных теплообменниках соседние теплообменные пластины соединены в зоне сквозных отверстий посредством нескольких сварных швов, окружающих сквозные отверстия. Однако такое соединение трудно выполнить достаточно прочным, чтобы оно выдерживало высокое давление.

Задача, лежащая в основе изобретения, заключается в том, чтобы обеспечить крепкое соединение между смежными теплообменными пластинами в зоне сквозного отверстия.

Эту задачу решают посредством того, что указанное сквозное отверстие окружено язычками, вырезанными в зоне этого сквозного отверстия и отогнутыми наружу, причем язычки одной пластины вводятся в сквозное отверстие соседней пластины.

В результате материал, который удаляют при образовании сквозного отверстия, больше не расходуется впустую. Он используется для образования стенки, окружающей сквозное отверстие и состоящей из отдельных язычков. Когда язычки одной пластины вводятся в сквозное отверстие соседней пластины, образуется подобие цилиндра, проходящего через сквозные отверстия, тем самым создавая прочный канал в зоне отверстия, способный выдержать довольно высокие давления.

Согласно предпочтительному варианту изобретения указанные язычки имеют длину, которая по меньшей мере в два раза превышает расстояние между соседними пластинами. Таким образом, язычки соседних пластин могут перекрывать друг друга на довольно большом расстоянии, что может быть использовано для обеспечения прочного соединения между соседними пластинами.

В предпочтительном случае указанные язычки пластины соединены с язычками соседней пластины. Такое соединение может быть выполнено, например, посредством сварки. Язычки пластин образуют цепочку, удерживающую теплообменные пластины в соединении друг с другом, даже если давление между пластинами достаточно высокое. Другая возможность может заключаться в соединении пайкой.

Согласно предпочтительному варианту изобретения язычки соседних пластин образуют соединительные зоны, причем смежные соединительные зоны отделены друг от друга. Это облегчает формирование соединения между соседними язычками. В каждой соединительной зоне соединяются только два язычка, что упрощает создание соединения и его проверку.

В предпочтительном случае язычки имеют треугольную форму. Это позволяет создавать язычки простым образом, выполняя диаметральные разрезы, проходящие через сквозное отверстие. Если, например, разрезаются четыре линии, формируются восемь язычков, которые могут быть отогнуты перпендикулярно плоскости теплообменной пластины.

Согласно предпочтительному варианту изобретения язычки соседних пластин имеют одинаковое угловое положение относительно указанного сквозного отверстия. Когда теплообменные пластины собирают для образования блока, каждый язычок перекрывает язычок смежной пластины, расположенный в том же угловом положении. Это приводит к обеспечению максимальной площади перекрытия между язычками смежных пластин.

В предпочтительном случае в теплообменнике предусмотрена концевая пластина, имеющая выгиб, выполненный с возможностью приема в себя по меньшей мере тех язычков, которые предусмотрены на теплообменной пластине, находящейся рядом с указанной концевой пластиной. В системе, имеющей блок теплообменных пластин с отогнутыми вниз язычками, может возникнуть проблема в нижней части пластины там, где отсутствует соседняя пластина. Одно из решений заключается в снабжении указанной концевой пластины выгибом, выполненным с возможностью приема в себя отогнутых вниз язычков по меньшей мере теплообменной пластины, находящейся рядом с указанной концевой пластиной. В этом случае теплообменная пластина, находящаяся рядом с концевой пластиной, может иметь ту же самую форму, что и все другие теплообменные пластины. В предпочтительном случае выгиб выполняется с возможностью приема в себя язычков не только теплообменной пластины, находящейся рядом с указанной концевой пластиной, но также и язычков по меньшей мере второй теплообменной пластины, считая от концевой пластины.

Согласно предпочтительному варианту изобретения указанный выгиб имеет глубину, превышающую по протяженности высоту указанных язычков в перпендикулярном направлении к указанной теплообменной пластине, находящейся рядом с указанной концевой пластиной. В этом случае язычки могут оставаться в своем вертикальном положении, т.е. нет необходимости деформировать язычки. В любом случае имеется возможность соединять язычки со стенкой выгиба.

В альтернативном варианте изобретения язычки теплообменной пластины, находящейся рядом с концевой пластиной, отогнуты параллельно указанной концевой пластине по меньшей мере в пределах своего конца. Эти язычки отогнуты по меньшей мере дважды и содержат первый участок, почти перпендикулярный плоскости теплообменной пластины, и дополнительно содержат второй участок, параллельный плоскости концевой пластины.

В этом случае предпочтительно, чтобы язычки по меньшей мере двух теплообменных пластин, находящихся рядом с указанной концевой пластиной, образовали, по меньшей мере на своих концах, слоистую структуру на внутренней поверхности указанной концевой пластины. Такая слоистая структура легко может быть соединена с указанной концевой пластиной.

Кроме того, поставленная в изобретении задача решается посредством создания теплообменной пластины описанного выше типа, в которой указанное сквозное отверстие окружено язычками, вырезанными в зоне сквозного отверстия и отогнутыми наружу.

Для изготовления теплообменной пластины в большинстве случаев необходимо формовать пластину с помощью пресса. Этот пресс может быть использован для вырезания язычков и отгибания их наружу, например, почти перпендикулярно плоскости пластины. Эти язычки облегчают сборку пластин в блоки, поскольку язычки могут быть использованы как вспомогательные средства для выравнивания пластин.

Согласно предпочтительному варианту изобретения указанные язычки имеют треугольную форму. При этом можно использовать диаметральные разрезы, проходящие через сквозные отверстия. Это является простым способом изготовления язычков.

Задача решается посредством способа изготовления теплообменника, содержащего блок из пар теплообменных пластин, изготовленных из металлического листа, имеющего трехмерную систематизированную структуру, причем каждая пластина имеет по меньшей мере одно сквозное отверстие, при котором указанное сквозное отверстие получают путем разрезания металлического листа в зоне сквозного отверстия для образования язычков и отгибания наружу указанных язычков.

Таким образом, язычки могут быть использованы для облегчения сборки блока теплообменных пластин. Язычки также могут быть использованы для соединения теплообменных пластин в зоне сквозных отверстий.

В предпочтительном случае язычки пластины вводят в сквозное отверстие соседней пластины. Это означает, что язычки одной пластины перекрывают язычки соседних пластин на заданном расстоянии. Эта зона перекрытия обеспечивает довольно прочное и устойчивое к воздействию давления соединение между соседними теплообменными пластинами.

Согласно предпочтительному варианту изобретения язычки пластины соединяют с язычками соседней пластины. Соединение между язычками способно выдержать силы натяжения, создаваемые давлением внутри теплообменника.

Далее изобретение описано на примере предпочтительного варианта выполнения со ссылками на чертежи, на которых:

фиг.1 сверху изображает теплообменную пластину,

фиг.2 представляет собой увеличенный вид верхнего правого угла теплообменной пластины, показанной на фиг.1,

фиг.3 изображает сборку из ряда пластин до отгибания язычков,

фиг.4 изображает сборку из ряда пластин, каждая из которых имеет язычки,

фиг.5 изображает пример другой формы язычков,

фиг.6 иллюстрирует пример соединения язычков с нижней пластиной,

фиг.7 иллюстрирует вариант изобретения, альтернативный варианту изобретения, показанному на фиг.6.

Фиг.1 изображает теплообменную пластину 1, показанную в патентном документе US 2007/0261829. Эта пластина 1 содержит выгибы 2, возвышающиеся на определенную высоту над плоскостью теплообменной пластины 1. Кроме того, теплообменная пластина 1 имеет углубления 3, утопленные на определенную глубину в этой теплообменной пластине 1. Выгибы 2 обозначены белыми окружностями, в то время как углубления 3 обозначены окружностями с крестом. Как описано в патентном документе US 2007/0261829, две такие пластины 1 образуют пару пластин, в которой одна теплообменная пластина 1 повернута на 180° относительно своей более длинной грани 4. Ряд таких пар накладывают друг на друга. В результате внутри этих пар образуется первый проточный канал, а между этими парами образуется второй проточный канал.

Теплообменная пластина 1 изготовлена из металлического листа. Металлический лист является материалом, имеющим хорошую теплопроводность, его можно формовать с помощью пресса или штампа. Также возможно использование пластмассовых материалов вместо металлического листа. Выгибы 2 и углубления 3 образуют трехмерную систематизированную структуру. Эту структуру придают посредством пресса или штампа.

Теплообменная пластина 1 имеет четыре сквозных отверстия 5-8. Эти сквозные отверстия 5-8 используются для образования каналов или трубопроводов. Например, сквозные отверстия 5, 7 образуют отверстия подвода и возврата для первого проточного канала, а сквозные отверстия 6, 8 образуют отверстия подвода и возврата для второго канала текучей среды.

На фиг.1, 2 и 3 сквозные отверстия 5-8 показаны закрытыми.

Фиг.2-4 иллюстрируют способ открывания сквозных отверстий 5-8.

Фиг.3 и 4 изображают блок из трех теплообменных пластин 1а, 1b, 1с.

На первом этапе выполняют четыре диаметральных разреза в зоне сквозного отверстия 5. Четыре разрезаемые линии 9 показаны на фиг.2. После выполнения разрезов площадь сквозного отверстия 5 закрыта восемью язычками 10. Каждый язычок имеет почти треугольную форму.

На следующем этапе язычки 10 отгибают наружу относительно плоскости каждой теплообменной пластины 1а, 1b, 1с так, что язычки 10 располагаются почти перпендикулярно плоскости 11 теплообменной пластины 1. Это схематично изображено на фиг.3 и 4. При отгибании образуется не острый край, а закругленный переход между плоскостью 11 и язычком 10. Вырезание и отгибание язычков 10 согласно предлагаемому варианту изобретения выполняют до того, как теплообменные пластины 1а, 1b, 1с собирают в блок.

Когда ряд теплообменных пластин 1а, 1b, 1с размещают одна над другой для формирования блока, язычок 10 теплообменной пластины 1а перекрывает язычок 12 смежной теплообменной пластины 1b. Тот язычок 12, в свою очередь, перекрывает язычок 13 следующей смежной теплообменной пластины 1с.

Язычки 10, 12 образуют зону 14 перекрытия, на которой их можно соединить друг с другом, например, посредством сварки. Язычки 12, 13 также образуют зону 15 перекрытия, на которой их можно соединить, например, также посредством сварки.

Как видно из фиг.4, зоны 14, 15 перекрытия (которые могут называться также соединительными зонами) отделены друг от друга, т.е. в пределах каждой зоны 14, 15 перекрытия только два язычка соответственно 10, 12 или 12, 13 перекрывают друг друга.

Язычки 10, 12, 13 имеют длину, равную по меньшей мере удвоенному расстоянию 16 между соседними или смежными теплообменными пластинами 1а, 1b. В результате зона 14,15 перекрытия является достаточно большой.

Язычки 10, 12, 13 всех теплообменных пластин 1а, 1b, 1с имеют одинаковую угловую ориентацию относительно сквозного отверстия 5. Таким образом, конец язычка 10, 12 всегда перекрывает основание следующего язычка 12, 13. Это обстоятельство позволяет создавать очень надежное соединение между язычками.

При необходимости такое соединение может быть выполнено для всех сквозных отверстий 5-8.

Вокруг язычков между соседними теплообменными пластинами 1а, 1b, 1с могут быть расположены герметизирующие средства (не изображены), поскольку соединение язычков 10, 12, 13 необязательно является герметичным само по себе.

Поскольку соединение между соседними пластинами 1а, 1b, 1с является довольно прочным, нет необходимости в использовании специальной верхней или нижней пластин в теплообменнике, образованном посредством описанной теплообменной пластины 1. Это означает, что все теплообменные пластины 1 могут иметь одинаковую форму и толщину.

Трехмерная систематизированная структура может быть отличной от изображенной на фиг.1. Например, можно использовать структуру, известную из уровня техники как «елочка».

Фиг.5 иллюстрирует альтернативный вариант формирования язычков 10. В этом случае в сквозном отверстии 5 вырезают звезду 17 с образованием пяти язычков 10, каждый из которых имеет треугольную форму. Однако к настоящему изобретению также может быть применима любая другая возможная форма, например закругленная форма язычков 10.

Наличие отогнутых вниз язычков 10 обуславливает появление проблемы в отношении концевой пластины, например нижней пластины 18, т.е. там, где нет соседней пластины.

Фиг.6 иллюстрирует первое решение этой проблемы, согласно которому нижняя пластина 18 имеет выгиб 19, выполненный с возможностью приема в себя отогнутых вниз язычков 10 теплообменной пластины 1d, находящейся рядом с концевой пластиной 18. Можно видеть, что выгиб 19 имеет глубину, превышающую по протяженности высоту язычков 10, отогнутых перпендикулярно плоскости теплообменной пластины 1d, находящейся рядом с концевой пластиной 18. В этом случае становится возможным ввод язычков 10 в выгиб 19 полностью, без необходимости их деформации.

Выгиб 19 принимает в себя не только язычки 10 теплообменной пластины 1d, находящейся рядом с концевой пластиной 18, но также и язычки второй теплообменной пластины 1е, считая от концевой пластины 18. Язычки этих двух теплообменных пластин 1d, 1е могут быть присоединены к внутренней стенке выгиба 19. Однако в выгиб 19 возможно ввести даже большее количества язычков, т.е. язычков большего количества теплообменных пластин 1d,1e,...

Другое возможное решение указанной проблемы проиллюстрировано на фиг.7. В этом случае используется концевая пластина 20, имеющая плоскую внутреннюю поверхность 21. При этом язычки 10 теплообменных пластин 1d, 1е, находящихся рядом с концевой пластиной 20, дополнительно отогнуты с образованием участков 22, проходящих параллельно внутренней поверхности 21 указанной концевой пластины 20. Эти язычки образуют слоистую структуру на внутренней поверхности 21 указанной концевой пластины 20.

Можно сказать, что язычки 10 сформированы посредством разрезания в направлении, определяющемся вектором, который имеет отличную от нуля компоненту в радиальном направлении, проходящем в сторону центра соответствующего отверстия 5-8. При этом угловая компонента данного вектора, являющаяся тангенциальной по отношению к окружности отверстия, может быть нулевой или отличной от нуля.

Образование язычков 10 и соединение их, как здесь описано, позволяет получить так называемую подобную трубе структуру, проходящую через внутренность теплообменника. Это обеспечивает прочную структуру в зоне отверстий 5-8. Если вместо этого отверстия 5-8 были бы отбортованы таким образом, что имели бы ободок, отогнутый вниз без вырезания с компонентой вектора, в радиальном направлении отличной от нуля, то сформированная труба также обеспечила бы блокировку для прохода текучей среды в промежутки между теплообменными пластинами, в результате чего также были бы сформированы отверстия. Между тем за счет формирования язычков 10 с радиальной компонентой вектора при разрезах материал удаляется из отверстия, что также проиллюстрировано на фиг.5 (фиг.3 иллюстрирует ситуацию, когда угловая компонента вектора является нулевой), и тогда такие отверстия будут образовываться естественным образом при соединении отогнутых вниз язычков 10, при этом их размеры будут зависеть от относительной радиальной компоненты вектора по отношению к угловой компоненте вектора.

1. Теплообменник, содержащий ряд пар теплообменных пластин (1), изготовленных из металлического листа, имеющего трехмерную систематизированную структуру (2, 3), причем внутри ряда указанных пар ограничен первый проточный канал, а между указанными парами ограничен второй проточный канал, при этом каждая пластина (1) имеет по меньшей мере одно сквозное отверстие (5-8), отличающийся тем, что указанное сквозное отверстие (5-8) окружено язычками (10, 12, 13), вырезанными в зоне сквозного отверстия (5-8) и отогнутыми наружу, причем язычки (10, 12, 13) одной пластины (1) введены в сквозное отверстие соседней пластины (1b), при этом язычки (10) вырезаны с радиальной компонентой вектора, отличной от нуля.

2. Теплообменник по п.1, отличающийся тем, что указанные язычки (10, 12, 13) имеют длину, которая по меньшей мере в два раза превышает расстояние (16) между соседними пластинами (1а, 1b).

3. Теплообменник по любому из пп.1 или 2, отличающийся тем, что указанные язычки (10, 12) пластины (1а, 1b) соединены с язычками (12, 13) соседней пластины (1b, 1с).

4. Теплообменник по п.3, отличающийся тем, что язычки (10, 12; 12, 13) соседних пластин (1а, 1b; 1b, 1с) образуют соединительные зоны (14, 15), причем смежные соединительные зоны (14, 15) отделены друг от друга.

5. Теплообменник по любому из пп.1, 2 или 4, отличающийся тем, что язычки (10, 12,13) имеют треугольную форму.

6. Теплообменник по любому из пп.1, 2 или 4, отличающийся тем, что указанные язычки (10, 12, 13) соседних пластин имеют одинаковое угловое положение относительно указанного сквозного отверстия (5-8).

7. Теплообменник по любому из пп.1, 2 или 4, отличающийся тем, что в нем предусмотрена концевая пластина (18), имеющая выгиб (19), выполненный с возможностью приема в себя по меньшей мере тех язычков (10), которые предусмотрены на теплообменной пластине (1d), находящейся рядом с указанной концевой пластиной (18).

8. Теплообменник по п.7, отличающийся тем, что указанный выгиб (19) имеет глубину, превышающую по протяженности высоту указанных язычков (10) в перпендикулярном направлении к указанной теплообменной пластине (1d), находящейся рядом с указанной концевой пластиной (18).

9. Теплообменник по любому из пп.1, 2 или 4, отличающийся тем, что язычки (10) теплообменной пластины (1d), находящейся рядом с концевой пластиной (20), отогнуты параллельно указанной концевой пластине (20) по меньшей мере в пределах своего конца.

10. Теплообменник по п.9, отличающийся тем, что язычки (10) по меньшей мере двух теплообменных пластин (1d, 1е), находящихся рядом с указанной концевой пластиной (20), образуют, по меньшей мере в пределах своего конца, слоистую структуру на внутренней поверхности (21) указанной концевой пластины (20).

11. Теплообменная пластина (1), изготовленная из металлического листа, имеющего трехмерную систематизированную структуру (2, 3), и имеющая по меньшей мере одно сквозное отверстие, отличающаяся тем, что указанное сквозное отверстие (5-8) окружено язычками (10, 12, 13), вырезанными из зоны сквозного отверстия (5-8) и отогнутыми наружу.

12. Теплообменная пластина по п.11, отличающаяся тем, что указанные язычки (10, 12,13) имеют треугольную форму.

13. Способ изготовления теплообменника, содержащего блок из пар теплообменных пластин (1), изготовленных из металлического листа, имеющего трехмерную систематизированную структуру (2, 3), причем каждая пластина (1) имеет по меньшей мере одно сквозное отверстие (5-8), отличающийся тем, что указанное сквозное отверстие (5-8) получают путем разрезания металлического листа в зоне сквозного отверстия (5-8) с образованием язычков (10, 12, 13) и путем отгибания наружу указанных язычков (10, 12, 13).

14. Способ по п.13, отличающийся тем, что язычки (10, 12) пластины (1а, 1b) вводят в сквозное отверстие соседней пластины (1b, 1с).

15. Способ по п.14, отличающийся тем, что язычки (10, 12) пластины (1а, 1b) соединяют с язычками (12, 13) соседней пластины (1b, 1с).



 

Похожие патенты:

Изобретение относится к области теплотехники и может быть использовано в рекуперативных теплообменниках. Теплообменник содержит послойно расположенные гофрированные пластины, гофры которых скрещиваются, причем гофры выполнены переменной ширины по шагу через одну, поочередно двух размеров, образующих площади проходных сечений для воздуха FB и для газа FГ в соотношении между собой, определяемым по формуле , где рB - давление воздуха в тракте теплообменника рГ - давление газа в тракте теплообменника ΔрВ - потери давления воздуха в тракте теплообменника ΔpГ - потери давления газа в тракте теплообменника tB - температура воздуха в тракте теплообменника tГ - температура газа в тракте теплообменника Технический результат - оптимизация габаритов пластинчатых теплообменников с компланарными каналами.

Изобретение относится к области металлургии, в частности к листам из чистого титана, которые могут быть использованы для изготовления пластин теплообменников. .

Изобретение относится к области теплотехники и может быть применено в радиаторах отопительных и охлаждающих установок. .

Изобретение относится к области теплотехники и может быть использовано при изготовлении теплообменников из композиционных материалов. .

Изобретение относится к области теплотехники и может быть использовано при изготовлении теплообменников. .
Изобретение относится к области теплообмена, а именно к области теплообменных аппаратов, и может быть использовано в качестве элемента тепломассообменных устройств общего назначения, а именно, в процессах ректификации, абсорбции, очистки и осушки природного газа, а также в качестве смесителей жидких и газовых потоков, в качестве разделителей фаз в сепарационных устройствах, в качестве контактных элементов в конденсаторах смешения и может найти применение практически во всех технологических процессах нефтяной и газовой промышленности.

Изобретение относится к области теплотехники и может быть использовано при изготовлении пластинчатых теплообменников. .

Изобретение относится к теплотехнике и может быть использовано в любых отраслях техники для нагрева или охлаждения жидких или газообразных сред, а также в качестве испарителей и конденсаторов.

Изобретение относится к теплотехнике и может быть использовано в любых отраслях техники для подогрева или охлаждения жидких или газообразных сред, в том числе для газотурбинных установок.

Изобретение относится к теплотехнике и может быть использовано в пластинчато-трубчатых теплообменниках. В теплообменнике, содержащем ряд пар теплообменных пластин, изготовленных из металлического листа, имеющего трехмерную систематизированную структуру, причем внутри ряда указанных пар образован первый проточный канал, а между указанными парами образован второй проточный канал, при этом каждая пластина имеет, по меньшей мере, одно сквозное отверстие, в каждой указанной теплообменной пластине выполнено по меньшей мере одно вспомогательное отверстие, имеющее выступающую кромку, образующую отбортовку, вставляемую в соответствующее вспомогательное отверстие соседней теплообменной пластины. Технический результат - обеспечение прочного соединения между смежными пластинами в зоне сквозного отверстия. 3 н. и 13 з.п. ф-лы, 6 ил.

Изобретение относится к теплотехнике, предназначено для использования в теплообменных аппаратах и может применяться в космической, авиационной, энергетической, химической, пищевой и других отраслях промышленности. Пакет пластин теплообменного аппарата состоит из одинаковых пластин сетчато-поточного типа с турбулизаторами в виде полых двусторонних выступов одинаковой высоты в форме усеченных конусов, по вершинам которых стянуты пластины, образующие между собой сетку взаимных опор с прямоугольной структурой и каналы теплоносителей между ними. Основания усеченных конусов выполнены в виде параллелограммов, стороны которых являются сторонами соседних оснований. Соседние выступы соединены седловидными перемычками, образующими ребра жесткости. Технический результат изобретения заключается в повышении жесткости конструкции, что позволяет увеличить давление теплоносителей и разницу давлений между ними и способствует улучшению теплообмена. 2 ил.

Изобретение относится к теплотехнике и может быть использовано в пластинчатых теплообменниках. Наборный пластинчатый теплообменник содержит множество наборных коллекторов. В каждом коллекторе имеется пара удлиненных плоских пластин, установленных одна за другой с интервалом. Дополнительная стенка расположена между парой плоских пластин и соединяет между собой периферийные края пары плоских пластин. У каждой из пластин имеются две торцевые части, в каждой из которых выполнено сквозное отверстие. Множество наборных коллекторов выровнено в линию вдоль первой и второй осей, проходящих через отверстия в каждой торцевой части. При этом дополнительная стенка включает в себя дистанционные прокладки, расположенные частично вокруг каждого отверстия в каждой торцевой части, и первые боковые штанги, расположенные вдоль каждого бокового края пары удлиненных плоских пластин. Путь потока среды первой среды проходит через множество наборных коллекторов вдоль первой оси и выходит из множества наборных коллекторов вдоль второй оси. Множество путей потока второй среды проходит между смежными коллекторами и гидравлически изолировано от пути потока первой среды, находясь с ним в тепловом контакте. Технический результат - повышение прочности. 2 н. и 8 з.п. ф-лы, 2 ил.

Изобретение относится к области теплотехники и может быть использовано в пластинчатых теплообменниках. Пластинчатый теплообменник включает в себя стопу из множества пластин, каждая из которых имеет вход и выход для текучей среды. Каждые соседние две пластины скреплены друг с другом в своих областях, где верхние части гофреного участка, предусмотренного в нижней из пластин, и нижние части гофреного участка, предусмотренного на верхней из пластин, перекрывают друг друга, если смотреть в направлении укладки стопой. В частности, верхняя часть, входящая в число верхних частей гофреного участка нижней пластины и являющаяся соседней с каждым из входа и выхода, имеет планарную форму. Технический результат - увеличение прочности пластинчатого теплообменника на сжатие. 2 н. и 7 з.п. ф-лы, 30 ил.

Изобретение относится к способу изготовления охлаждающего модуля (10) в виде корпуса с внутренним пространством (24) для размещения батарейных ячеек (22), причем корпус имеет между впускной и выпускной зонами один или несколько параллельных друг другу охлаждающих каналов (20) и выполняется, по меньшей мере, частично из одного или нескольких отрезков полого профиля (30). Технический результат - создание альтернативного способа изготовления охлаждающего модуля с одновременным снижением затрат. 4 н. и 28 з. п. ф-лы, 27 ил.

Изобретение относится к теплотехнике и может быть использовано в пластинчатых теплообменниках. Теплообменник содержит множество пластин, каждая из которых содержит множество углублений, при этом углубления содержат вершины и основания, вершины, по меньшей мере, одной пластины теплообменника соединены с основаниями смежной пластины теплообменника и, по меньшей мере, часть углублений соединена с, по меньшей мере, одним смежным углублением посредством участка стенки. Технический результат - повышение эффективности и стабильности теплообменника. 15 з.п.ф-лы, 14 ил.

Изобретение относится к производству гофрированных листов из композиционных материалов для высокотемпературных теплообменников перекрестного типа, используемых в авиационной и ракетно-космической технике, дизельных двигателях, бойлерах и т.д. Способ изготовления гофрированного листа для теплообменника из композиционных материалов включает изготовление препрега с последующим его расположением на поверхности основания с зигзагообразным профилем, точно воспроизводящим внутренний контур формуемого гофрированного листа; нанесение на поверхность профиля основания адгезионного слоя и обеспечение полного прилегания препрега к основанию по всей поверхности зигзагообразного профиля основания; выравнивание гофры по высоте ответной прижимной плитой, нагрев для карбонизации сборки из основания с приклеенным к нему гофрированным препрегом и ответной прижимной плитой; охлаждение сборки и извлечение из нее полученного гофрированного листа, уплотнение гофрированного листа карбидом кремния из газовой фазы метилсилана. При этом препрег изготавливают из нетканого материала на основе волокна карбида кремния или углерода толщиной от 0,1 до 0,35 мм. При этом перед формированием препрега нетканый материал со стороны профиля основания соединяют с непроницаемой при комнатной температуре для адгезионного слоя и связующего полимерной пленкой, разлагающейся без коксового остатка во время карбонизации. Изобретение позволяет уменьшить массу гофрированного листа и повысить теплосъем через гофру. 1 ил., 2 пр.

Изобретение относится к области теплоэнергетики, а конкретно к теплоэнергетическим установкам, используемым для помещений, зданий, сооружений, а также в различных промышленных газотурбинных установках. Теплообменная поверхность, имеющая на поверхности выемки с переменной глубиной и шириной, в каждой из которых выполнены ребра, причем ребра расположены вдоль основного потока в верхней по потоку части и образуют две диффузорные полости. Технический результат - увеличение теплоотдачи за счет увеличения мощности теплового потока в диффузорных полостях и, как следствие, уменьшение габаритов теплообменной поверхности. 3 ил.

Изобретение относится к криогенной технике и может быть использовано при разработке блоков пластинчато-ребристых теплообменников, применяемых в криогенных установках различного назначения. Система распределения каждого из теплообменивающихся потоков между параллельно включенными теплообменными аппаратами в блоках пластинчато-ребристых теплообменников, входящих в состав криогенных установок, выполнена в виде комбинации подводящих и отводящих трубопроводов теплоносителей к аппаратам, общих подводящих и отводящих коллекторов и отдельных подводящих и отводящих трубопроводов на каждый из аппаратов - ответвлений. Выравнивание распределения потоков между аппаратами осуществляется за счет подбора такого соотношения между относительными площадями ответвлений подводящих и отводящих частей коллекторов, коэффициентов сопротивлений подводящих и отводящих частей коллекторов, коэффициента расхода, совокупность которых обеспечивает неравномерность распределения потоков теплоносителей по отдельным аппаратам в блоках пластинчато-ребристых теплообменников не более 2%. Достигается обеспечение равномерного распределения всех теплообменнивающихся потоков между параллельно включенными теплообменниками в блоках пластинчато-ребристых теплообменников криогенных установок.

Извлекающая энергию система, имеющая устройство, которое обеспечивает теплообмен и влагообмен между проходящими через него воздушными потоками, причем данное устройство имеет две или более многослойные композитные конструкции, где многослойную композитную конструкцию составляют пористая жесткая или полужесткая структура, имеющая множество отверстий, проходящих от первой поверхности до второй поверхности, которая может быть гофрированной, и полимерная пленка, содержащая сульфонированный блок-сополимер, прикрепленная, по меньшей мере, к одной из первой и второй поверхностей структуры и покрывающая вышеупомянутое множество отверстий. 4 н. и 34 з.п. ф-лы, 19 ил., 1 табл.
Наверх