Способ определения удельной теплоемкости материалов

Изобретение относится к области технической физики, в частности к тепловым методам исследования материалов, и может быть использовано для определения удельной теплоемкости материалов. Заявлен способ определения удельной теплоемкости материалов, заключающийся в том, что формируют первый и второй идентичные исследуемые образцы из сыпучих или пористых материалов. Приводят их в тепловой контакт по плоскости с источником теплоты. Внешние поверхности образцов приводят в тепловой контакт с эталонными образцами, а внешние поверхности эталонных образцов приводят в тепловой контакт с источниками теплоты. Подводят теплоту к образцам и регистрируют удельную мощность источников теплоты. Измеряют с постоянным шагом во времени температуру, удельный объем твердой фазы образцов, тепловые потоки с тех поверхностей плоских источников теплоты, которые не приведены в тепловой контакт с эталонными образцами. Определяют тепловые потоки через исследуемые образцы и вычисляют удельную теплоемкость. Технический результат - повышение точности определения удельной теплоемкости пористых, волокнистых и сыпучих материалов. 2 ил.

 

Изобретение относится к области технической физики, в частности к тепловым методам исследования свойств материалов, а именно к определению удельной теплоемкости.

Известен способ комплексного определения теплофизических характеристик материалов, заключающийся в том, что измеряют толщину исследуемого образца, подводят теплоту к образцам, поддерживают температуру на внешних поверхностях образцов равной заданной температуре, регистрируют удельную мощность источника теплоты, измеряют с постоянным шагом во времени температуру в течение всего эксперимента, определяют на каждом шаге величину динамического параметра и сравнивают с максимальным значением, лежащим в заданном диапазоне, определяют искомые теплофизические характеристики по формулам, в качестве второго образца используют образец, идентичный первому образцу, эти образцы с двух сторон приводят в тепловой контакт с объемным источником теплоты, эксперимент проводят в два этапа, причем на первом этапе подводят постоянную мощность к объемному источнику теплоты, на каждом шаге во времени регистрируют среднеинтегральную температуру объемного источника теплоты и вычисляют величину динамического параметра как отношение разности скоростей изменения измеряемой среднеинтегральной температуры на первом и текущем шаге к скорости изменения среднеинтегральной температуры на первом шаге, заканчивают проведение первого этапа эксперимента при превышении заданного максимального значения динамического параметра, а на следующем шаге во времени начинают проведение второго этапа эксперимента, а именно прекращают подвод мощности к объемному источнику теплоты, на каждом шаге второго этапа вычисляют безразмерную температуру и число Фурье, проведение второго этапа эксперимента прекращают на том шаге, на котором значение безразмерной температуры становится меньше заданного значения, причем по зарегистрированным на первом этапе эксперимента данным вычисляют искомую теплопроводность, а по зарегистрированным на втором этапе эксперимента данным определяют искомую температуропроводность (Патент РФ №2243543, МПК7 G01N 25/18).

Недостатками известного способа являются большая длительность измерений, обусловленная необходимостью проведения двух этапов эксперимента, а также возможность измерения теплофизических свойств с заданной точностью только в тех диапазонах по теплопроводности и температуропроводности, для которых определены предельные значения динамических параметров.

Наиболее близким техническим решением, принятым за прототип, является способ комплексного определения теплофизических характеристик материалов, заключающийся в том, что измеряют толщину исследуемого образца, в качестве второго образца используют образец, идентичный первому образцу, эти образцы с двух сторон приводят в тепловой контакт с объемным источником теплоты, подводят теплоту к образцам, регистрируют удельную мощность источника теплоты, измеряют с постоянным шагом во времени температуру в течение всего эксперимента, определяют искомые теплофизические характеристики по формулам, внешние поверхности исследуемых образцов приводят в тепловой контакт с эталонными образцами, внешние поверхности эталонных образцов приводят в тепловой контакт с плоскими нагревателями, подводят постоянную мощность к нагревателям и регистрируют перепад температур на поверхностях эталонных образцов в плоскости контакта эталонного образца с плоским нагревателем и в плоскости контакта эталонного образца с исследуемым образцом, вычисляют тепловые потоки через первый и второй исследуемые образцы, вычисляют число Фурье и безразмерную среднеинтегральную температуру объемного источника теплоты, по экспериментальным данным вычисляют тангенс угла наклона прямолинейного участка графика зависимости безразмерной среднеинтегральной температуры объемного источника теплоты от числа Фурье, по зарегистрированным в ходе эксперимента данным вычисляют искомую объемную теплоемкость и теплопроводность (Патент №2387981 РФ, G01N 25/18. Способ комплексного определения теплофизических характеристик материалов).

Недостатком известного способа является большая погрешность определения удельной теплоемкости пористых и сыпучих материалов, обусловленная тем, что при изменении температуры в ходе эксперимента происходит увеличение удельного объема твердой фазы исследуемого материала, что не учитывается в прототипе.

Такие признаки прототипа, как использование второго образца, идентичного первому образцу, приведение образцов с двух сторон в тепловой контакт с источником теплоты, приведение внешних поверхностей образцов в тепловой контакт с эталонными образцами, приведение внешних поверхностей эталонных образцов в тепловой контакт с источниками теплоты, подведение теплоты к образцам, регистрация удельной мощности источников теплоты, измерение с постоянным шагом во времени температуры в течение всего эксперимента, вычисление тепловых потоков через образцы, определение искомых теплофизических характеристик по формулам, совпадают с существенными признаками заявляемого изобретения.

Технической задачей является повышение информативности способа и повышение точности определения удельной теплоемкости пористых, волокнистых и сыпучих материалов.

Данная техническая задача решается тем, что в способе определения удельной теплоемкости материалов первый и второй идентичные образцы приводят в тепловой контакт по плоскости с источником теплоты, внешние поверхности образцов приводят в тепловой контакт с эталонными образцами, внешние поверхности эталонных образцов приводят в тепловой контакт с источниками теплоты, подводят теплоту к исследуемым образцам, регистрируют удельную мощность источников теплоты, измеряют с постоянным шагом во времени температуру в течение всего эксперимента, вычисляют тепловые потоки через исследуемые образцы, определяют искомые теплофизические характеристики по формулам, дополнительно изолируют объем с формируемыми образцами известной массы из сыпучего или пористого материала, изменяют на постоянную величину объем их газового пространства, измеряют изменение давления, определяют удельный объем твердой фазы образцов, а также тепловые потоки с тех поверхностей плоских источников теплоты, которые не приведены в тепловой контакт с эталонными образцами, вычисляют тепловые потоки через первый q1=U2/(RS)-q1u и второй q2=U2/(RS)-q2u исследуемые образцы, вычисляют удельную теплоемкость по формуле

c = c н p н ( Q + Г 1 1 ) Г 1 ν т ф ,

где ν т ф = V т ф m - удельный объем твердой фазы образцов; Vтф - объем твердой фазы, m - масса образцов, снрн - объемная теплоемкость материала, из которого изготовлен источник теплоты; Г1=1+h0/(2h0+hн)-(h0+hн)/(2h0+hн) - коэффициент толщины образца h0 и источника теплоты hн; U - напряжение, подводимое к источнику теплоты, R, S - сопротивление и площадь поверхности источника теплоты, q1u, q2u - измеряемые тепловые потоки с поверхностей первого и второго плоских источников теплоты, Q = 1 + U 2 / ( R S h н ) q 1 h н + q 2 q 1 A ,

А - тангенс угла наклона прямолинейного участка зависимости T ¯ 2 ( τ ) T 0 q 1 ( 2 h 0 + h н ) / λ н = f ( a н τ ( 2 h 0 + h н ) 2 ) ; T ¯ 2 ( τ ) - температура, измеряемая в плоскости контакта исследуемых образцов; Т0 - начальная температура.

Способом, описанным в прототипе, определение удельной теплоемкости возможно только расчетным методом путем деления объемной теплоемкости на плотность материала. Однако в процессе нагрева исследуемого материала вследствие расширения частиц изменяется соотношение объемов твердой и газовой фазы. Поэтому определение удельной теплоемкости в прототипе сопряжено с большими погрешностями.

По сравнению с прототипом, предложенным способом можно определять не только объемную теплоемкость материала, но и удельную теплоемкость благодаря непрерывному определению удельного объема твердой фазы в ходе эксперимента. Это расширяет информативность способа и повышает точность определения удельной теплоемкости.

На фиг.1 приведена физическая модель измерительной ячейки, реализующей предлагаемый способ. На фиг.2 изображена схема конструкции измерительной ячейки.

Физическая модель измерительной ячейки (фиг.1) представляет собой плоскую трехслойную систему. Слои 1 и 3 системы образованы идентичными по свойствам и размерам исследуемыми образцами, между которыми расположен слой 2, состоящий из нагревателя и термометра сопротивления, выполненных из манганиновой и медной проволок. На внешних поверхностях исследуемых образцов заданы тепловые потоки q1 и q2.

Математическая модель, описывающая температурное поле в измерительном устройстве, была сформулирована при следующих допущениях: 1) теплоперенос излучением в исследуемых образцах отсутствует; 2) температурное поле внутри системы считается одномерным; 3) термические сопротивления на границах контакта слоев отсутствуют; 4) на внешних границах исследуемых образцов заданы постоянные тепловые потоки; 5) в ходе эксперимента температура слоев системы изменяется незначительно, поэтому теплофизические свойства слоев постоянны; 6) мощность, выделяемая на нагревателе, равномерно распределена по всему объему слоя 2. С учетом допущений математическая модель записана в виде системы дифференциальных уравнений теплопроводности

Θ i ( x ¯ , F o ) F o = a ¯ i 2 Θ i ( x ¯ , F o ) x ¯ 2 + W ¯ i , 0 < x ¯ < 1, F o > 0, i = 1,3 ¯ , ( 1 )

с начальными условиями Θ i ( x ¯ ,0 ) = 0, ( 2 )

и граничными условиями

Θ i ( 0, F o ) x ¯ = λ 2 λ 1 , ( 3 )

Θ i ( l i l 3 0, F o ) = Θ i + 1 ( l i l 3 + 0, F o ) , i = 1,2 ¯ , ( 4 )

λ i Θ i ( l i l 3 0, F o ) x ¯ = λ i + 1 Θ i + 1 ( l i l 3 + 0, F o ) x ¯ , i = 1,2 ¯ , ( 5 )

Θ 3 ( 1, F o ) x ¯ = q 2 q 1 λ 2 λ 3 , ( 6 )

где a ¯ i - безразмерная температуропроводность i-го слоя, определяемая из выражения a ¯ i = a i / a 2 ; λi - теплопроводность; W ¯ i - безразмерная объемная мощность внутренних источников теплоты, определяемая из выражения W ¯ i = W i l 3 / q 1 , причем объемная мощность внутренних источников теплоты первого и третьего слоев равны W1=W3=0, а объемная мощность внутренних источников теплоты второго слоя определяется как отношение мощности P нагревателя к объему V2 второго слоя, т.е. W2=P/V2; Θ i ( x ¯ , F o ) - безразмерная температура, определяемая из выражения

Θ i ( x ¯ , F o ) = T i ( x , τ ) T 0 q 1 l 3 / λ 2 ,

где Т1(x,τ) - температурное поле i-го слоя; T0 - начальная температура; x ¯ = x / l 3 - безразмерная пространственная координата; F o = a 2 τ l 3 2 - число Фурье, x,τ - пространственная координата и время.

Из теории теплопроводности известно, что поле температур Θ i ( x ¯ , F o ) будет автомодельным относительно координаты Fo. Решение задачи (1)-(6) имеет следующий вид

Θ i ( x ¯ , F o ) = A F o + F i ( x ¯ ) , i = 1,3 ¯ ,

где А - постоянный коэффициент; F i ( x ¯ ) - функции, имеющие вид

F i ( x ¯ ) = { A a 2 a 1 x ¯ 2 2 λ 2 λ 1 x ¯ + C 1 , i = 1, ( A W ¯ 2 ) x ¯ 2 2 + C 21 x ¯ + C 22 , i = 2, A a 2 a 3 x ¯ 2 2 ( q 2 q 1 λ 2 λ 3 + A a 2 a 3 ) x ¯ + C 3 , i = 3.

Константы А, С1, С21, С22, С3 определяются из граничных условий (3)-(6), а также из уравнения теплового баланса, записанного для системы слоев 1-3 на фиг.1. В частности, для А получено выражение вида

A = 1 + W ¯ 2 ( l 2 / l 3 l 1 / l 3 ) + q 2 q 1 c 1 ρ 1 c 2 ρ 2 ( l 1 / l 3 ) l 1 / l 3 c 3 ρ 3 c 2 ρ 2 ( l 2 / l 3 ) + c 3 ρ 3 c 2 ρ 2 + l 2 / l 3 , ( 7 )

из которого с учетом с1ρ1=c3ρ3=сρ можно получить выражение для расчета объемной теплоемкости исследуемых образцов

c ρ = c 2 ρ 2 1 + W 2 q 1 ( l 2 l 1 ) + q 2 q 1 A + l 1 / l 3 l 2 / l 3 ( 1 + l 1 / l 3 l 2 / l 3 ) . ( 8 )

При исследовании пористых, волокнистых или сыпучих материалов их объемная теплоемкость будет складываться из двух составляющих - объемной теплоемкость твердой фазы и объемной теплоемкости газовой фазы, заполняющей поры, то есть

сρ=(сρ)тф+(сρ)гф.

Последнее выражение, при условии (сρ)тф>>(сρ)гф, примет вид

cρ≈(cρ)тф, или cρ≈cтфm/Vтф=cтфтф.

Таким образом, удельная теплоемкость твердой фазы будет определяться из выражения

cтф=cρνтф,

а с учетом (8) получим

c т ф = c 2 ρ 2 1 + W 2 q 1 ( l 2 l 1 ) + q 2 q 1 A + l 1 / l 3 l 2 / l 3 ( 1 + l 1 / l 3 l 2 / l 3 ) ν т ф . ( 9 )

Обозначим h0=l1 - толщина образца, hн=l2-l1 - толщина источника теплоты (нагревателя), 2h0+hн=l3, Г1=1+h0/(2h0+hн)-(h0+hн)/(2h0+hн), Q = 1 + U 2 / ( R S h н ) q 1 h н + q 2 q 1 A , W2=U2/(RShн), с2ρ2=cнρн. Тогда (9) примет вид

c т ф = c н ρ н ( Q + Г 1 1 ) Г 1 ν т ф . ( 10 )

Таким образом, по сравнению с прототипом, дополнительное измерение удельного объема твердой фазы в процессе эксперимента позволяет определять удельную теплоемкость твердой фазы исследуемого материала.

Схема измерительной ячейки показана на фиг.2. Исследуемые образцы (или насыпной слой) размещены в камере 4 между газопроницаемой оболочкой 5 с нанесенными на нее нагревательным элементом и измерителем температуры, которые выполнены из манганиновой и медной проволок соответственно. Внешние поверхности исследуемых образцов приведены в тепловой контакт с тонкими медными пластинами 6, на внешней поверхности которых размещены плоские нагреватели 7, которые, в свою очередь, приведены в тепловой контакт с датчиками теплового потока 8. Описанная система теплоизолирована от окружающей среды изоляцией 9. В конструкции ячейки предусмотрен цилиндр 10 с поршнем 11, осуществляющим возвратно-поступательное движение. Полость цилиндра 10 соединена с камерой 12 и измерителем давления (на фиг. 2 не показан).

Применение в конструкции измерительной ячейки датчиков теплового потока позволяет измерять тепловые потоки q1u и q2u с поверхностей нагревателей 7. Это позволяет по известной мощности, выделяемой на нагревателях и определяемой по выражению U2/(RS), где U, R, S напряжение, подводимое к нагревателю, его сопротивление и площадь, определять тепловые потоки через первый и второй образцы по формулам

q1=U2/(RS)-q1u q2=U2/(RS)-q2u.

Способ определения удельной теплоемкости материалов реализуется следующим образом. Перед помещением в камеру анализируемого материала определяют его массу m и атмосферное давление Ратм. Засыпают исследуемый сыпучий материал в камеру 4 (фиг.2) и герметизируют камеру. Подводят постоянное напряжение U к нагревателям 8 и 5 измерительной ячейки. На каждом шаге во времени τ измеряют среднеинтегральную температуру T ¯ 2 ( τ ) нагревательного элемента 5. Вычисляют безразмерную среднеинтегральную температуру Θ ¯ 2 ( F o ) = T ¯ 2 ( τ ) T 0 q 1 ( 2 h 0 + h н ) / λ н и число Фурье F o = a н τ ( 2 h 0 + h н ) 2 . При достижении регулярного теплового режима второго рода регистрируют Θ ¯ 2 ( F o ) и в заданном интервале безразмерного времени [Fo∗,Fo∗∗] вычисляют А по формуле A = [ Θ ¯ 2 ( F o ) Θ ¯ 2 ( F o ) ] / [ F o F o ] .

В ходе эксперимента уменьшают суммарный объем камер 4 и 10 на величину ΔV=k·m, где k - коэффициент пропорциональности. Измеряют изменение давления ΔР. Удельный объем твердой фазы определяют из уравнения

ν т ф = V m k P а т м Δ P = ν м k P а т м Δ P ,

где V - суммарный объем камеры 4, в которой размещен исследуемый материал и камеры 10; m - масса исследуемого материала; Ратм - атмосферной давление; ΔP - изменение давления в камере с исследуемым материалом; νм - удельный объем исследуемого материала; k - коэффициент пропорциональности.

Определение удельного объема твердой фазы анализируемого материала осуществляется дискретно с заданным шагом.

Искомую удельную теплоемкость вычисляют по формуле (10).

Способ определения удельной теплоемкости материалов, заключающийся в том, что первый и второй идентичные образцы приводят в тепловой контакт по плоскости с источником теплоты, внешние поверхности образцов приводят в тепловой контакт с эталонными образцами, внешние поверхности эталонных образцов приводят в тепловой контакт с плоскими источниками теплоты, подводят теплоту к исследуемым образцам, регистрируют удельную мощность источников теплоты, измеряют с постоянным шагом во времени температуру в течение всего эксперимента, вычисляют тепловые потоки через исследуемые образцы, определяют искомые теплофизические характеристики по формулам, отличающийся тем, что дополнительно изолируют объем с формируемыми образцами известной массы из сыпучего или пористого материала, изменяют на постоянную величину объем их газового пространства, измеряют изменение давления, определяют удельный объем твердой фазы образцов, а также тепловые потоки с тех поверхностей плоских источников теплоты, которые не приведены в тепловой контакт с эталонными образцами, вычисляют тепловые потоки через первый q1=U2/(RS)-q1u и второй q2=U2/(RS)-q2u исследуемые образцы, вычисляют удельную теплоемкость по формуле

где - удельный объем твердой фазы образцов; V - объем камеры, заполненной исследуемым материалом, m - масса исследуемого материала; Ратм - атмосферной давление; ΔP - изменение давления в камере с исследуемым материалом; k - коэффициент пропорциональности; снρн - объемная теплоемкость материала, из которого изготовлен источник теплоты; Г1=1+h0/(2h0+hн)-(h0+hн)/(2h0+hн) - коэффициент толщины образца h0 и источника теплоты hн, U - напряжение, подводимое к источникам теплоты, R, S - сопротивление и площадь поверхности источника теплоты, q1u, q2u - измеряемые тепловые потоки с поверхностей первого и второго плоских источников теплоты, , A - тангенс угла наклона прямолинейного участка зависимости ; - температура, измеряемая в плоскости контакта исследуемых образцов; T0 - начальная температура.



 

Похожие патенты:

Изобретение относится к области исследования изменения теплофизических свойств конструкционных материалов при нанообработке нестационарным методом неразрушающего контроля.

Изобретение относится к области тепловых измерений и может быть при изучении особенностей нестационарного теплового режима, нахождении теплового баланса и определении теплофизических показателей твердых материалов различного предназначения.

Группа изобретений относится к измерительной технике и может быть использована при решении задач энергетического аудита. Заявлен способ и устройство интеллектуального энергосбережения, согласно которым измеряют температуру теплоносителя на входе и выходе энергопотребляющего объекта, измеряют массу теплоносителя за определенный промежуток времени, определяют количество энергии, потребляемой объектом.

Изобретение относится к области измерительной техники и может быть использовано для технической диагностики неоднородных конструкций. Устройство для определения сопротивления теплопередачи многослойной конструкции включает датчики температуры и теплового потока и тепловизионное устройство.

Использование: для определения теплопроводности керна. Сущность: заключается в том, что подготавливают образец керна и рентгеновский микрокомпьютерный томограф для сканирования указанного образца керна и получения изображения для каждого сканирования, сканируют указанный образец керна, передают для обработки трехмерное сканированное изображение с томографа на компьютер, предназначенный для анализа изображений, задают толщину слоя внутри полученного трехмерного сканированного изображения для анализа, определяют слой с максимальной теплостойкостью внутри полученного трехмерного сканированного изображения и определяют эффективную теплопроводность образца керна.

Изобретение относится к нестационарным способам определения температуропроводности твердых тел и может применяться в строительстве и теплоэнергетике при проведении тепловых испытаний однородных строительных объектов, теплопроводных и теплоизоляционных материалов.

Изобретение относится к нестационарным способам определения теплопроводности сыпучих материалов и может применяться при изучении термических свойств почв, рыхлых горных пород, сыпучих строительных и прочих дисперсных материалов.

Изобретение относится к газоизмерительному устройство для измерения присутствия заданного газа в текучей среде. Устройство содержит датчик, имеющий чувствительный элемент и нагревательный элемент, сконфигурированный для нагрева чувствительного элемента до предварительно заданной рабочей температуры, причем чувствительный элемент является восприимчивым к заданному газу таким образом, что, по меньшей мере, одно электрическое свойство чувствительного элемента изменяется в зависимости от присутствия заданного газа, причем электрическое свойство чувствительного элемента измеряется газоизмерительным устройством; и цепь управления, имеющую контроллер нагревательного элемента, связанный с нагревательным элементом и измеряющий его электрическое свойство, причем цепь управления имеет источник энергии подогрева, подающий энергию к нагревательному элементу, причем контроллер нагревательного элемента связан с источником энергии подогрева и регулирует его работу в зависимости от измерения электрического свойства нагревательного элемента; средство импульсной модуляции, соединенное с контроллером нагревательного элемента, источником энергии подогрева для управления величиной энергии, подаваемому к нагревательному элементу.

Изобретение относится к области термометрии и может быть использовано для определения коэффициента теплопроводности частично прозрачных керамических и стеклообразных материалов с учетом их прозрачности.
Изобретение относится к измерительной технике, а именно к способам определения физических свойств материалов путем тепловых и электрических измерений, и может быть использовано для оперативного контроля теплотехнических качеств ограждающих конструкций зданий и сооружений в натурных условиях.

Изобретение относится к области измерительной техники, в частности к тепловому неразрушающему контролю объектов, и может быть использовано для определения теплового сопротивления и теплопроводности строительных конструкций. Согласно заявленному способу определения теплопроводности и теплового сопротивления строительной конструкции на сторонах строительной конструкции 1 устанавливают теплоизолированные нагревательные элементы 2, 3. С помощью нагревательных узлов 8, 9 и систем термостабилизации 10, 11 стороны конструкции 1 термостатируются при температурах Т1 и Т2 в течение времени τ. Время τ определяется по формуле τ=4·105·h2, где h - толщина конструкции 1. По истечении времени τ датчиками теплового потока 6 и 7 измеряют тепловые потоки q1 и q2 через строительную конструкцию. Далее определяют теплопроводность λ материала конструкции по формуле λ = ( q 1 + q 2 ) ⋅ h 2 ⋅ ( T 1 − T 2 )                             ( 1 ) , а тепловое сопротивление R - по формуле R = 2 ⋅ ( T 1 − T 2 ) q 1 + q 2                             ( 2 ) . Технический результат - повышение точности данных исследований. 5 ил.

Изобретение относится к текстильной и легкой промышленности и может быть использовано для определения теплозащитных свойств материалов и пакетов одежды. Сущность изобретения заключается в измерении времени остывания аккумулятора тепла, помещенного внутрь материала, пакета одежды, в заданном интервале температур и определении суммарного теплового сопротивления образца. В качестве нагревательного элемента в предложенном решении используется аккумулятор тепла с теплоносителем в виде геля в герметичной упаковке. Технический результат - повышение достоверности оценки теплозащитных свойств не только материалов и пакетов одежды, но и готовых изделий различной объемной формы и конфигурации без их разрушения для подготовки проб. 1 з.п. ф-лы, 3 ил., 1 табл.

Изобретение относится к области теплофизики и может быть использовано при проведении мероприятий неразрушающего контроля комплекса теплофизических характеристик твердых строительных материалов. Согласно заявленному предложению исследуемый образец помещают между плоским нагревателем и охлаждают снизу холодильником, со всех сторон закрывают герметичными крышками и выявляют температурную волну на поверхности исследуемого материала со стороны нагревателя. В электронном блоке управления таймером задают время наблюдения, с помощью пульта управления на кнопках устанавливают температуру нагревателя, температуру холодильника, толщину образца, используя их для определения в вычислительном устройстве электронного блока управления значений коэффициента теплопроводности и коэффициента термического сопротивления. Значения температуры поверхности образца со стороны нагревателя заносят в ЭВМ и используют совместно с полученными в вычислительном устройстве электронного блока управления данными для определения искомых теплофизических характеристик. Также заявлено устройство, реализующее данный способ. Технический результат - повышение достоверности определения теплофизических характеристик твердых строительных материалов. 2 н.п. ф-лы, 2 ил., 1 табл.

Изобретение предназначено для комплексного определения основных теплофизических свойств твердого тела и может применяться в строительстве и теплоэнергетике. Устройство состоит из источника инфракрасного излучения, твердого тела и системы охлаждения твердого тела, работающей с помощью вентиляционных отверстий на крышке устройства и перфорированной перегородки. Источник инфракрасного излучения осуществляет бесконтактное тепловое воздействие на переднюю лицевую поверхность твердого тела. Температуру твердого тела регистрируют термопреобразователи в период нагрева. Плотность теплового потока регистрирует преобразователь плотности теплового потока. По результатам построения температурного поля твердого тела в период нагрева и дифференциальному уравнению теплопроводности определяют коэффициент температуропроводности твердого тела. В период стационарного теплового режима твердого тела по величине плотности теплового потока, значениям температуры на передней и задней лицевых поверхностях твердого тела и уравнению теплопроводности для плоской стенки при стационарном тепловом режиме определяют коэффициент теплопроводности твердого тела. По найденным коэффициентам температуропроводности и теплопроводности твердого тела расчетным способом определяют коэффициент удельной (объемной, массовой) теплоемкости твердого тела. Технический результат - повышение точности определения основных теплофизических свойств твердого тела. 2 н.п. ф-лы, 7 ил.

Группа изобретений относится к области измерительной техники и может быть использована для исследования температуропроводности материалов. Подготовленный для исследования образец подвергают воздействию тепловой и механической нагрузке, в форме осевого одноосного механического растяжения и угловому отклонению вектора температурного градиента от вектора ускорения свободного падения, совпадающего с вектором силы тяжести. Регистрируют во времени температуру по длине образца и полученные данные используют для определения динамических теплофизических характеристик материала. Установка для исследования температуропроводности материала содержит вакуумную камеру, в которой размещен подготовленный для исследования образец, систему вакуумирования, соединенную с камерой, измерительную систему для мониторинга и регистрации температуры. Камера снабжена регулируемой тягой для механического нагружения образца осевым растяжением посредством перемещения тяги, патрубком, на котором установлен регулируемый фиксатор для фиксированного углового поворота камеры. Измерительная система соединена с термопарами, которые размещены на образце. Технический результат - повышение достоверности определения теплофизических характеристик . 2 н. и 3 з.п. ф-лы, 3 ил.

Изобретение относится к области исследования теплофизических характеристик материалов и может быть использовано при тепловых испытаниях твердых материалов. Заявлен способ измерения теплофизических свойств твердых материалов методом плоского мгновенного источника тепла, заключающийся в том, что образец исследуемого материала изготавливают в виде трех пластин. Причем тонкую пластину размещают между двумя массивными. Между нижней массивной и тонкой пластинами размещают плоский электронагреватель, а термоэлектрический преобразователь располагают между верхней массивной и тонкой пластинами. Полученную систему предварительно выдерживают при заданной начальной температуре, затем на электронагреватель подают короткий электрический импульс. Для определения теплофизических свойств материала в течение активной стадии эксперимента осуществляют измерение и регистрацию температуры с постоянным шагом во времени, определяют максимальное значение температуры, рассчитывают значение температуры T′ и момент времени τ′, соответствующие заданному значению параметра β. Технический результат изобретения - повышение точности измерения теплофизических свойств твердых материалов за счет выбора оптимальных режимных параметров теплофизического эксперимента. 2 ил.

Изобретение относится к области изучения физических свойств неоднородных материалов и может быть использовано для анализа теплопроводности, температуропроводности, объемной теплоемкости различных материалов. Для определения теплопроводности и температуропроводности неоднородного материала осуществляют нагрев поверхностей образца неоднородного материала и образцов с известной теплопроводностью и температуропроводностью пятном нагрева, движущимся вдоль поверхностей всех образцов. Регистрируют температуру нагреваемой поверхности всех образцов посредством трех датчиков температуры. Возврат источника нагрева и датчиков температуры в исходное положение используют для обратного сканирования с дополнительными измерениями теплопроводности образца для слоя образца неоднородного материала с глубиной и шириной, отличными от глубины и ширины слоя измерений теплопроводности при прямом движении. Для этого устанавливают такое расстояние между одним из датчиков температуры и пятном нагрева, которое вместе с измененными значениями скорости, мощности и размеров пятна нагрева обеспечит требуемые глубину и ширину слоя измерений теплопроводности при обратном движении. Технический результат - повышение точности получаемых данных. 2 н.п. и 10 з.п.ф-лы, 1 ил.

Устройство относится к области измерительной техники и может быть использовано для теплового контроля материалов. Устройство содержит источник импульсного нагрева, четыре термопары, четыре усилителя, дифференциатор, семь интеграторов, пять компараторов, шесть масштабных усилителей, датчик длительности импульса нагрева, четыре блока деления, три блока умножения, экстрематор, переключатель, два делителя частоты, четыре блока памяти, шесть сумматоров, источник опорного напряжения, пять блоков вычитания, блок управления, шесть блоков памяти, переключатель, четыре блока деления и два квадратора. Технический результат - расширение функциональных возможностей устройства. 1 ил.

Изобретение относится к теплотехнике и может быть использовано для измерения рабочих характеристик теплообменников. Заявлено устройство для измерения рабочих характеристик теплообменников, включающее теплоизолированный корпус парогенератора с крышкой, изоляторы, электроды, теплообменник, соединенный трубопроводом с крышкой и нижней частью корпуса парогенератора, расширительную емкость, измерительно-вычислительный блок, соединенный с электродами. Устройство также содержит циркуляционный насос, выход которого связан со входом теплообменника, а вход циркуляционного насоса связан с выходом парогенератора, расходомеры жидкости и газа, установленные на входных трубопроводах, датчики давления и температуры теплоносителей, установленные на входе и выходе теплообменника, функционально соединенные с измерительно-вычислительным блоком. Выход теплообменника связан со входом парогенератора. Технический результат изобретения - увеличение диапазонов измеряемых величин и расширение функциональных возможностей устройства. 1 ил.

Изобретение относится к теплофизическим измерениям и может быть использовано для определения комплекса теплофизических параметров изотропных материалов. Способ включает тепловое воздействие от инфракрасного источника нагрева по всей видимой поверхности исследуемого изотропного материала. Измерение тепловизионным приемником радиационной температуры производят во всех точках пространственной сетки поверхности исследуемого изотропного материала. Перемещают инфракрасный источник нагрева и тепловизионный приемник вдоль поверхности изотропного исследуемого и эталонного материала с постоянной скоростью по криволинейной траектории. При этом с началом перемещения радиационную температуру измеряют в центре поверхности каждого эталонного материала с известными теплофизическими. После чего радиационные температуры измеряют на поверхности исследуемого изотропного материала во всех точках пространственной сетки поверхности исследуемого изотропного материала. Применяют разностную модель с использованием неявных схем. Решают оптимизационную параметрическую задачу для исследуемого изотропного материала в каждой точке пространственного разрешения в соответствии с растром изображения. Определяют из минимума невязки искомые оцененные значения для каждой точки пространственного распределения теплофизических параметров исследуемого изотропного объекта. Технический результат - повышение точности получаемых данных. 6 ил.
Наверх